1
|
Alić J, Schlegel MC, Emmerling F, Stolar T. Meeting the UN Sustainable Development Goals with Mechanochemistry. Angew Chem Int Ed Engl 2024:e202414745. [PMID: 39290159 DOI: 10.1002/anie.202414745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Chemistry traditionally relies on reactions in solution, but this method is increasingly problematic due to the scale of chemical processes and their economic and environmental impact. Handling residual chemical waste, including solvents, incurs significant costs and environmental pressure. Conversely, novel chemical approaches are needed to address pressing societal issues such as climate change, energy scarcity, food insecurity, and waste pollution. Mechanochemistry, a sustainable chemistry discipline that uses mechanical action to induce chemical reactivity without bulk solvents, is a hot topic in academic research on sustainable and green chemistry. Given its fundamentally different working principles from solution chemistry, mechanochemistry offers more efficient chemical processes and the opportunity to design new chemical reactions. Mechanochemistry has a profound impact on many urgent issues facing our society and it is now necessary to use mechanochemistry to address them. This Minireview aims to provide a guide for using mechanochemistry to meet the United Nations (UN) Sustainable Development Goals (SDGs), thereby contributing to a prosperous society. Detailed analysis shows that mechanochemistry connects with most UN SDGs and offers more cost-efficiency than other approaches together with a superior environmental performance.
Collapse
Affiliation(s)
- Jasna Alić
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Moritz-Caspar Schlegel
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| | - Tomislav Stolar
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse11, 12489, Berlin, Germany
| |
Collapse
|
2
|
da Rosa Salles T, Schnorr C, da Silva Bruckmann F, Cassol Vicensi E, Rossato Viana A, Passaglia Schuch A, de Jesus da Silva Garcia W, F. O. Silva L, Harres de Oliveira A, Roberto Mortari S, Rodrigo Bohn Rhoden C. Effective Diuretic Drug Uptake Employing Magnetic Carbon Nanotubes Derivatives: Adsorption study and In vitro Geno-Cytotoxic Assessment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Zeng Q, Yang Q, Chai Y, Wei W, Luo M, Li W. Polystyrene microplastics enhanced copper-induced acute immunotoxicity in red swamp crayfish (Procambarus clarkii). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114432. [PMID: 38321696 DOI: 10.1016/j.ecoenv.2022.114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
Microplastic pollution has attracted a lot of attention in recent years. Not only can it be ingested by animals, but it can easily become a carrier of other pollutants, forming a composite pollutant with potentially toxic effects on organisms. We investigated the effect of Cu on the accumulation of polystyrene microplastics (PS) in the gills of Procambarus clarkii and whether PS exacerbated the immune toxicity of Cu to P. clarkii were exposed to Cu, PS and PS+Cu for 48 h, the accumulation of PS in gill and hepatopancreas immune and antioxidant indices were analyzed. The objective was to investigate the toxic effects of Ps and Cu compound pollutants on P. clarkii and whether the accumulated pollutants would cause food safety problems. The results showed that microplastic particles adhered to each other and aggregated in the PS+Cu group, and the number of microplastic particles in gill in the PS+Cu group was significantly lower than that in the PS group. Compared with the other two treatment groups, SOD, CAT, GPx activities and MDA content increased significantly in the PS+Cu group and were relatively delayed. At 12 h, 24 h, 36 h and 48 h, the SOD mRNA expression levels in the PS+Cu group were all significantly lower than those in the Cu group (P < 0.05). At 24 h and 48 h, CAT mRNA expression in the PS+Cu group was significantly higher than that in the Cu group (P < 0.05). Crustin 4 mRNA expressions in the PS+Cu group was significantly higher than that in the Cu group at 12 h and 36 h (P < 0.05). The results demonstrate that the PS and Cu compound reduced the accumulation of microplastic particles in the gill. PS particles delayed Cu entry into P. clarkii for a short time (12 h) and reduced the toxic effect, but with the increase of exposure time (24 h and 48 h), the toxic effect of PS and Cu complexes on P. clarkii increases, and the large accumulation of PS and Cu complexes may cause food safety problems.
Collapse
Affiliation(s)
- Qinghui Zeng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiufeng Yang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Yi Chai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Bellingeri A, Battocchio C, Faleri C, Protano G, Venditti I, Corsi I. Sensitivity of Hydra vulgaris to Nanosilver for Environmental Applications. TOXICS 2022; 10:695. [PMID: 36422905 PMCID: PMC9695720 DOI: 10.3390/toxics10110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Nanosilver applications, including sensing and water treatment, have significantly increased in recent years, although safety for humans and the environment is still under debate. Here, we tested the environmental safety of a novel formulation of silver nanoparticles functionalized with citrate and L-cysteine (AgNPcitLcys) on freshwater cnidarian Hydra vulgaris as an emerging ecotoxicological model for the safety of engineered nanomaterials. AgNPcitLcys behavior was characterized by dynamic light scattering (DLS), while Ag release was measured by inductively coupled plasma mass spectrometry (ICP-MS). H. vulgaris (n = 12) subjects were evaluated for morphological aberration after 96 h of exposure and regeneration ability after 96 h and 7 days of exposure, after which the predatory ability was also assessed. The results show a low dissolution of AgNPcitLcys in Hydra medium (max 0.146% of nominal AgNPcitLcys concentration) and highlight a lack of ecotoxicological effects, both on morphology and regeneration, confirming the protective role of the double coating against AgNP biological effects. Predatory ability evaluation suggests a mild impairment of the entangling capacity or of the functionality of the tentacles, as the number of preys killed but not ingested was higher than the controls in all exposed animals. While their long-term sub-lethal effects still need to be further evaluated on H. vulgaris, AgNPcitLcys appears to be a promising tool for environmental applications, for instance, for water treatment and sensing.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
5
|
de Oliveira Eiras MI, Costa LSD, Barbieri E. Copper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebra-fish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109343. [PMID: 35421598 DOI: 10.1016/j.cbpc.2022.109343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed to compare the metabolic effects caused by using copper oxide nanoparticles with two distinct morphologies nanorods and nanosphere. The CuONPs in the form of nanorods were characterized in the order of 500 nm, on a scale of 20, 100, and 500 nm. Meanwhile, the nanosphere CuONPs were characterized in the order of 5 nm, on a 30 nm scale. The analysis of metabolic rate was performed using the closed respirometry technique, specific ammonia excretion, and swimming ability as biomarkers, the physiological effects on Danio rerio were investigated. For the experiments, 88 fish were used, exposed for 24 h at concentrations of 0, 50, 100, and 200 μg/L of copper oxide nanoparticles in the form of nanospheres and nanorods, respectively. The tests carried out with the nanorods demonstrated metabolic alterations in fish, with an increase of 294% and 321% in the metabolic rate at concentrations of 100 μg/L and 200 μg/L, respectively. Furthermore, there was a decrease in specific ammonia excretion by 34% and 83% and in swimming capacity by 34% and 55% at concentrations of 100 and 200 μg/L, respectively, when compared to the control. The tests performed with nanospheres did not show significant changes compared to the control. These experiments showed that different morphological structures of the same copper oxide nanoparticle caused different effects on fish metabolism. It is concluded that the characterization of nanoparticles is essential to understand their effects on fish, since their structural forms can cause different toxic effects on D. rerio.
Collapse
Affiliation(s)
- Maria Izabel de Oliveira Eiras
- Programa de pós Graduação do Instituto de Pesca - APTA-SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananéia, São Paulo, Brazil
| | - Luelc Souza da Costa
- Instituto Federal de Educação, Ciências e Tecnologia de São Paulo - IFSP, 18707-150, Avaré, SP, Brazil
| | - Edison Barbieri
- Instituto de Pesca - APTA SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananeia, SP, Brazil..
| |
Collapse
|
6
|
Chen Y, Qian Y, Ma J, Mao M, Qian L, An D. New insights into the cooperative adsorption behavior of Cr(VI) and humic acid in water by powdered activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153081. [PMID: 35038541 DOI: 10.1016/j.scitotenv.2022.153081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Chromium and humic acid often co-exist in wastewater and source waters, and the removal of chromium through sorption by activated carbon may be greatly influenced by humic acid. In this study, we systematically evaluated concurrent adsorption of humic acid (HA) and hexavalent chromium (Cr(VI)) in water by powdered activated carbon (PAC) and further, the effect on conversion to trivalent chromium (Cr(III)). Adsorption of both HA and Cr(VI) was significantly enhanced in the dual adsorbate system as compared to treatments with HA or Cr(VI) alone. The removal of HA increased by 16.0% in the presence of 80 mg/L Cr(VI), while the removal of Cr(VI) similarly increased with increasing levels of HA. However, the promotion effect of HA was found to decrease with increasing pH. With HA at 20 mg/L, removal of Cr(VI) increased from 40.09% to 70.12% at pH 3, which was about twice the increase at pH 10. The cooperative adsorption mechanism was explored using scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), Raman spectroscopy, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). Comprehensive analysis of spectra suggested that the mutual promotion between HA and Cr(VI) adsorption was attributable to the formation of Cr(VI)-HA and Cr(III)-HA complexes that were readily adsorbed on the PAC surfaces. The higher HA concentrations increased the reduction of Cr(VI) to Cr(III), which was likely due to the electron transfer provided by the functional groups such as -CO, -OH and -COOH in both PAC and HA. At pH 3, 99.1% of Cr adsorbed on the PAC surface was in the form of Cr(III). These findings imply that the interactions between Cr(VI) and HA in the process of water treatment by PAC provides additional and synergistic benefits, leading to a greater removal of chromium.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Jiaxin Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Mengjun Mao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Linping Qian
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Bortolozzo LS, Côa F, Khan LU, Medeiros AMZ, Da Silva GH, Delite FS, Strauss M, Martinez DST. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. CHEMOSPHERE 2021; 278:130421. [PMID: 33839394 DOI: 10.1016/j.chemosphere.2021.130421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.
Collapse
Affiliation(s)
- Leandro S Bortolozzo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Aline M Z Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Fabricio S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
9
|
Davarazar M, Kamali M, Lopes I. Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects. NANOIMPACT 2021; 22:100316. [PMID: 35559973 DOI: 10.1016/j.impact.2021.100316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/15/2023]
Abstract
Application of nanomaterials for the treatment of effluents originated from various industrial and non-industrial sources, has been rapidly developed in recent decades. In this situation, there is a need for conclusive studies to identify the current status of the knowledge in this field and to promote the commercialization of such technologies by providing recommendations for future studies. In the present manuscript, a scientometric assessment on the progress made in this field has been performed and the results have been organized and discussed in terms of science statistics, research hotspots and trends, as well as the relevant sustainability aspects. Based on a set of keywords, identified through a pre-literature analysis, a total of 6539 documents were retrieved from the Web of Science (WoS) database and analyzed to achieve the main goals of this study. The results demonstrate that the studies in this field have been initiated since the beginning of the 2000s but were mainly performed in lab and pilot scales. Also, China and Iran were identified as the most contributing countries in this scientific area in terms of the number of publications. Among various types of engineered nanomaterials (ENMs), there has been especial attention for the application of iron-based nanomaterials as well as carbonaceous structures (such as graphene oxide and biochar). Besides, there are not still strong collaborations formed among researchers in this area worldwide. Regarding the research hotspots, the synthesis of green and sustainable nanomaterials (e.g., biosynthesis approaches) has received attention in recent years. The results can also demonstrate that the most widely studied pathway for the removal of pollutants from (waste)waters involves the adsorption of the pollutants using ENMs. Treatment of contaminants of emerging concern (CECs) as well as exploring the mechanisms involved in the treatment of contaminated (waste)waters using ENMs and the possible by-products are considered the current trends in the literature. Regarding the sustainability aspects of ENMs for (waste)water treatment, the results achieved in this study calls for in-depth sustainability studies, which consider parameters such as economic, environmental, and social aspects of nanomaterials utilization for (waste)water treatment purposes, besides the technical parameters, to push transferring such technologies from lab and pilot scales to large and real-scale applications.
Collapse
Affiliation(s)
- Mahsa Davarazar
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammadreza Kamali
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Costa LSD, Khan LU, Franqui LS, Delite FDS, Muraca D, Martinez DST, Knobel M. Hybrid magneto-luminescent iron oxide nanocubes functionalized with europium complexes: synthesis, hemolytic properties and protein corona formation. J Mater Chem B 2021; 9:428-439. [PMID: 33367419 DOI: 10.1039/d0tb02454f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of hybrid nanostructures based on magneto-luminescent properties is a promising strategy for nano-bio applications and theranostics platforms. In this work, we carried out the synthesis and functionalization of iron oxide nanocubes (IONCs) to obtain multifunctional hybrid nanostructures towards biomedical applications. The IONCs were functionalized with tetraethylorthosilicate, thenoyltrifluoroacetone-propyl-triethoxysilane and europium(iii)-dibenzoylmethane complexes to obtain the materials termed as IOCNCs@SiO2, IONCs@SiO2TTA, IONCs@SiO2TTA-Eu and IONCs@SiO2-TTA-Eu-DBM, respectively. Then, the biological interactions of these nanostructures with red blood cells - RBCs (hemolysis) and human blood plasma (protein corona formation) were evaluated. The XPS spectrocopy and EDS chemical mapping analysis showed that each domain is homogeneously occupied in the hybrid material, with the magnetic core at the center and the luminescent domain on the surface of the hybrid nanomaterial with a core@shell like structure. Futhermore, after each functionalization step, the nanomaterial surface charge drastically changed, with critical impact on RBC lysis and corona formation. While IONCs@SiO2 and IONCs@SiO2-TTA-Eu-DBM showed hemolytic properties in a dose-dependent manner, the IONCs@SiO2TTA-Eu did not present any hemolytic effect up to 300 μg mL-1. Protein corona results showed a pattern of selective adsorption of proteins with each surface of the synthesized hybrid materials. However, as a general result, a suppression of hemolysis after protein corona formation in all tests was verified. Finally, this study provides a solid background for further applications of these hybrid magneto-luminescent materials containing new surface functionalities in the emerging field of medical nanobiotechnology.
Collapse
Affiliation(s)
- Luelc Souza da Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Latif Ullah Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Diego Muraca
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Marcelo Knobel
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Chen W, Lin Q, Cheng S, Wu M, Tian Y, Ni K, Bai Y, Ma H. Synthesis and adsorption properties of amphoteric adsorbent HAx/CMC-yAl. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Da Silva GH, Clemente Z, Khan LU, Coa F, Neto LLR, Carvalho HWP, Castro VL, Martinez DST, Monteiro RTR. Toxicity assessment of TiO 2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (Zebrafish) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:136-143. [PMID: 30195205 DOI: 10.1016/j.ecoenv.2018.08.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 05/24/2023]
Abstract
The increasing production and use of nanomaterials is causing serious concerns about their safety to human and environmental health. However, the applications of titanium dioxide nanoparticles (TiO2NP) and multiwalled carbon nanotubes (MWCNT) hybrids has grown considerably, due to their enhanced photocatalytic efficiency. To our knowledge, there are no reports available to the scientific community about their toxicity. In this work, we perform a toxicity assessment of TiO2NP and TiO2-MWCNT nanohybrid materials using Zebrafish embryos standardized 96 h early life stage assay, under different exposure conditions (with and without UV light exposure). After exposure the parameters assessed were acute toxicity, hatching rate, growth, yolk sac size, and sarcomere length. In addition, μ-probe X-ray fluorescence spectroscopy (µ-XRF) was employed to observe if nanoparticles were uptaken by zebrafish embryos and consequently accumulated in their organisms. Neither TiO2NP nor TiO2-MWCNT nanohybrids presented acute toxicity to the zebrafish embryos. Moreover, TiO2NP presents sublethal effects for total length (with and without UV light exposure) on the embryos. This work contributes to the understanding of the potential adverse effects of the emerging nanohybrid materials towards safe innovation approaches in nanotechnology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil.
| | - Zaira Clemente
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francine Coa
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Lais L R Neto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Hudson W P Carvalho
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vera L Castro
- Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariuna, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
13
|
Hosseinzadeh H, Pashaei S, Hosseinzadeh S, Khodaparast Z, Ramin S, Saadat Y. Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:303-314. [PMID: 29860005 DOI: 10.1016/j.scitotenv.2018.05.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In the present work, polymer-coated multiwalled carbon nanotube (MWCNT) was prepared via RAFT method. First, a novel trithiocarbonate-based RAFT agent was prepared attached chemically into the surface of MWCNT. In addition, the RAFT co-polymerization of acrylic acid and acrylamide monomers was conducted through the prepared RAFT agent. In the next age, the surface morphology and chemical properties of the prepared components were fully examined by using FTIR, 1HNMR, SEM, TEM, XRD and TGA/DTG techniques. Finally, the modified MWCNT composite was employed as an excellent adsorbent for the adsorption of copper (II) ions. The results indicated that ion adsorption basically relies on adsorbing time, solution pH, initial copper concentration, and adsorbent dosage. Further, the adsorption kinetics and isotherm analysis demonstrated that the adsorption mode was fitted with the pseudo-second-order and Langmuir isotherm models, respectively. Based on the results of thermodynamic study, the ion adsorption process was endothermic and spontaneous. Finally, based on the experimental results, the surface functionalized MWCNT with hydrophilic groups could be successfully used as a promising selective adsorbent material in wastewater treatment.
Collapse
Affiliation(s)
| | - Shahryar Pashaei
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | | | - Zahra Khodaparast
- Chemical Engineering Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Sonia Ramin
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Younes Saadat
- Polymer Engineering Department, Mahshahr Branch, Islamic Azad University, College of Polymer Engineering, Mahshahr, Iran
| |
Collapse
|
14
|
Yang T, Hodson ME. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1036-1046. [PMID: 29710559 DOI: 10.1016/j.scitotenv.2018.04.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Humic acid can effectively bind metals and is a promising adsorbent for remediation technologies. Our studies initially focussed on Cu2+ as a common aqueous contaminant. Previous studies indicate that carboxylic groups dominate Cu2+ binding to humic acid. We prepared a synthetic humic-like acid (SHLA) with a high COOH content using catechol (0.25 M) and glycine (0.25 M) with a MnO2 catalyst (2.5% w/v) at pH = 8 and 25 °C and investigated the adsorption behaviour of Cu2+ onto it. The SHLA exhibited a range of adsorption efficiencies (27%-99%) for Cu2+ depending on reaction conditions. A pseudo-second-order kinetic model provided the best fit to the experimental data (R2 = 0.9995-0.9999, p ≤ 0.0001), indicating that chemisorption was most likely the rate-limiting step for adsorption. The equilibrium adsorption data showed good fits to both the Langmuir (R2 = 0.9928-0.9982, p ≤ 0.0001) and Freundlich (R2 = 0.9497-0.9667, p ≤ 0.0001) models. The maximum adsorption capacity (qm) of SHLA increased from 46.44 mg/g to 58.78 mg/g with increasing temperature from 25 °C to 45 °C. Thermodynamic parameters (ΔG0 = 2.50-3.69 kJ/mol; ΔS0 = 0.06 kJ/(mol·K); ΔH0 = 15.23 kJ/mol) and values of RL (0.0142-0.3711) and n (3.264-3.527) show that the adsorption of Cu2+ onto SHLA was favourable, spontaneous and endothermic in nature. Over six adsorption/desorption cycles using 0.5 M HCl for the desorption phase, there was a 10% decrease of the adsorption capacity. A final experiment using a multi-metal solution indicated adsorption efficiencies of up to 84.3-98.3% for Cu, 86.6-98.8% for Pb, 30.4-82.9% for Cr, 13.8-77.4% for Ni, 9.2-62.3% for Cd, 8.6-51.9% for Zn and 4.6-42.1% for Co. Overall, SHLA shows great potential as an adsorbent to remove metals from water and wastewater.
Collapse
Affiliation(s)
- Ting Yang
- Environment Department, University of York, Heslington, Wentworth Way, York YO10 5NG, United Kingdom.
| | - Mark E Hodson
- Environment Department, University of York, Heslington, Wentworth Way, York YO10 5NG, United Kingdom
| |
Collapse
|
15
|
Rivas BL, Urbano BF, Sánchez J. Water-Soluble and Insoluble Polymers, Nanoparticles, Nanocomposites and Hybrids With Ability to Remove Hazardous Inorganic Pollutants in Water. Front Chem 2018; 6:320. [PMID: 30109224 PMCID: PMC6079269 DOI: 10.3389/fchem.2018.00320] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
The polymeric materials have presented a great development in adsorption processes for the treatment of polluted waters. The aim of the current review is to present the recent developments in this field of study by examining research of systems like functional water-soluble polymers and water-soluble polymer-metal complexes coupled to ultrafiltration membranes for decontamination processes in liquid-liquid phase. Noticing that a water-soluble polymer can be turned into insoluble compounds by setting a crosslinking point, connecting the polymer chains leading to polymer resins suitable for solid-liquid extraction processes. Moreover, these crosslinked polymers can be used to develop more complex systems such as (nano)composite and hybrid adsorbents, combining the polymers with inorganic moieties such as metal oxides. This combination results in novel materials that overcome some drawbacks of each separated components and enhance the sorption performance. In addition, new trends in hybrid methods combining of water-soluble polymers, membranes, and electrocatalysis/photocatalysis to remove inorganic pollutants have been discussed in this review.
Collapse
Affiliation(s)
- Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| |
Collapse
|
16
|
Shimizu FM, Pasqualeti AM, Todão FR, de Oliveira JFA, Vieira LCS, Gonçalves SPC, da Silva GH, Cardoso MB, Gobbi AL, Martinez DST, Oliveira ON, Lima RS. Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue. ACS Sens 2018; 3:716-726. [PMID: 29424231 DOI: 10.1021/acssensors.8b00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in nanomaterials have led to tremendous progress in different areas with the development of high performance and multifunctional platforms. However, a relevant gap remains in providing the mass-production of these nanomaterials with reproducible surfaces. Accordingly, the monitoring of such materials across their entire life cycle becomes mandatory to both industry and academy. In this paper, we use a microfluidic electronic tongue (e-tongue) as a user-friendly and cost-effective method to classify nanomaterials according to their surface chemistry. The chip relies on a new single response e-tongue with association of capacitors in parallel, which consisted of stainless steel microwires coated with SiO2, NiO2, Al2O3, and Fe2O3 thin films. Utilizing impedance spectroscopy and a multidimensional projection technique, the chip was sufficiently sensitive to distinguish silica nanoparticles and multiwalled carbon nanotubes dispersed in water in spite of the very small surface modifications induced by distinct functionalization and oxidation extents, respectively. Flow analyses were made acquiring the analytical readouts in a label-free mode. The device also allowed for multiplex monitoring in an unprecedented way to speed up the tests. Our goal is not to replace the traditional techniques of surface analysis, but rather propose the use of libraries from e-tongue data as benchmark for routine screening of modified nanomaterials in industry and academy.
Collapse
Affiliation(s)
- Flavio M. Shimizu
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brasil
| | - Anielli M. Pasqualeti
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Fagner R. Todão
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Jessica F. A. de Oliveira
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Luis C. S. Vieira
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Suely P. C. Gonçalves
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Gabriela H. da Silva
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo 13416-000, Brasil
| | - Mateus B. Cardoso
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Diego S. T. Martinez
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo 13416-000, Brasil
| | - Osvaldo N. Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brasil
| | - Renato S. Lima
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|