1
|
Szelag B, De Simoni L, Kiczko A, Sgroi M, Eusebi AL, Fatone F. Towards stormwater reuse risk management plans: Methodology and catchment scale evaluation of QMRA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178552. [PMID: 39837118 DOI: 10.1016/j.scitotenv.2025.178552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/24/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The reuse of stormwater represents a potential option for meeting water demands in water stressed regions as well as preventing and mitigating diffuse pollution of receiving water bodies. Particularly, the elaboration of a risk management plan for stormwater reuse may help to understand associated environmental and public health risks and design fit-for-purpose water treatment processes. In this work, it is presented an innovative methodology to perform quantitative microbial risk assessment (QMRA) for stormwater reuse by using data simulated by SWMM software. Particularly, 210 rain events were simulated by SWMM after qualitative and quantitative calibration of the sewer network model of the city of Cupra Maritima (Italy) to identify sewer overflows. Obtained concentrations of pathogens (i.e., E. coli, Campylobacter) in overflows from each critical spillway were fitted by theoretical distribution curves. Hence, QMRA for Campylobacter was performed by Monte Carlo simulation and by linking observed overflows to the exposure events of stormwater reuse for the scenario of 1) municipal irrigation, 2) garden irrigation and 3) toilet flushing as defined by the Australian Guideline for water recycling. Furthermore, QMRA analysis was repeated after simulation of sewer overflow treatment by nature-based solution (NBS) with and without disinfection (UV and performic acid - PFA). Stormwater treatments were simulated by applying uniform distributions of expected range of bacteria log removals. Results showed that stormwater treatment by nature-based solution and disinfections (PFA dose of 2.5-5 mg/L) were able to reduce the risk of Campylobacter infection to acceptable level for most of spillways in the three investigated reuse scenarios. In addition, produced data were elaborated to identify critical overflows discharging in bathing water according to the indications of the EU bathing directive.
Collapse
Affiliation(s)
- Bartosz Szelag
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy; Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, Kielce 25-314, Poland
| | - Lucia De Simoni
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.
| | - Adam Kiczko
- Institute of Environmental Engineering, Warsaw University of Life Sciences (WULS-SGGW), Poland.
| | - Massimiliano Sgroi
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
2
|
Guo Q, Xu Z, Chu W, Zhang J, Qi H, Lu C, Wang X. Unraveling the synergistic mechanisms of coagulation combined with oxidation for the treatment of sewer overflow: The interaction between iron species and NaClO. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135871. [PMID: 39293168 DOI: 10.1016/j.jhazmat.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
During wet weather, sewer overflow pollution can pose a serious threat to surface water. In order to reduce the impact of overflow discharge on receiving waters, ferric chloride (Fe(Ⅲ))/potassium ferrate (Fe(Ⅵ))/polyacrylamide (PAM) coagulation (Fe(Ⅲ)/Fe(Ⅵ)/PAM) combined with sodium hypochlorite (NaClO) oxidation was proposed. Different combinations were constructed, including pre-oxidation coagulation (NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM), pre-coagulation oxidation (Fe(Ⅲ)/Fe(Ⅵ)/PAM-NaClO), and synchronous coagulation oxidation (NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM). The combined processes achieved efficient removal of conventional contaminants, and the produced byproducts were controlled, especially in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM. The obvious discrepancy in the sulfamethoxazole (SMX) removal was observed in different processes. NaClO affected the distribution of hydrolyzed iron species, and the proportion of active iron in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM significantly increased. More complexation sites were generated in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM, which can complex with the coagulant and then effectively transfer to the flocs. The composition of the flocs further confirmed the differences in coagulation characteristics. The generated·OH played a crucial role in SMX removal in the NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM, and ClO·was responsible for partial removal of ammonia nitrogen (NH4+-N). The contribution of high-valent iron species was confirmed, and the introduction of NaClO promoted the generation of iron species. This study may provide an ideal for overflow treatment to improve the urban water environment.
Collapse
Affiliation(s)
- Qian Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haiyue Qi
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Kuehr S, Kaegi R, Raths J, Sinnet B, Kipf M, Rehkämper M, Jensen KA, Sperling RA, Ndungu K, Georgantzopoulou A. Reduced bioavailability of Au and isotopically enriched 109Ag nanoparticles transformed through a pilot wastewater treatment plant in Hyalella azteca under environmentally relevant exposure scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174768. [PMID: 39009147 DOI: 10.1016/j.scitotenv.2024.174768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Wastewater Treatment Plants (WWTP) are a major repository and entrance path of nanoparticles (NP) in the environment and hence play a major role in the final NP fate and toxicity. Studies on silver nanoparticles (AgNP) transport via the WWTP system and uptake by aquatic organisms have so far been carried out using unrealistically high AgNP concentrations, unlikely to be encountered in the aquatic environment. The use of high AgNP concentrations is necessitated by both the low sensitivity of the detection methods used and the need to distinguish background Ag from spiked AgNP. In this study, isotopically enriched 109AgNP were synthesized to overcome these shortcomings and characterized by a broad range of methods including transmission electron microscopy, dynamic and electrophoretic light scattering. 109AgNP and gold NP (AuNP) were spiked to a pilot wastewater treatment plant fed with municipal wastewater for up to 21 days. AuNP were used as chemically less reactive tracer. The uptake of the pristine and transformed NP present in the effluent was assessed using the benthic amphipod Hyalella azteca in fresh- and brackish water exposures at environmentally relevant concentrations of 30 to 500 ng Au/L and 39 to 260 ng Ag/L. The unique isotopic signature of the 109AgNP allowed to detect the material at environmentally relevant concentrations in the presence of a much higher natural Ag background. The results show that the transformations reduce the NP uptake at environmentally relevant exposure concentrations. For 109Ag, lower accumulation factors (AF) were obtained after exposure to transformed NP (250-350) compared to the AF values obtained for pristine 109AgNP (750-840). The reduced AF values observed for H. azteca exposed to effluent from the AuNP-spiked WWTP indicate that biological transformation processes (e.g. eco-corona formation) seem to be involved in addition to chemical transformation.
Collapse
Affiliation(s)
| | - Ralf Kaegi
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland
| | - Johannes Raths
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Brian Sinnet
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland
| | - Marco Kipf
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | | | - Ralph A Sperling
- Fraunhofer Institute for Microengineering and Microsystems IMM, Mainz, Germany
| | - Kuria Ndungu
- Norwegian Institute for Water Research, Oslo, Norway
| | | |
Collapse
|
4
|
Liu K, Kinouchi T, Tan R, Heng S, Chhuon K, Zhao W. Unraveling urban hydro-environmental response to climate change and MCDA-based area prioritization in a data-scarce developing city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174389. [PMID: 38960170 DOI: 10.1016/j.scitotenv.2024.174389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Climate change leads to more frequent and intense heavy rainfall events, posing significant challenges for urban stormwater management, particularly in rapidly urbanizing cities of developing countries with constrained infrastructure. However, the quantitative assessment of urban stormwater, encompassing both its volume and quality, in these regions is impeded due to the scarcity of observational data and resulting limited understanding of drainage system dynamics. This study aims to elucidate the present and projected states of urban flooding, with a specific emphasis on fecal and organic contamination caused by combined sewer overflow (CSO). Leveraging a hydrological model incorporating physical and biochemical processes validated against invaluable observational data, we undertake simulations to estimate discharge, flood volume, and concentrations of suspended solids (SS), Escherichia coli (E. coli), and chemical oxygen demand (COD) within the drainage channel network of Phnom Penh City, Cambodia. Alterations in flood volumes, and pollutant concentrations and loads in overflow under two representative concentration pathways (RCPs 4.5 and 8.5) for extreme rainfall events are projected. Furthermore, we employ a multi-criteria decision analysis (MCDA) framework to evaluate flood risk, incorporating diverse indicators encompassing physical, social, and ecological dimensions. Our results demonstrate the exacerbating effects of climate change on flood volumes, expansion of flooded areas, prolonged durations of inundation, elevated vulnerability index, and heightened susceptibility to pollutant contamination under both scenarios, underscoring increased risks of flooding and fecal contamination. Spatial analysis identifies specific zones exhibiting heightened vulnerability to flooding and climate change, suggesting priority zones for investment in flood mitigation measures. These findings provide crucial insights for urban planning and stormwater management in regions with limited drainage infrastructure, offering essential guidance for decision-making in locales facing similar challenges.
Collapse
Affiliation(s)
- Kexin Liu
- School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta Cho, Yokohama City, Kanagawa Prefecture 226-8503, Japan.
| | - Tsuyoshi Kinouchi
- School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta Cho, Yokohama City, Kanagawa Prefecture 226-8503, Japan
| | - Reasmey Tan
- Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Sokchhay Heng
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Kong Chhuon
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Wenpeng Zhao
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; Modern Rural Water Resources Research Institute, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Quero GM, Guicciardi S, Penna P, Catenacci G, Brandinelli M, Bolognini L, Luna GM. Increasing trends in faecal pollution revealed over a decade in the central Adriatic Sea (Italy). WATER RESEARCH 2024; 262:122083. [PMID: 39067273 DOI: 10.1016/j.watres.2024.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Faecal contamination of the coastal sea poses widespread hazard to human and environmental health and is predicted to rise in response to global change and human pressure. For better management and risk reduction it is thus imperative to clarify and predict trends of faecal pollution over spatial and temporal scales, and to assess links with climate and other variables. Here, we investigated the spatio-temporal variation in the Faecal Indicator Bacteria (FIB) Escherichia coli and enterococci, over a time frame spanning 11 years (2011-2021) along a coastal area covering approximately 40 km and 59 bathing sites in the Marche region (Adriatic Sea, Italy), characterized by intense beach tourism, high riverine inputs, resident population, maritime traffic and industrial activities. Our analysis, that considers 5,183 measurements during the bathing season (April to October), shows that FIB abundance varied significantly among years. A general, although not significant, increase over time of both FIB was observed, mainly due to a general reduction of structural zeros (i.e., zeros originated from the actual absence of the response variable) over the examined time period. FIB abundances displayed their maxima and minima in different years according to the municipality, with overall peaks recorded in different months (May-June or September), whereas the lowest values were always observed in October. FIB levels were not significantly related neither to rainfalls nor to river discharge, but the activation of combined sewer overflows (CSOs), typically occurring after intense rainfall events, appeared as a necessary condition for the high faecal contamination levels. Considering climate change scenarios predicting significant increases in extreme weather events, our findings support the usefulness of analysing long-term trends to identify pollution sources, and the prioritization of control strategies to better manage the release of microbial pollutants from combined sewer overflows in coastal waters to reduce human risks.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Stefano Guicciardi
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Pierluigi Penna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | | | | | | | - Gian Marco Luna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
6
|
Wei H, Xie Y, Zhou C, Tao Y, Zhou J, Liu C. Analysis and calculation of scour critical velocity of suspended particles in a storm sewer. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11135. [PMID: 39300772 DOI: 10.1002/wer.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
The suspended particles in storm sewer can be easily washed away and migrated. However, few studies analyzed the scouring state of suspended particles in pipelines, and also, there was a lack of quantitative calculation. This study simulated the scouring process of suspended particles in a storm sewer with different pipe materials, and mathematical models were built for the scour critical velocity. The results showed that with the increase of particle size, density and the roughness of the pipe wall, the scour resistance of suspended particles increased, and the scouring rate decreased; therefore, the corresponding scour critical velocity increased. In accordance with the scouring rates of quartz sand and zeolite at different flow velocities in the storm sewer, the scouring state of the suspended particles could be divided into three types: no scouring, minor scouring, and massive scouring. The scour critical velocity ranges of quartz sand and zeolite with two densities in four kinds of pipes were determined, and mathematical models for the scour critical velocity of suspended particles were established. After verification, the difference rate between the calculated values and measured values was in the range of -10.56% to 6.63%, and the two values had good consistency. PRACTITIONER POINTS: Scour resistance of suspended particles increases with particle size or density. The smaller the roughness of the pipe wall, the higher the scouring rate. Higher flow velocity leads to a higher scouring rate. As scouring rate rises, no scouring, minor or massive scouring occur in sequence. Difference between the calculated and measured values is from -10.56% to 6.63%.
Collapse
Affiliation(s)
- Haodong Wei
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yuling Xie
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Changfeng Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yang Tao
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Jingqin Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Cuiyun Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing Tech University, Nanjing, China
| |
Collapse
|
7
|
Acosta T, Chavez V, Fernandez N, Perry E, Good K, Concheiro M. The Impact of Combined Sewer Overflows on Pharmaceutical and Illicit Drug Levels in New York/New Jersey Waterways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1592-1603. [PMID: 38808394 DOI: 10.1002/etc.5891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 04/14/2024] [Indexed: 05/30/2024]
Abstract
Pharmaceuticals and drugs of abuse are organic micropollutants of emerging concern in both surface and groundwater worldwide. These compounds are considered to be pseudo-persistent because of their continuous release into water systems. The presence of these compounds in the environment at any concentration poses a potential risk to nontarget organisms. The main sources of these contaminants are wastewater treatment plants (WWTPs) and combined sewer overflows (CSOs). The primary goal of our study was to identify and quantify a panel of 28 commonly prescribed pharmaceuticals (mood-altering drugs, cardiovascular drugs, antacids, antibiotics) and high-prevalence drugs of abuse (cocaine, amphetamines, opioids, cannabis) in river water samples collected from 19 locations in the Hudson and East rivers in New York City. The second goal was to investigate the possible source (WWTP or CSOs) of these micropollutants. Samples were collected weekly from May to August 2021 (n = 224) and May to August 2022 (n = 232), and placed at -20 °C until analysis by liquid chromatography-tandem mass spectrometry. The most frequently detected analytes in 2021 were metoprolol (n = 206, 92%), benzoylecgonine (n = 151, 67%), atenolol (n = 142, 63%), and methamphetamine (n = 118, 53%), and in 2022 the most frequently detected were methamphetamine (n = 194, 84%), atenolol (n = 177, 76%), metoprolol (n = 177, 76%), and 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine (n = 159, 69%). Measured concentrations ranged from the limit of detection (0.50-5.00 ng/L) to 103 ng/L. More drugs and higher concentrations were detected in water contaminated by Enterococci (>60 most probably number) and after rainfall, indicating the influence of CSOs. The presence of drugs in samples with little to no Enterococci and after dry weather events indicates that WWTPs contribute to the presence of these substances in the river, probably due to a low removal rate. Environ Toxicol Chem 2024;43:1592-1603. © 2024 SETAC.
Collapse
Affiliation(s)
- Teeshavi Acosta
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
| | - Viviana Chavez
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
| | - Natalie Fernandez
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
- New York Police Department Laboratory, Jamaica, New York, USA
| | - Erin Perry
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
| | - Kate Good
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
- The Morton Arboretum, Lisle, Illinois, USA
| | - Marta Concheiro
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA
| |
Collapse
|
8
|
Montoya-Coronado VA, Tedoldi D, Lenormand E, Castebrunet H, Molle P, Lipeme Kouyi G. Combined sewer overflow mitigation through SUDS - A review on modelling practices, scenario elaboration, and related performances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121073. [PMID: 38833926 DOI: 10.1016/j.jenvman.2024.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Hydrologic-hydraulic modelling of urban catchment is an asset for land managers to simulate Sustainable Urban Drainage Systems (SUDS) implementation to fulfil combined sewer overflow (CSO) regulations. This review aims to assess the current practices in modelling SUDS scenarios at large scale for CSO mitigation encompassing every stage of the modelling process from the choice of the equation to the validation of the initial state of the urban system, right through to the elaboration, modelling, and selection of SUDS scenarios to evaluate their performance on CSO. Through a quantitative and qualitative analysis of 50 published studies, we found a diversity of choices when modelling the status quo of the urban system. Authors generally do not explain the modelling processes of slow components (deep infiltration, groundwater infiltration) and interconnexion between SUDS and the sewer system. In addition, only a few authors explain how CSO structures are modelled. Furthermore, the modelling of SUDS implementation at catchment scale is highlighted in the 50 studies retrieved with three different approaches going from simplified to detailed. SUDS modelling choices seem to be consistent with the objectives: studies focusing on dealing with several objectives at the time typically opt for a complex system configuration that includes the surface processes, network, CSO, SUDS, and often the soil and/or groundwater components. Conversely, authors who have selected a basic configuration generally aim to address a single, straightforward question (e.g., which type of SUDS). However, elaboration and selection of scenarios for CSO mitigation is mainly based on local constraints, which does not allow hydrological performance to be directly optimised. In conclusion, to improve current practices in modelling SUDS scenarios at large scale for CSO mitigation, authors suggest to: (i) improve clear practices of CSO modelling, calibration and validation at the urban catchment scale, (ii) develop methods to optimize the performance of scenarios for CSO mitigation using hydrological drivers, and (iii) improve parsimonious and user-friendly models to simulate SUDS scenarios in a context of data scarcity.
Collapse
Affiliation(s)
| | - D Tedoldi
- INSA Lyon, DEEP, UR7429, 69621, Villeurbanne, France
| | - E Lenormand
- INSA Lyon, DEEP, UR7429, 69621, Villeurbanne, France
| | - H Castebrunet
- Université Grenoble Alpes, IGE, F-38000, Grenoble, France
| | - P Molle
- INRAE, Research Unit REVERSAAL, Lyon, France
| | | |
Collapse
|
9
|
Uprety S, Ngo I, Maggos M, Dangol B, Sherchan SP, Shisler JL, Amarasiri M, Sano D, Nguyen TH. Multiple pathogen contamination of water, hands, and fomites in rural Nepal and the effect of WaSH interventions. Int J Hyg Environ Health 2024; 257:114341. [PMID: 38442666 DOI: 10.1016/j.ijheh.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Water, Sanitation, and Hygiene (WaSH) interventions are the most effective in reducing diarrheal disease severity and prevalence. However, very few studies have investigated the effectiveness of WaSH intervention in reducing pathogen presence and concentration. In this study, we employed a microfluidic PCR approach to quantify twenty bacterial pathogens in water (n = 360), hands (n = 180), and fomite (n = 540) samples collected in rural households of Nepal to assess the pathogen exposures and the effect of WaSH intervention on contamination and exposure rates. The pathogen load and the exposure pathways for each pathogen in intervention and control villages were compared to understand the effects of WaSH intervention. Pathogens were detected in higher frequency and concentration from fomites samples, toilet handle (21.42%; 5.4,0 95%CI: mean log10 of 4.69, 5.96), utensils (23.5%; 5.47, 95%CI: mean log10 of 4.77, 6.77), and water vessels (22.42%; 5.53, 95%CI: mean log10 of 4.79, 6.60) as compared to cleaning water (14.36%; 5.05, 95%CI: mean log10 of 4.36, 5.89), drinking water (14.26%; 4.37, 85%CI: mean log10 of 4.37, 5.87), and hand rinse samples (16.92%; 5.49, 95%CI: mean log10 of 4.77, 6.39). There was no clear evidence that WaSH intervention reduced overall pathogen contamination in any tested pathway. However, we observed a significant reduction (p < 0.05) in the prevalence, but not concentration, of some target pathogens, including Enterococcus spp. in the intervention village compared to the control village for water and hands rinse samples. Conversely, no significant reduction in target pathogen concentration was observed for water and hand rinse samples. In swab samples, there was a reduction mostly in pathogen concentration rather than pathogen prevalence, highlighting that a reduction in pathogen prevalence was not always accompanied by a reduction in pathogen concentration. This study provides an understanding of WaSH intervention on microbe concentrations. Such data could help with better planning of intervention activities in the future.
Collapse
Affiliation(s)
- Sital Uprety
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA; Department of Sanitation, Water and Solid Waste for Development (Sandec), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Zurich, Switzerland; Department of Civil and Environmental Engineering, Tohoku University Sendai, Japan.
| | - Isaac Ngo
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Marika Maggos
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Bipin Dangol
- Environment and Public Health Organization (ENPHO), Kathmandu, Nepal
| | - Samendra P Sherchan
- Environment and Public Health Organization (ENPHO), Kathmandu, Nepal; Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; BioEnvironmental Science Program Morgan State University, Baltimore, MD, 21251, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Mohan Amarasiri
- School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Tohoku University, Sendai, Japan; Department of Civil and Environmental Engineering, Tohoku University Sendai, Japan
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Bertels D, De Meester J, Dirckx G, Willems P. Estimation of the impact of combined sewer overflows on surface water quality in a sparsely monitored area. WATER RESEARCH 2023; 244:120498. [PMID: 37639989 DOI: 10.1016/j.watres.2023.120498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Combined sewer overflows (CSOs) can have a severe negative, local impact on surface water systems. To assure good ecological surface water quality and drinking water production that meets the demands, the impact of sewer system overflows on the surrounding water bodies for current and future climate conditions needs to be assessed. Typically, integrated, detailed hydrological and hydrodynamic water quantity and quality models are used for this purpose, but often data and computational resource requirements limit their applicability. Therefore, an alternative computationally efficient, integrated water quantity and quality model of sewer systems and their receiving surface waters is proposed to assess the impact of CSOs on surface water quality in a sparsely observed area. A conceptual model approach to estimate CSO discharges is combined with an empirical model for estimating CSO pollutant concentrations based on waste water treatment plant influent observations. Both methods are compared with observations and independent results of established reference methods as to evaluate their performance. The methodology is demonstrated by modelling the current impact of CSOs on the water abstraction area of a major drinking water production centre in Flanders, Belgium. It is concluded that the proposed conceptual models achieve similar results for daily WWTP effluent and CSO frequency, whereby the accumulated CSO volume is similar to more detailed full hydrodynamic models. Further, the estimated pollutant concentrations correspond with another dataset based on high resolution sampled overflows. As a result, the proposed computational efficient method can give insights in the impact of CSOs on the water quality at a catchment level and can be used for planning monitoring campaigns or performing analyses of e.g. the current and future water availability for a data scarce areas.
Collapse
Affiliation(s)
- Daan Bertels
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium.
| | - Joke De Meester
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium
| | - Geert Dirckx
- Aquafin NV, R & D, Dijkstraat 8, Aartselaar 2630, Belgium
| | - Patrick Willems
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium
| |
Collapse
|
11
|
Saba T. Using positive matrix factorization to unmix PAH fingerprints in contaminated sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1003. [PMID: 37500981 DOI: 10.1007/s10661-023-11615-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Some of the challenges to apportioning PAH-related remedy costs at contaminated sediment sites include the lack of source samples, different PAH signatures associated with the same source, historical PAH sources long removed, mixing of urban sediment by boat traffic, and, in turn, PAHs mixing and weathering. Unmixing of PAH fingerprints in sediment sites to PAH source classes (petrogenic, pyrogenic, and runoff) is typically a first step to tracking PAH upland sources and ultimately, responsible parties. This work demonstrates using positive matrix factorization (PMF) as a method to unmix PAH fingerprints to its source classes.A large PAH dataset (over 700 samples) assembled from contaminated urban sediment sites was used as an input to PMF. Using a 3-factor PMF analysis, a petrogenic, pyrogenic, and runoff/weathered PAH end-member fingerprints were identified. Different numerical mixing percentages of the PMF-identified end-member sources were able to replicate the sediment-measured PAH fingerprints, with the percent contribution of each of the end members to each sediment sample calculated. The demonstrated work provides a method to satisfy the unmixing of PAH fingerprints to its source classes, as a step towards apportioning of PAH contamination.
Collapse
Affiliation(s)
- Tarek Saba
- Exponent, Inc, 1 Mill and Main, Suite 150, Maynard, MA, 01754, Maynard, USA.
| |
Collapse
|
12
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
13
|
Estévez S, Feijoo G, Moreira MT. Environmental synergies in decentralized wastewater treatment at a hotel resort. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115392. [PMID: 35636106 DOI: 10.1016/j.jenvman.2022.115392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change and water scarcity are clearly related environmental problems, making them global environmental issues. Accordingly, the water cycle management deserves a revision in its approach, integrating the concept of circular economy within an efficient and sustainable management of water resources and the design of wastewater facilities. In this sense, newly engineered decentralized facilities have emerged as a viable option for the treatment of segregated wastewater flows. The design has not only integrated the wastewater treatment function, but also resource recovery, such as water reclamation for agricultural and irrigation activities, fertigation, fertilization and energy sustainability. Based on these premises, the concept of decentralized wastewater management deserves the same degree of attention and development that has so far been reserved for conventional centralized management systems. Therefore, this paper proposes a progressive substitution of the business-as-usual scenario or centralized system by applying a small-scale wastewater management scheme performing a more efficient resource and water recovery in a medium-sized 4-5-star resort hotel. The spotlight was a membrane technology for the anaerobic digestion of the blackwater instead of the greywater treatment. A favorable environmental profile was found for the decentralized scenario under two circumstances: a large system boundary including the beneficial environmental impacts of the products and, based on the results obtained from a sensitivity analysis, an energy demand for the operation of the AnMBR lower than 2 kWh·m-3. The global warming potential results (around 9%) were even for such high demand and much larger benefits were obtained for other impact categories (94% for SOD and 98% for LU). Nevertheless, the operation (gate-to-gate approach) of these on-site recovery facilities is far from being optimized and further research should follow to decrease the 39.8% difference in the global warming potential between decentralized and centralized systems.
Collapse
Affiliation(s)
- Sofía Estévez
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Gumersindo Feijoo
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Chen Y, Shi X, Jin X, Jin P. Characteristics of overflow pollution from combined sewer sediment: Formation, contribution and regulation. CHEMOSPHERE 2022; 298:134254. [PMID: 35278453 DOI: 10.1016/j.chemosphere.2022.134254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/26/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Sewer sediments contain high concentrations of carbon, nitrogen, and phosphorus pollutants, which can be the main source of overflow pollution due to high-velocity scouring. To elucidate the scouring overflow pollution characteristics and regulation mechanism of sewer sediment under different precipitation intensities, a sewer-storage tank linkage control experimental device was established to simulate the practical sewer overflow under different precipitation intensities and the control process of storage tank overflow pollutants. Based on the division of flow from small to large, the pollution characteristics of overflow pollutants and the contribution rate of sewer sediments to overflow pollutants were analysed. The results showed that the total load of overflow pollutants increased with an increase in rainfall intensity and were 7.58 kg, 16.54 kg, 27.42 kg, respectively. The concentration of particulate pollutants increased sharply in a short time, and the concentration of dissolved pollutants decreased at a certain dilution. Sewer sediment was the main source of overflow pollutants, contributing up to 70%. After the overflow pollutants entered the regulation and storage tank, a certain stratification phenomenon was discovered at different sedimentation times. The concentration of large particle pollutants gradually increased from top to bottom in the regulation and storage tank, and the concentration of dissolved pollutants showed no obvious difference between the layers. With an increase in rainfall intensity, the recommended regulation and storage times of overflow pollutants were within 15 min, 45-60 min, and 60 min, respectively. Finally, based on the relationship among rainfall intensity, sediment scouring thickness, regulation and storage time, a prediction formula for the regulation and storage time of overflow pollutants was obtained, which provided a basis for the regulation and treatment of subsequent overflow pollutants.
Collapse
Affiliation(s)
- Yaxin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xuan Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
15
|
The Effect of Precipitation on the Microbiological Quality of Bathing Water in Areas under Anthropogenic Impact. WATER 2022. [DOI: 10.3390/w14040527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intense rainfall can affect bathing water quality, especially in areas with poorly developed sewage systems or combined sewer overflows (CSOs). The aim of this study was to assess the impact of precipitation on coastal bathing water quality in the area of Split and Kaštela (Adriatic Sea), the urban areas where CSOs were applied. The study was conducted during two bathing seasons, 2020 and 2021. The sampling of coastal waters and measurement of physical/chemical parameters was performed every two weeks and after a precipitation event of more than 2 mm. The impact of precipitation on the quality of coastal bathing waters was not noted in the Split area nor in Kaštela, probably due to the low amount of precipitation. The quality of bathing waters in the Kaštela area was significantly worse than in the Split area, which is due to the condition of the sewage system in these areas and not the precipitation effect. It was also revealed that bathing water quality depends on the timing of sampling and the indicator against which it is assessed. Escherichia coli (E. coli) proved to be a better indicator for early morning sampling, while intestinal enterococci were better for late morning sampling.
Collapse
|
16
|
Assessment of Spatio-Temporal Variability of Faecal Pollution along Coastal Waters during and after Rainfall Events. WATER 2022. [DOI: 10.3390/w14030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
More than 80% of wastewaters are discharged into rivers or seas, with a negative impact on water quality along the coast due to the presence of potential pathogens of faecal origin. Escherichia coli and enterococci are important indicators to assess, monitor, and predict microbial water quality in natural ecosystems. During rainfall events, the amount of wastewater delivered to rivers and coastal systems is increased dramatically. This study implements measures capable of monitoring the pathways of wastewater discharge to rivers and the transport of faecal bacteria to the coastal area during and following extreme rainfall events. Spatio-temporal variability of faecal microorganisms and their relationship with environmental variables and sewage outflow in an area located in the western Adriatic coast (Fano, Italy) was monitored. The daily monitoring during the rainy events was carried out for two summer seasons, for a total of five sampling periods. These results highlight that faecal microbial contaminations were related to rainy events with a high flow of wastewater, with recovery times for the microbiological indicators varying between 24 and 72 h and influenced by a dynamic dispersion. The positive correlation between ammonium and faecal bacteria at the Arzilla River and the consequences in seawater can provide a theoretical basis for controlling ammonium levels in rivers as a proxy to monitor the potential risk of bathing waters pathogen pollution.
Collapse
|
17
|
Baek SS, Yun D, Pyo J, Kang D, Cho KH, Jeon J. Analysis of micropollutants in a marine outfall using network analysis and decision tree. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150938. [PMID: 34655621 DOI: 10.1016/j.scitotenv.2021.150938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The presence of micropollutants (MPs), including pharmaceutical, industrial, and pesticidal compounds, threatens both human health and the aquatic ecosystem. The development and extensive use of new chemicals have also inevitably led to the accumulation of MPs in aquatic environments. Recreational beaches are especially vulnerable to contamination, affecting humans and aquatic animals via the absorption of MPs in water during marine activities (e.g., swimming, sailing, and windsurfing). Additionally, marine outfalls in an urbanized coastal city can cause serious chemical and microbial pollution on recreational beaches, leading to an increase in adverse effects on public health and the ecological system. Therefore, the aim of this study was to, with the use of network and decision tree analyses, identify the features and factors that influence the change in MP concentrations in a marine outfall. These analyses were conducted to inspect the relationship between each MP and its hierarchical structure as well as hydrometeorological variables. Additionally, a risk analysis was conducted in this study in which the MPs were prioritized based on their optimized risk quotient values. During our monitoring of MP concentrations over time at the marine outfall, high concentrations of pharmaceutical and industrial compounds were detected when the tide level was low after rainfall. Furthermore, results of the risk analysis and the prioritization revealed that a total of 18 substances identified in our study posed a risk to the ecosystem; these include major ecotoxicologically hazardous substances such as telmisartan, mevinphos, and methiocarb. Results of the network analysis demonstrated distinct trends for pharmaceutical and industrial substances, whilst those for pesticide compounds were irregular. Additionally, the hierarchical structures for most MPs consisted of rainfall, tide level, and antecedent dry hours; this implies that these factors influence MP dynamics. These findings will be helpful for establishing chemical contamination management plans for recreational beaches in the future.
Collapse
Affiliation(s)
- Sang-Soo Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daeun Yun
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - JongCheol Pyo
- Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Republic of Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
18
|
Owolabi TA, Mohandes SR, Zayed T. Investigating the impact of sewer overflow on the environment: A comprehensive literature review paper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113810. [PMID: 34731959 DOI: 10.1016/j.jenvman.2021.113810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Sewer networks play a pivotal role in our everyday lives by transporting the stormwater and urban sewage away from the urban areas. In this regard, Sewer Overflow (SO) has been considered as a detrimental threat to our environment and health, which results from the wastewater discharge into the environment. In order to grapple with such deleterious phenomenon, numerous studies have been conducted; however, there has not been any review paper that provides the researchers undertaking research in this area with the following inclusive picture: (1) detailed-scientometric analysis of the research undertaken hitherto, (2) the types of methodologies used in the previous studies, (3) the aspects of environment impacted by the SO occurrence, and (4) the gaps existing in the relative literature together with the potential future works to be undertaken. Based on the comprehensive review undertaken, it is observed that simulation and artificial intelligence-based methods have been the most popular approaches. In addition, it has come to the attention that the detrimental impacts associated with the SO are fourfold as follows: air, quality of water, soil, and business and structure. Among these, the majority of the studies' focus have been tilted towards the impact of SO on the quality of ground water. The outcomes of this state-of-the-art review provides the researchers and environmental engineers with inclusive hindsight in dealing with such serious issue, which in turn, this culminates in a significant improvement in our environment as well as humans' well-beings.
Collapse
Affiliation(s)
- Titilayo Abimbola Owolabi
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Saeed Reza Mohandes
- Department of Building and Real Estate (BRE), Faculty of Construction and Environment (FCE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Tarek Zayed
- Department of Building and Real Estate (BRE), Faculty of Construction and Environment (FCE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
20
|
Penna P, Baldrighi E, Betti M, Bolognini L, Campanelli A, Capellacci S, Casabianca S, Ferrarin C, Giuliani G, Grilli F, Intoccia M, Manini E, Moro F, Penna A, Ricci F, Marini M. Water quality integrated system: A strategic approach to improve bathing water management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113099. [PMID: 34175506 DOI: 10.1016/j.jenvman.2021.113099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In the Adriatic Sea, massive rainfall events are causing flooding of rivers and streams, with severe consequences on the environment. The consequent bacterial contamination of bathing water poses public health risks besides damaging tourism and the economy. This study was conducted in the framework of WATERCARE, an EU Interreg Italy-Croatia Project, which aims at reducing the impact of microbial contamination on Adriatic bathing water due to heavy rainfall events drained in the local sewage network and; enhancing the quality of local waters; and providing support for the decision-making processes regarding the management of bathing water in line with EU regulations. The study involved the development of an innovative water quality integrated system that helps meet these objectives. It consists of four components: a real time hydro-meteorological monitoring system; an autosampler to collect freshwater samples during and after significant rainfall events; a forecast system to simulate the dispersion of pollutants in seawater; and a real-time alert system that can predict the potential ecological risk from the microbial contamination of seawater. The system was developed and tested at a pilot site (Fano, Italy). These preliminary results will be used to develop guidelines for urban wastewater and coastal system quality assessments to contribute to develop policy actions and final governance decisions.
Collapse
Affiliation(s)
- Pierluigi Penna
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy.
| | - Elisa Baldrighi
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Mattia Betti
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | | | - Alessandra Campanelli
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Samuela Capellacci
- Department of Biomolecular Sciences, DISB, University of Urbino, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, DISB, University of Urbino, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Christian Ferrarin
- Institute of Marine Sciences - ISMAR, National Research Council - CNR, Venice, Italy
| | - Giordano Giuliani
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Federica Grilli
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Michele Intoccia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elena Manini
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Fabrizio Moro
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, DISB, University of Urbino, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Fabio Ricci
- Department of Biomolecular Sciences, DISB, University of Urbino, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Mauro Marini
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR IRBIM, Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| |
Collapse
|
21
|
Abstract
The aim of this study is to develop a relocatable modelling system able to describe the microbial contamination that affects the quality of coastal bathing waters. Pollution events are mainly triggered by urban sewer outflows during massive rainy events, with relevant negative consequences on the marine environment and tourism and related activities of coastal towns. A finite element hydrodynamic model was applied to five study areas in the Adriatic Sea, which differ for urban, oceanographic and morphological conditions. With the help of transport-diffusion and microbial decay modules, the distribution of Escherichia coli was investigated during significant events. The numerical investigation was supported by detailed in situ observational datasets. The model results were evaluated against water level, sea temperature, salinity and E. coli concentrations acquired in situ, demonstrating the capacity of the modelling suite in simulating the circulation in the coastal areas of the Adriatic Sea, as well as several main transport and diffusion dynamics, such as riverine and polluted waters dispersion. Moreover, the results of the simulations were used to perform a comparative analysis among the different study sites, demonstrating that dilution and mixing, mostly induced by the tidal action, had a stronger effect on bacteria reduction with respect to microbial decay. Stratification and estuarine dynamics also play an important role in governing microbial concentration. The modelling suite can be used as a beach management tool for improving protection of public health, as required by the EU Bathing Water Directive.
Collapse
|
22
|
Crocetti P, Eusebi AL, Bruni C, Marinelli E, Darvini G, Carini CB, Bollettini C, Recanati V, Akyol Ç, Fatone F. Catchment-wide validated assessment of combined sewer overflows (CSOs) in a mediterranean coastal area and possible disinfection methods to mitigate microbial contamination. ENVIRONMENTAL RESEARCH 2021; 196:110367. [PMID: 33131711 DOI: 10.1016/j.envres.2020.110367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The first phase of this study aimed to evaluate the environmental impact of combined sewer overflow (CSO) events originated from 35 spillways on the Rio Vallescura catchment (Central Italy) and to understand their contribution to the deterioration of the coastal bathing water quality. A specific analytical campaign was carried out in the sewer system and a dynamic rainfall-runoff simulation model was developed and integrated with a water quality model and further validated. The simulations led to identify the most critical spills in terms of flow rate and selected pollutant loads (i.e. suspended solids, biochemical oxygen demand, chemical oxygen demand, total Kjeldahl nitrogen, Escherichia coli). Specifically, the E. coli release in the water body due to CSO events represented almost 100% of the different pollutant sources considered. In the second phase, the applicability of various disinfection methods was investigated on the CSOs introduced into the catchment. On site physical (UV) and lab-scale chemical (peracetic acid (PAA), performic acid (PFA), ozone) disinfectant agents were tested on microbial indicators including E. coli and intestinal enterococci. PFA and ozone were more effective on the removal of both bacteria (above 3.5 log units) even at low concentration and with short contact time; whereas, PAA showed a moderate removal efficiency (around 2.5 log units) only for E. coli. The highest removal efficiency was achieved in the on-site UV unit and none of the indicator bacteria was detected in the final effluent after the sand filtration and UV treatment. Finally, potential scenarios were developed in comparison to the baseline scenario for the management and treatment of CSOs where a mitigation of E. coli loads from 28% to 73% was achieved on the receiving water body, and a comparative cost assessment of the disinfection methods was provided for in situ treatment of the most critical spillway.
Collapse
Affiliation(s)
- Paolo Crocetti
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy.
| | - Cecilia Bruni
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - Enrico Marinelli
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Darvini
- Department of Civil and Building Engineering and Architecture, Marche Polytechnic University, 60131, Ancona, Italy
| | - Claudio Bernardo Carini
- CIIP SpA - Cicli Integrati Impianti Primari - Water Utility, Viale Della Repubblica, 24, 63100, Ascoli Piceno, Italy
| | - Cristiana Bollettini
- CIIP SpA - Cicli Integrati Impianti Primari - Water Utility, Viale Della Repubblica, 24, 63100, Ascoli Piceno, Italy
| | - Virginia Recanati
- CIIP SpA - Cicli Integrati Impianti Primari - Water Utility, Viale Della Repubblica, 24, 63100, Ascoli Piceno, Italy
| | - Çağrı Akyol
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy.
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| |
Collapse
|
23
|
Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. WATER 2021. [DOI: 10.3390/w13081110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Even in countries with extensive sanitation systems, outbreaks of waterborne infectious diseases are being reported. Current tendencies, such as the growing concentration of populations in large urban conurbations, climate change, aging of existing infrastructures, and emerging pathogens, indicate that the management of water resources will become increasingly challenging in the near future. In this context, there is an urgent need to control the fate of fecal microorganisms in wastewater to avoid the negative health consequences of releasing treated effluents into surface waters (rivers, lakes, etc.) or marine coastal water. On the other hand, the measurement of bacterial indicators yields insufficient information to gauge the human health risk associated with viral infections. It would therefore seem advisable to include a viral indicator—for example, somatic coliphages—to monitor the functioning of wastewater treatments. As indicated in the studies reviewed herein, the concentrations of somatic coliphages in raw sewage remain consistently high throughout the year worldwide, as occurs with bacterial indicators. The removal process for bacterial indicators and coliphages in traditional sewage treatments is similar, the concentrations in secondary effluents remaining sufficiently high for enumeration, without the need for cumbersome and costly concentration procedures. Additionally, according to the available data on indicator behavior, which is still limited for sewers but abundant for surface waters, coliphages persist longer than bacterial indicators once outside the gut. Based on these data, coliphages can be recommended as indicators to assess the efficiency of wastewater management procedures with the aim of minimizing the health impact of urban wastewater release in surface waters.
Collapse
|
24
|
Codello A, McLellan SL, Steinberg P, Potts J, Scanes P, Ferguson A, Hose GC, Griffith M, Roguet A, Lydon KA, Maher WA, Krikowa F, Chariton A. A weight-of-evidence approach for identifying potential sources of untreated sewage inputs into a complex urbanized catchment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116575. [PMID: 33582627 DOI: 10.1016/j.envpol.2021.116575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The Hawkesbury-Nepean River (HNR) is the largest catchment in the Sydney region and is undergoing unprecedented population growth. The HNR system receives a mix of anthropogenic inputs such as treated sewage, stormwater and agricultural runoff. Combined, these can diminish the ecological system health and pose potential concerns to human health. Of particular concern are inputs of untreated sewage, that can occur due to a range of different reasons including illegal point source discharges, failure of the sewerage network, and overloading of wastewater treatment plants during storm events. Here, we present findings of an intensive assessment across the HNR catchment where we used a weight-of-evidence (WOE) approach to identify untreated sewage contamination in surface waters against the background of treated effluent and diffuse inputs during post high flow conditions. Total nitrogen and phosphorus concentrations were used to assess treated effluent and diffuse inputs, and microbial analysis, including both culture-based traditional methods for E. coli and enterococci and qPCR analysis of Bacteroides and Lachnospiraceae, were used to assess raw sewage contamination. Despite a background of diffuse inputs from recent high flow events and the influence of treated wastewater, we found no gradient of faecal contamination along the HNR system or its tributaries. We observed two sites with evidence of untreated sewage contamination, where the human markers Bacteroides and Lachnospiraceae qPCR copy numbers were high. The biological and chemical approaches suggested these latter two hotspots originate from an industrial runoff source and possibly from a dry weather sewage leak. Our findings demonstrate the potential of a WOE approach in the assessment of human faecal signal in an urban river that can also pinpoint small sources of contamination as a strategy that can reshape the way monitoring is performed and the chemical end-points chosen to provide pertinent information on the potential risks to aquatic system health.
Collapse
Affiliation(s)
- Annachiara Codello
- Department of Biological Sciences, Macquarie University, NSW, 2113, Australia.
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA
| | - Peter Steinberg
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia; School of BEES, University of New South Wales Sydney, NSW, 20152, Australia
| | - Jaimie Potts
- NSW Department of Planning, Industry and Environment, EES Laboratories, 480 Weeroona Road, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- NSW Department of Planning, Industry and Environment, EES Laboratories, 480 Weeroona Road, Lidcombe, NSW, 2141, Australia
| | - Angus Ferguson
- NSW Department of Planning, Industry and Environment, EES Laboratories, 480 Weeroona Road, Lidcombe, NSW, 2141, Australia
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW, 2113, Australia
| | | | - Adelaide Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA
| | - Keri A Lydon
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA
| | - William A Maher
- Research School of Earth Sciences, Australian National University, Canberra, Australia, 2601
| | - Frank Krikowa
- Research School of Earth Sciences, Australian National University, Canberra, Australia, 2601
| | - Anthony Chariton
- Department of Biological Sciences, Macquarie University, NSW, 2113, Australia
| |
Collapse
|
25
|
Poopipattana C, Suzuki M, Furumai H. Impact of long-duration CSO events under different tidal change conditions on distribution of microbial indicators and PPCPs in Sumida river estuary of Tokyo Bay, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7212-7225. [PMID: 33029770 DOI: 10.1007/s11356-020-11046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The Sumida river estuary of Tokyo bay is often affected by fecal contamination from combined sewer overflows (CSOs). This study monitored the surface water quality from the upstream of the Sumida river to the estuary in October 2017, June 2018, and July 2018 after three long-duration rainfall events. Several types of sewage markers, including fecal bacteria and two types of bacteriophages as microbial markers, and five pharmaceuticals and personal care products (PPCPs) as chemical markers were used to evaluate fecal contamination. CSO discharge was estimated separately from pumping stations and overflow chambers. The dominant contribution from overflow chambers was estimated to be as high as 86 - 91% of total discharge volume indicating their significance in controlling CSO pollution. High concentrations of sewage marker were observed in a wide area due to CSO discharge of more than 30 h in all 3 events. Escherichia coli was found to be as high as 4.00 - 4.57 log10 (CFU/100 mL). Meanwhile, caffeine showed the highest concentration of 2105 ng/L among PPCPs. It was found to be a useful indicator of recent contamination that captured a unique spatial distribution tendency. On the other hand, crotamiton, a conservative PPCP, was found to be highly diluted and might not be appropriate for tracking pollutants under heavy rainfall events. The effect of CSO discharge pattern and tidal change on the distribution of sewage markers, including dispersion degree and pollutants travel time, was described. CSO pollutants were found to accumulate in the river mouth areas during high tide before being discharged into the estuary.
Collapse
Affiliation(s)
- Chomphunut Poopipattana
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Motoaki Suzuki
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
26
|
Qin H, Diao M, Zhang Z, Visser PM, Zhang Y, Wang Y, Yan S. Responses of phytoremediation in urban wastewater with water hyacinths to extreme precipitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110948. [PMID: 32778268 DOI: 10.1016/j.jenvman.2020.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Climate change not only intensifies eutrophication and enhances the rainfall, but also elevates the contents of greenhouse gases, which can further increase the intensity and frequency of extreme precipitation events. The effectivity of phytoremediation of urban wastewaters by water hyacinths under an extreme rainfall event (up to 380 mm d-1) was investigated using self-designed fabrications with six flow rates (2-15 m3 d-1) in situ on pilot scale for 30 days. The results suggest that water hyacinths had high N and P removal capacities even under adverse conditions such as low dissolved oxygen concentrations (DO, <1 mg L-1) and high ammonium concentrations (NH4+-N, >7 mg L-1). Specifically, the highest removal yields of N and P were 13.14 ± 0.47 g N·m-2·d-1 and 2.12 ± 0.04 g P·m-2·d-1, respectively. The results indicate that water hyacinths can be used for water treatment to reduce the amounts of NH4+-N, dissolved organic nitrogen (DON) and phosphate (PO43-) even during extreme precipitation events. Moreover, DO increased due to wet deposition, runoff and surface flows during the extreme rainfall event, resulting in shifts between nitrification and denitrification processes which significantly altered nitrogen forms in urban wastewater. Results of this study suggest that water hyacinths could be recommended as a cost-effective and eco-friendly technology for urban wastewater phytoremediation in areas suffering from frequent extreme precipitation events.
Collapse
Affiliation(s)
- Hongjie Qin
- Key Laboratory for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Nanjing, 210014, China.
| | - Muhe Diao
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Zhiyong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Nanjing, 210014, China
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Yingying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Nanjing, 210014, China
| | - Yan Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Nanjing, 210014, China
| | - Shaohua Yan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Nanjing, 210014, China.
| |
Collapse
|
27
|
Rizzo A, Tondera K, Pálfy TG, Dittmer U, Meyer D, Schreiber C, Zacharias N, Ruppelt JP, Esser D, Molle P, Troesch S, Masi F. Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138618. [PMID: 32498211 DOI: 10.1016/j.scitotenv.2020.138618] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 04/13/2023]
Abstract
Combined sewer overflows (CSOs) are a major source of surface water pollution and degradation. This is particularly visible where sewage collection with combined sewer and centralized treatment are well established, such as in Europe and North America: an overwhelming number of surface water bodies are in insufficient status of ecology, hydrology and physico-chemical parameters. Therefore, several countries have started implementing constructed wetlands (CWs) as mainstream on-spot treatment. This paper summarizes the main design approaches that can be adopted. We identified eight different schemes for the implementation of CSO-CWs, based on our international experience and documented by a literature analysis. The performance review includes conventional water quality parameters, as well as pathogen and emergent contaminant removal. Furthermore, modelling tools for advanced design and for understanding a wide applicability of these green infrastructures are presented. This paper also provides a review on other side benefits offered by the adoption of Nature-Based Solutions for CSO treatment, such as ecosystem services, and the most common issues related to their operation and maintenance. Our analysis has produced a list of key factors for design and operation, all derived from full-scale installations in operation up to more than ten years.
Collapse
Affiliation(s)
- A Rizzo
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| | - K Tondera
- IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France; INRAE, REVERSAAL, F-69625, Villeurbanne, France.
| | - T G Pálfy
- INRAE, REVERSAAL, F-69625, Villeurbanne, France; University of Sopron, Institute of Geomatics and Civil Engineering, H-9400 Sopron, Hungary
| | - U Dittmer
- Institute for Water, Infrastructure and Resources, Department for Urban Water Management, TU Kaiserslautern, Paul-Ehrlich-Straße 14, 67663 Kaiserslautern, Germany
| | - D Meyer
- Municipal government City of Mayen, Department 3.1 - City Planning and Construction Supervision, Town Hall Rosengasse, D-56727 Mayen, Germany
| | - C Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, GeoHealth Centre, Venusberg-Campus 1, 53127 Bonn, Germany
| | - N Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, GeoHealth Centre, Venusberg-Campus 1, 53127 Bonn, Germany
| | - J P Ruppelt
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany
| | - D Esser
- SINT, Société d'Ingénierie Nature & Technique, Chef-Lieu, F-73370 La Chapelle du Mont du Chat, France
| | - P Molle
- INRAE, REVERSAAL, F-69625, Villeurbanne, France
| | - S Troesch
- Eco Bird, 3 route du Dôme, 69630 Chaponost, France
| | - F Masi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| |
Collapse
|
28
|
Ghirardini A, Grillini V, Verlicchi P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure - Environmental risk due to antibiotics after application to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136118. [PMID: 31881518 DOI: 10.1016/j.scitotenv.2019.136118] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
This study consists of a review based on 104 papers published between 1980 and 2019, which dealt with the occurrence of pharmaceuticals, hormones and a selection of microorganisms in raw and treated manure from different types of animal farms. The selected pharmaceuticals and hormones are those regularly administered to livestock for treating and preventing diseases. Worldwide, manure is commonly spread on soil as a fertilizer due to its nutrient content. However, this practice also represents a potential pathway for micropollutant release into the environment. In this context, this study evaluates the predicted concentrations of some antibiotics in soil after the application of swine slurry on soil and compares them with corresponding measured concentrations found in the literature. Enrofloxacin, oxytetracycline and chlortetracycline were the antibiotics with the highest concentrations that were found in raw and treated manure and that showed a high risk together with sulfamethazine. Future research should focus on monitoring other pathogens, parent compounds and their main metabolites in raw and treated manure, studying the spread and development of antibiotic resistance genes in the environment due to residues of antibiotics in manure applied to soil, and evaluating predicted no effect concentrations of pharmaceuticals and hormones commonly administered to livestock with regard to terrestrial organisms.
Collapse
Affiliation(s)
- A Ghirardini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - V Grillini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - P Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy; Terra&Acqua Tech Technopole of the University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
29
|
Botturi A, Daneshgar S, Cordioli A, Foglia A, Eusebi AL, Fatone F. An innovative compact system for advanced treatment of combined sewer overflows (CSOs) discharged into large lakes: Pilot-scale validation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109937. [PMID: 31818744 DOI: 10.1016/j.jenvman.2019.109937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Combined sewer overflows discharging into natural water bodies could potentially contaminate them in terms of conventional wastewater parameters and coliform bacteria. When green water infrastructures are not technically feasible or practically sustainable for stormwater management, innovative compact and effective end-of-pipe systems can be of interest. This study presents long-term and real-environment validated data of a compact and rapid treatment system specifically applicable to CSOs that consists of a dynamic rotating belt filter, adsorption on granular activated carbon and UV disinfection steps. The results of treatment for Lake Garda in Italy, showed great potential for TSS, COD and E. coli removal efficiencies with more than 90%, 69% and 99% respectively. Due to the short contact time of GAC adsorption, nutrients removals were not very high. TN and TP removal of around 41% and 19% were observed respectively that suggests further specific nutrients removal processes are required for achieving higher efficiencies. The treatment system, due to its compactness and rapidness could be a great asset for water utilities in different EU catchments that are dealing with the frequent CSO events. In addition, the possibility of using different combinations of treatment steps allows the choice of different treatment scenarios depending on the treatment goals for any specific catchment.
Collapse
Affiliation(s)
- A Botturi
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - S Daneshgar
- Department of Biotechnology, University of Verona, 37134, Verona, Italy.
| | - A Cordioli
- Azienda Gardesana Servizi, 37019, Peschiera Del Garda, Italy
| | - A Foglia
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy
| | - A L Eusebi
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy.
| | - F Fatone
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy
| |
Collapse
|
30
|
Taghipour M, Tolouei S, Autixier L, Prévost M, Shakibaeinia A, Dorner S. Normalized dynamic behavior of combined sewer overflow discharges for source water characterization and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109386. [PMID: 31421478 DOI: 10.1016/j.jenvman.2019.109386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
As one of the major sources of surface water quality impairments, Combined Sewer Overflows (CSOs) are of concern when receiving waters are used for drinking water supplies. Given the large number and variability in CSO discharges and loads, there is a need for a general methodology for estimating discharges for environmental planning and source water protection. Detailed data on CSO flowrates, contaminant concentrations including Total Suspended Solids (TSS), Escherichia coli (E. coli), caffeine (CAF) and acetaminophen (ACE) were used to develop a simple loading model that was then verified using discharge and concentration data from other CSO and stormwater events in the literature. The variability of the parameters within each event was analyzed by normalizing flowrate, concentration and event duration to their respective peak values. The normalized flowrate data indicate that the second decile of the discharge periods was associated with peak flowrates. The dynamic behavior of CSO flowrates can be characterized by a linearly increasing trend and then a logarithmically decreasing trend in terms of normalized values. The samples captured during the first decile of the events were illustrated to be a better representation of peak concentrations of all four contaminants. By analyzing the discharge period in three sections (i.e. 1st decile, 2nd decile and remainder), a semi-probabilistic CSO loading model is proposed for the entire discharge period taking into account the variability of the phenomena. Findings can help water managers and utilities to characterize their source waters for better planning and to more efficiently design sampling campaigns for capturing peak concentrations at drinking water treatment plants.
Collapse
Affiliation(s)
- Milad Taghipour
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada.
| | - Samira Tolouei
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water. Polytechnique Montréal, P.O. Box. 6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Laurène Autixier
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Michèle Prévost
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water. Polytechnique Montréal, P.O. Box. 6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Ahmad Shakibaeinia
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
| | - Sarah Dorner
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec, H3C 3A7, Canada
| |
Collapse
|
31
|
Tran NH, Reinhard M, Khan E, Chen H, Nguyen VT, Li Y, Goh SG, Nguyen QB, Saeidi N, Gin KYH. Emerging contaminants in wastewater, stormwater runoff, and surface water: Application as chemical markers for diffuse sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:252-267. [PMID: 31048157 DOI: 10.1016/j.scitotenv.2019.04.160] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Diffuse sources of pollution such as sewer leakages, sewer overflows, illicit discharges and stormwater runoff affect the urban surface water quality but often remain unknown. Therefore, the development of chemical markers for identifying and characterizing the origin of diffuse sources of pollution in urban surface waters is a requisite for protecting and managing urban water resources. In this study, the occurrence of 31 emerging contaminants (ECs) in untreated wastewater, treated wastewater, urban stormwater runoff, agricultural stormwater runoff, and freshwater bodies was investigated. Artificial sweeteners (ASs), pharmaceuticals and personal care products (PPCPs) were more frequently detected in the collected water samples. In raw wastewater, 21 target ECs were detected 100% in the collected samples with median concentrations ranging from 49.6 to 77,721 ng/L, while in freshwater bodies, only 13 compounds were found with detection frequency >50%. The median concentration of the majority of detected ECs in freshwater samples was below 100 ng/L. The suitability of ECs as chemical markers of diffuse sources in an urban watershed was assessed using a suite of criteria, including the detection frequency (DF), detection ratio (DR) (i.e. the ratio between median concentration and method quantification limit of a compound) and attenuation rates (i.e., biodegradation, sorption and abiotic degradation) in wastewater treatment processes. In addition, we propose a new key criterion, the concentration ratio (CR) of labile to conservative compounds, to evaluate the applicability of suitable chemical markers for source tracking. Using this new set of criteria (i.e. CR, DF, DR and attenuation rates), our analysis showed that among the investigated ECs, only acesulfame (ACE), acetaminophen (ACT), cyclamate (CYC), saccharin (SAC) were suitable as chemical markers of diffuse sources in surface waters. For caffeine (CF), N,N-diethyl-meta-toluamide (DEET), crotamiton (CTMT), triclocarban (TCC) and triclosan (TCS), their median concentration ratio to sucralose (SUC) in water bodies was consistently higher than that in raw wastewater, suggesting that these compounds might be unsuitable as chemical markers of sewage leakage in surface waters for this study area.
Collapse
Affiliation(s)
- Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Stanford University, CA 94305, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas (UNLV), 4505S Maryland Pkwy, Las Vegas, NV 89154, USA
| | - Huiting Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore
| | | | - Yiwen Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Q B Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
32
|
|
33
|
Ruppelt JP, Tondera K, Vorenhout M, Van der Weken L, Pinnekamp J. Redox potential as a method to evaluate the performance of retention soil filters treating combined sewer overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1628-1639. [PMID: 30308848 DOI: 10.1016/j.scitotenv.2018.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Retention soil filters (RSFs) protect water bodies from pollutant loads originating from combined sewer overflows (CSOs) by filtering the wastewater through a filter layer having a depth of 0.75 to 1 m. The microbiological processes in the filter material are influenced by the redox potential (Eh). This potential is a strong indicator of the prevailing environmental conditions and the possible type of microbial activity. Previous investigations of filter bodies have been confined to constructed wetlands (CWs) with regular intermittent wastewater inflow. Compared to CWs, RSFs are characterized by higher oxygen availability due to alternating operating and dry periods. This study aimed to determine the Eh in RSFs and investigate its influence on the removal efficiency for different substances. We established a conceptual model for the standard Eh curve following a loading event, and the variations to this standard in two depths and between treatments. Correlations were determined with a canonical correlation analysis between the pollutant removal of COD, ammonium, phosphorous, E. coli, somatic coliphages and diclofenac and the Eh. Although the removal efficiency is influenced by several additional operating factors such as the preceding dry period, filter age and the respective inflow concentrations, our results show that the Eh is an adequate approach to assess the removal efficiency of RSFs for these substances.
Collapse
Affiliation(s)
- Jan P Ruppelt
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany.
| | | | - Michel Vorenhout
- Dep. of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands & MVH Consult, Leiden, the Netherlands
| | - Lisa Van der Weken
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany
| | - Johannes Pinnekamp
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
34
|
Temporal Variation and Reduction Strategy of Nutrient Loads from an Urban River Catchment into a Eutrophic Lake, China. WATER 2019. [DOI: 10.3390/w11010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive nutrient input from urban areas increases the occurrence of eutrophication. Control of nutrient loads is perceived as the primary restoration method. Quantifying temporal variation of nutrient loads is essential to understand the dynamic relationships of nutrient source-impacts in the urban water system and investigate the operational efficiency of treatment facilities for eutrophication control. Here, a holistic approach was developed to estimate nutrient loads from different sources and evaluate nutrient impacts on the urban water environment. An integrated catchment model of nutrient loads was built and applied to calculate river nutrient loads from untreated rainfall runoff, untreated sewage, and treated recharge into the eutrophic Dianchi Lake from an urban river catchment with limited infrastructure. Nutrient impacts on the lake were evaluated and a load reduction strategy was given a hint to reduce nutrient impacts of urban rivers. During the study period 2014–2016, nutrient loads from the urban river generally decreased except during heavy winter rainfall events and high-intensity pollution events associated with rainfall runoff. The average contribution of annual nutrient loads to the lake capacity indicated the underestimation of nutrient impacts of urban rivers. This approach provides new insights into urban water management and underscores the importance of sewage infrastructure.
Collapse
|
35
|
Ma Y, Hao S, Zhao H, Fang J, Zhao J, Li X. Pollutant transport analysis and source apportionment of the entire non-point source pollution process in separate sewer systems. CHEMOSPHERE 2018; 211:557-565. [PMID: 30092536 DOI: 10.1016/j.chemosphere.2018.07.184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Understanding pollutant transport process and source apportionment is critical to urban stormwater pollution mitigation. Previous studies have investigated transport and sources of road deposited sediments (RDS) and sewer sediments individually, and most of these studies focused on stormwater pollution in combined sewer systems. However, studies about pollutant transport and source apportionment of the entire urban non-point source pollution process in separate sewer systems are lacking. This study analyzed particle size distribution and chemical pollutants in five media during the entire pollutant process including RDS, roof runoff, road runoff, sewer sediments, and sewer runoff. The outcomes found that mass percentage of fine particles became greater during pollutant transport in stormwater runoff. According to transport characteristics, particles were grouped into three types: particles <20 μm, 20-105 μm, and >105 μm. Particles <20 μm had the highest mobility capacity and particles >105 μm had the lowest mobility capacity, while mobility capacity of particles 20-105 μm was uncertain. Pollutant concentrations in road runoff were significantly influenced by rainfall intensity and pollutant concentrations in sewer runoff could become lower during rainy seasons ignoring rainfall intensity. RDS was the main contributor of heavy metals while organic matter and nutrients were primarily contributed by sewer sediments. Roof runoff, road runoff and sewer sediments contributed 5.35%, 69.24% and 25.41% particles to urban receiving water, respectively. Based on the outcomes, several suggestions were given for stormwater management.
Collapse
Affiliation(s)
- Yukun Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Shaonan Hao
- Water Group, Ramboll Studio Dreiseitl, 39 Middle Dongsanhuan Road, Beijing, 100022, China
| | - Hongtao Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jinxiu Fang
- College of Environmental Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jiang Zhao
- China Eco-city Academy, 9 Shouti South Road, Beijing, 100048, China
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
36
|
Affiliation(s)
- Kimberley Miner
- Climate Change Institute, University of Maine, Orono, ME 04469, USA. .,Geospatial Research Lab, U.S. Army Engineer Research and Development Center, Alexandria, VA 22315, USA
| | - Nicole Wayant
- Geospatial Research Lab, U.S. Army Engineer Research and Development Center, Alexandria, VA 22315, USA
| | - Heather Ward
- Geospatial Research Lab, U.S. Army Engineer Research and Development Center, Alexandria, VA 22315, USA
| |
Collapse
|
37
|
Paliaga P, Korlević M, Ivančić I, Najdek M. Limited influence of primary treated sewage waters on bacterial abundance, production and community composition in coastal seawaters. MARINE ENVIRONMENTAL RESEARCH 2017; 131:215-226. [PMID: 29032852 DOI: 10.1016/j.marenvres.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The response of bacteria in terms of abundance, production and community structure to changes induced by the discharge of primary treated sewage waters was investigated combining microbiological, chemical and molecular tools. The primary treatment did not affect substantially the bacterial community structure in wastewaters and did not reduce the concentrations of fecal indicators. The spatial distribution of the sewage plume was governed by vertical stratification and currents. Bacterial abundance and production in the sea receiving waste waters depended predominantly on environmental conditions. In the waters with the highest concentration of fecal pollution indicators the bacterial community was characterized by allochthonous bacteria belonging to Epsilonproteobacteria, Firmicutes, Gammaproteobacteria and Bacteroidetes. The latter two taxa were also present in unpolluted waters but had a different structure, typical for oligotrophic environments. Although the impact of primary treated sewage waters was limited, a sanitary risk persisted due to the relevant presence of potentially pathogenic bacteria.
Collapse
Affiliation(s)
- Paolo Paliaga
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia.
| | - Marino Korlević
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia.
| | - Ingrid Ivančić
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia.
| | - Mirjana Najdek
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia.
| |
Collapse
|