1
|
Chen X, Zuo H, Yan M, Wang H, Xi C, Chai Y. Differential responses of soil C, N, and P ecological stoichiometric characteristics to different configurations of edge-locked forests in the Kubuqi Desert. FRONTIERS IN PLANT SCIENCE 2025; 16:1520024. [PMID: 39949412 PMCID: PMC11821981 DOI: 10.3389/fpls.2025.1520024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025]
Abstract
As a vital component of the desert ecological protection system, the edge-locked forests of the Kubuqi Desert play a crucial role in mitigating wind erosion, stabilizing sand, maintaining soil and water, and restricting desert expansion. In this paper, six types of standard protection forests in the Kubuqi Desert, namely Salix psammophila (SL), Elaeagnus angustifolia (SZ), Salix matsudana (HL), Corethrodendron fruticosum+Salix psammophila (YC + SL), Caragana korshinskii + Populus simonii (XYY + NT), and Elaeagnus angustifolia + Salix matsudana (SZ + HL), were investigated. Notably, the vertical differentiation patterns of soil carbon (C), nitrogen (N), phosphorus (P), and ecological stoichiometric ratios, as well as soil particle size features within the 0-100-cm soil layer under protection forests with different allocation modes, were systematically and comprehensively analyzed. The study's findings showed that: (1) Among the six configuration types, SZ, NT + XYY, and SL exhibited higher soil SOC and TN concentrations. Both soil SOC and TN content decreased with increasing soil depth, whereas soil TP content displayed no considerable variation among different stand types or soil depths. (2) Based on the N/P threshold hypothesis, N was the limiting nutrient element for the growth of edge-locked forests in the region. (3) The understory soils of different configurations of edge-locked forests mainly comprised sand. The silt and clay contents of SL and NT + XYY were substantially higher than those of the other four configurations. The vertical distribution patterns of particle size and parameter characteristics had variations. (4) Soil C, N, P, and stoichiometric characteristics are affected by vegetation type, soil depth, and soil texture. In conclusion, SZ and SL can be used as the dominant tree species in the edge-locked forests of the Kubuqi Desert, and the NT + XYY mixed forest configuration pattern displays the most apparent soil improvement effect. This study's findings offer a scientific reference and foundation for restoring vegetation and enhancing the ecological environment in desert regions. In addition, they provide a theoretical foundation for establishing and managing edge-locked forests.
Collapse
Affiliation(s)
- Xue Chen
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hejun Zuo
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Hanggin Desert Ecosystem Positioning Research Station, Ordos, China
| | - Min Yan
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Hanggin Desert Ecosystem Positioning Research Station, Ordos, China
| | - Haibing Wang
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Hanggin Desert Ecosystem Positioning Research Station, Ordos, China
| | - Cheng Xi
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yinchao Chai
- Inner Mongolia Key Laboratory of Aeolian Physics and Desertification Control Engineering, College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Yao Y, Yang Q, Wang L, Li G, Tan B, Xiu W, Zhang G. The coupling effects of carbon fractions, bacteria, and protists on carbon emissions among various ditch levels in the Lower Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167240. [PMID: 37739073 DOI: 10.1016/j.scitotenv.2023.167240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Inland waters are receiving increasing attention due to their importance in the global carbon cycle. However, the dynamics of CO2 emissions and the related mechanisms from ditches remain unclear. In this study, field sampling and an incubation experiment were conducted to explore the effects and mechanisms, especially the coupling effects between carbon fractions, bacteria, and protists on carbon dynamics of different ditch levels (sublateral ditch, farm ditch, and lateral ditch) and sediment depths (0-20cm, 20-40cm) in the Lower Yellow River. Results indicated that sublateral ditches nearest to farmland had the highest accumulative carbon mineralization (0-20 cm 1.38 g C kg-1; 20-40 cm 0.89 g C kg-1), equivalent to that of farmland, followed by the lateral ditch (0-20 cm 0.84 g C kg-1; 20-40 cm 0.50 g C kg-1) and the farm ditch (0-20 cm 0.67 g C kg-1; 20-40 cm 0.26 g C kg-1). Carbon emissions from ditches are mainly regulated by SOC (36.97 %), bacteria (29.2 %), and protists (18.95 %). Specifically, the mineralization of flooded lateral ditches is attributed to protist diversity. SOC, bacterial and protistan diversity in the farm ditch significantly impacted carbon emissions, with SOC as the dominant factor, while the bacterial composition and SOC contributed more to CO2 emissions in the sublateral ditch. Our results highlight the importance of carbon emissions from ditches, especially those closest to farmland. This study provides new insights into the construction and management of farmland irrigation and drainage in the aspects of carbon sequestration.
Collapse
Affiliation(s)
- Yao Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qichen Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Gang Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingchang Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Weiming Xiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
3
|
Yotova G, Hristova M, Padareva M, Simeonov V, Dinev N, Tsakovski S. Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network. Molecules 2023; 28:6091. [PMID: 37630343 PMCID: PMC10459422 DOI: 10.3390/molecules28166091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The goal of the present study is to assess the soil quality in Bulgaria using (i) an appropriate set of soil quality indicators, namely primary nutrients (C, N, P), acidity (pH), physical clay content and potentially toxic elements (PTEs: Cu, Zn, Cd, Pb, Ni, Cr, As, Hg) and (ii) respective data mining and modeling using chemometrical and geostatistical methods. It has been shown that five latent factors are responsible for the explanation of nearly 70% of the total variance of the data set available (principal components analysis) and each factor is identified in terms of its contribution to the formation of the overall soil quality-the mountain soil factor, the geogenic factor, the ore deposit factor, the low nutrition factor, and the mercury-specific factor. The obtained soil quality patterns were additionally confirmed via hierarchical cluster analysis. The spatial distribution of the patterns throughout the whole Bulgarian territory was visualized via the mapping of the factor scores for all identified latent factors. The mapping of identified soil quality patterns was used to outline regions where additional measures for the monitoring of the phytoavailability of PTEs were required. The suggested regions are located near to thermoelectric power plants and mining and metal production facilities and are characterized by intensive agricultural activity.
Collapse
Affiliation(s)
- Galina Yotova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (G.Y.); (M.P.); (V.S.)
| | - Mariana Hristova
- Institute of Soil Science, Agrotechnologies and Plant Protection “N. Poushkarov”, Agricultural Academy, 7 Bansko shose Str., 1331 Sofia, Bulgaria; (M.H.); (N.D.)
| | - Monika Padareva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (G.Y.); (M.P.); (V.S.)
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (G.Y.); (M.P.); (V.S.)
| | - Nikolai Dinev
- Institute of Soil Science, Agrotechnologies and Plant Protection “N. Poushkarov”, Agricultural Academy, 7 Bansko shose Str., 1331 Sofia, Bulgaria; (M.H.); (N.D.)
| | - Stefan Tsakovski
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (G.Y.); (M.P.); (V.S.)
| |
Collapse
|
4
|
Liu M, Li Y, Sun L, Du Z, Li W, Zhang L, Wang J, Chen J. Divergent coupling mechanism of precipitation on plant community multifunction across alpine grassland on the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 13:1122140. [PMID: 36743555 PMCID: PMC9895794 DOI: 10.3389/fpls.2022.1122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION It is essential to understand plant adaptive strategies on plant stoichiometric traits at the species level rather than at the community level under various environmental conditions across the Tibetan Plateau (TP). METHODS Here, plant community function and edaphic and meteorological factors were collected at 111 sites along an extensive water-heat gradient during the peak growing season in 2015. Community-weighted mean trait (CWM) was introduced to illuminating dynamics of the functional trait at the community level. RESULTS Our results indicated that plant functional traits, including CWM-leaf total carbon (CWM_LTC), CWM-leaf total nitrogen (CWM_LTN), and CWM-leaf total phosphorus (CWM_LTP), showed similar and comparatively marked increases from alpine meadow (AM) to alpine steppe (AS). Moreover, since the tightly coordinated variation among each plant functional trait of AM was higher than that of AS, a more stable coupling mechanism of these plant functional traits could be observed in AM under a long-term evolutionary habit. Specifically, there was higher annual mean precipitation (AMP) in AM than that in AS significantly (P < 0.01), and AMP was significantly correlated with soil moisture and soil total phosphorus in AM. Generally, our findings suggest that precipitation determines divergent coupling plant community function in both AS and AM.
Collapse
Affiliation(s)
- Miao Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yang Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Le Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Ziyin Du
- School of Geographical Sciences, China West Normal University, Nanchong, China
| | - Wencheng Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Lin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Jinniu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- Climate Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| |
Collapse
|
5
|
Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands. FORESTS 2022. [DOI: 10.3390/f13071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Irrigation and nitrogen application directly affect the availability and distribution of soil nutrients. Understanding the response of soil nutrients to long-term water–fertilizer coupling conditions is helpful to improve the management and use efficiency. Irrigation was divided into three gradient levels, which accounted for 45%, 60%, and 75% (W1, W2, and W3) of the field water holding capacity. Based on pure nitrogen, four levels of nitrogen application were set: 0.0, 101.6, 203.2, and 304.8 kg·hm−2 (N0, N1, N2, and N3). We measured tree height and diameter at breast height (DBH), and we analyzed the chemical properties of the soil at 0–40 cm depth, from 2007 to 2020. The ranges of DBH, tree height, individual volume, and stand volume were 5.80–25.25 cm, 6.10–16.47 m, 0.01–0.37 m3, and 11.76–481.47 m3·hm−2, respectively. The contents of organic matter, total nitrogen, available phosphorus, and available potassium in the soil ranged from 8.60 g·kg−1 to 18.72 g·kg−1, from 0.21 g·kg−1 to 0.79 g·kg−1, from 8.09 mg·kg−1 to 47.05 mg·kg−1, and from 90 mg·kg−1 to 322 mg·kg−1, respectively. Soil pH value decreased rapidly at a rate of 0.31 units per year for the first five years. Irrigation and nitrogen application, and their interaction, had significant (p < 0.01) effects on soil total nitrogen, available phosphorus, available potassium, and nitrate-nitrogen. We suggest maintaining the field water holding capacity above 60%, with a nitrogen application rate of 203.2 kg·hm−2, to save water, maintain soil fertility, and optimize soil nitrogen supply. Our study aimed to achieve scientific and accurate fertilization of Populus tomentosa stands over different periods, to alleviate the decline of soil fertility, and to improve the utilization rate of water and fertilizer through long-term nutrient monitoring.
Collapse
|
6
|
Grant ML, Bond AL, Lavers JL. The influence of seabirds on their breeding, roosting and nesting grounds: A systematic review and meta-analysis. J Anim Ecol 2022; 91:1266-1289. [PMID: 35395097 PMCID: PMC9324971 DOI: 10.1111/1365-2656.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Seabird species world-wide are integral to both marine and terrestrial environments, connecting the two systems by transporting vast quantities of marine-derived nutrients and pollutants to terrestrial breeding, roosting and nesting grounds via the deposition of guano and other allochthonous inputs (e.g. eggs, feathers). We conducted a systematic review and meta-analysis and provide insight into what types of nutrients and pollutants seabirds are transporting, the influence these subsidies are having on recipient environments, with a particular focus on soil, and what may happen if seabird populations decline. The addition of guano to colony soils increased nutrient levels compared to control soils for all seabirds studied, with cascading positive effects observed across a range of habitats. Deposited guano sometimes led to negative impacts, such as guanotrophication, or guano-induced eutrophication, which was often observed where there was an excess of guano or in areas with high seabird densities. While the literature describing nutrients transported by seabirds is extensive, literature regarding pollutant transfer is comparatively limited, with a focus on toxic and bioaccumulative metals. Research on persistent organic pollutants and plastics transported by seabirds is likely to increase in coming years. Studies were limited geographically, with hotspots of research activity in a few locations, but data were lacking from large regions around the world. Studies were also limited to seabird species listed as Least Concern on the IUCN Red List. As seabird populations are impacted by multiple threats and steep declines have been observed for many species world-wide, gaps in the literature are particularly concerning. The loss of seabirds will impact nutrient cycling at localized levels and potentially on a global scale as well, yet it is unknown what may truly happen to areas that rely on seabirds if these populations disappear.
Collapse
Affiliation(s)
- Megan L. Grant
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaNewnhamTASAustralia
| | - Alexander L. Bond
- Bird GroupDepartment of Life SciencesThe Natural History MuseumHertfordshireUK
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaTASAustralia
| | - Jennifer L. Lavers
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaTASAustralia
| |
Collapse
|
7
|
Differential Responses of Soil Extracellular Enzyme Activity and Stoichiometric Ratios under Different Slope Aspects and Slope Positions in Larix olgensis Plantations. FORESTS 2022. [DOI: 10.3390/f13060845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil enzymes play an important role in nutrient biogeochemical cycling in terrestrial ecosystems. Previous studies have emphasized the variability of soil enzyme activities and stoichiometric ratios in forest ecosystems in northern China. However, much less is known about soil enzyme activity, enzymatic stoichiometry ratios and microbial nutrient limitations in Larix olgensis plantations under different microsites. In this study, four specific extracellular enzyme activities (β-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, Acid phosphatase), and soil physicochemical properties were measured in the 0–20 cm soil layer. The results showed that slope aspect and slope position had a significant effect on soil moisture, soil bulk density, soil porosity, soil organic matter, ammonium nitrogen and nitrate-nitrogen. Meanwhile, slope aspect and slope position had a significant effect on β-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase and Acid phosphatase activities while the highest activity of β-glucosidase (or β-1,4-N-acetylglucosaminidase), L-leucine aminopeptidase, and Acid phosphatase was observed in the upper slope of the east, the upper slope of the south, and the upper slope of the north; soil porosity, pH and soil organic matter were the main factors affecting soil extracellular enzyme activities. The log-transformed ratios of soil C-, N-, and P-acquiring enzyme activities were 1.00:1.06:1.17, indicating that soil microbial growth in this region was limited by N and P. Therefore, these findings highlight that N and P inputs should be considered in the management of L. olgensis plantations to improve soil microbial enzyme activity, alleviating N and P limitations.
Collapse
|
8
|
Huang Y, Xin Z, Liu J, Liu Q. Divergences of soil carbon turnover and regulation in alpine steppes and meadows on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152687. [PMID: 34974010 DOI: 10.1016/j.scitotenv.2021.152687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The grasslands of the Tibetan Plateau store approximately 2.5% of global soil organic carbon (SOC) and considerable soil inorganic carbon (SIC) and have the potential to become a vast carbon source or sink as climate change progresses. However, the soil carbon (C) sequestration mechanisms that occur across large-scale natural gradients remain unclear. Here, humic substances (HS) were utilized to trace soil C turnover at 0-20 cm, and we compared divergences among three main grassland types (alpine meadow, alpine steppe, and artificial plantation) using structural equation modeling (SEM). The results showed that the alpine meadows sequestered the most soil C (63.99 ± 4.41 g kg-1 SOC and 4.11 ± 0.63 g kg-1 SIC), sequestering 2-3 times more than the alpine steppe ecosystems (19.78 ± 1.98 g kg-1 SOC and 9.21 ± 0.66 g kg-1 SIC). The alpine steppe and artificial plantation regions have strong C sink potential due to their low C/N ratios (P < 0.05). Importantly, SIC played an important role in the alpine steppes, accounting for nearly 26-37% of soil C. The ratios of recalcitrant HS to SOC were estimated as 46.50%, 65.09%, and 78.17% in the alpine meadow, alpine steppe, and artificial plantation ecosystems, respectively, indicating that SOC in the alpine meadow was the most sensitive to climate change. Fulvic acid (FA) accounted for 50.86% of SOC in the 0-20-cm interval, contributing most to the formation of SOC in all vegetation types. In addition, in contrast to climatic controls on soil C turnover in the alpine meadow, climate conditions rarely controlled C turnover in the alpine steppe. Moreover, sand and silt were the main soil minerals involved in C turnover in alpine meadow and alpine steppe ecosystems, respectively. Our study improves understanding of the mechanism by which soil C sinks form on the Tibetan Plateau under warming and wetting conditions.
Collapse
Affiliation(s)
- Yanzhang Huang
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhongbao Xin
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jinhao Liu
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Qianjin Liu
- Shandong Key Laboratory of Soil Conservation and Environment Protection, College of Resource and Environment, Linyi University, Linyi 276005, China
| |
Collapse
|
9
|
Naylor D, McClure R, Jansson J. Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms 2022; 10:microorganisms10030540. [PMID: 35336115 PMCID: PMC8954175 DOI: 10.3390/microorganisms10030540] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial communities play important roles in soil health, contributing to processes such as the turnover of organic matter and nutrient cycling. As soil edaphic properties such as chemical composition and physical structure change from surface layers to deeper ones, the soil microbiome similarly exhibits substantial variability with depth, with respect to both community composition and functional profiles. However, soil microbiome studies often neglect deeper soils, instead focusing on the top layer of soil. Here, we provide a synthesis on how the soil and its resident microbiome change with depth. We touch upon soil physicochemical properties, microbial diversity, composition, and functional profiles, with a special emphasis on carbon cycling. In doing so, we seek to highlight the importance of incorporating analyses of deeper soils in soil studies.
Collapse
|
10
|
Wang Z, Feng K, Lu G, Yu H, Wang S, Wei Z, Dang N, Wang Y, Deng Y. Homogeneous Selection and Dispersal Limitation Dominate the Effect of Soil Strata Under Warming Condition. Front Microbiol 2022; 13:801083. [PMID: 35283849 PMCID: PMC8908236 DOI: 10.3389/fmicb.2022.801083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Global warming is likely to affect the underground microbial communities in various ecosystems, but the response of soil microbial communities along a vertical depth profile to global warming has been elusive. Herein, we leveraged a warming field experiment in Qinghai-Tibet Plateau grassland and investigated the community structure of prokaryotes and fungi from the upper (0-15 cm) and lower (15-30 cm) strata under ambient and elevated temperature treatments. Three-years continual warming only significantly shifted the prokaryotic community within the upper strata and there was no significant effect observed for the fungal community. Additionally, under ambient temperature, there were significant differences between the two strata in both the prokaryotic and fungal communities, but under warming, this effect was alleviated. Next, the prokaryotic and fungal community assembly processes were measured by a phylogenetic-bin-based null approach (iCAMP). Though deterministic and stochastic processes dominated the assembly of prokaryotic and fungal communities, respectively, the deterministic processes were strengthened under warming for both communities. Specifically, the increased portion of homogeneous selection, contributing to a homogenous state, led to a smaller difference between prokaryotic communities of the two soil strata under warming. The smaller difference in the stochastic process component, i.e., dispersal limitation, contributed to the similar fungal community structures between the two strata under warming. This study deepens our understanding of warming effects on grassland microbial communities and gives greater insights on the underlying mechanisms for microbial assembly between upper and lower soil strata under warming scenarios.
Collapse
Affiliation(s)
- Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Hao Yu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziyan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Dang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yingcheng Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Spatial Distribution and Regulating Factors of Soil Nutrient Stocks in Afforested Dump of Pingshuo Opencast Coalmine, China. FORESTS 2022. [DOI: 10.3390/f13020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Determining the regulating factors of soil nutrient variations can guide the implementation of land reclamation measures in opencast coalmine regions. In this study, 132 soil samples were collected at 22 sample sites in the South Dump of Pingshuo opencast coalmine, and soil physicochemical properties were separately measured to obtain the related soil information. Geostatistical analyses were employed to analyze the spatial distribution patterns of soil organic carbon stocks (SOCD), total nitrogen stocks (TND), available phosphorus stocks (APD), and available potassium stocks (AKD) at 0–60 cm. The results showed that the spatial distributions of these soil nutrient stocks were characterized by moderate (TND) to strong (SOCD, APD, and AKD) spatial dependence. Meanwhile, the values of SOCD (16.4–60.1 Mg ha−1) and TND (1.9–15.5 Mg ha−1) were much higher than those of APD (0.022–0.095 Mg ha−1) and AKD (0.31–1.40 Mg ha−1). The statistical analyses indicated that the influence of afforestation on SOCD, TND, APD, and AKD was not significant, and the dynamic variations of soil nutrient contents were mainly regulated by soil pH in the South Dump. The findings of this study can provide some scientific guidance for soil nutrient management in the opencast coalmine regions of similar ecosystems.
Collapse
|
12
|
Jiang H, Chen Y, Hu Y, Wang Z, Lu X. Soil Bacterial Communities and Diversity in Alpine Grasslands on the Tibetan Plateau Based on 16S rRNA Gene Sequencing. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Tibetan Plateau, widely known as the world’s “Third Pole,” has gained extensive attention due to its susceptibility to climate change. Alpine grasslands are the dominant ecosystem on the Tibetan Plateau, albeit little is known about the microbial community and diversity among different alpine grassland types. Here, soil bacterial composition and diversity in the upper soils of five alpine grassland ecosystems, alpine meadow (AM), alpine steppe (AS), alpine meadow steppe (AMS), alpine desert (AD), and alpine desert steppe (ADS), were investigated based on the 16S rRNA gene sequencing technology. Actinobacteria (46.12%) and Proteobacteria (29.67%) were the two dominant soil bacteria at the phylum level in alpine grasslands. There were significant differences in the relative abundance at the genus level among the five different grassland types, especially for the Rubrobacter, Solirubrobacter, Pseudonocardia, Gaiella, Haliangium, and Geodermatophilus. Six alpha diversity indices were calculated based on the operational taxonomic units (OTUs), including Good’s coverage index, phylogenetic diversity (PD) whole tree index, Chao1 index, observed species index, Shannon index, and Simpson index. The Good’s coverage index value was around 0.97 for all the grassland types in the study area, meaning the soil bacteria samplings sequenced sufficiently. No statistically significant difference was shown in other diversity indices’ value, indicating the similar richness and evenness of soil bacteria in these alpine grasslands. The beta diversity, represented by Bray–Curtis dissimilarity and the non-metric multidimensional scaling (NMDS), showed that OTUs were clustered within alpine grasslands, indicating a clear separation of soil bacterial communities. In addition, soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), pH, and soil water content (SWC) were closely related to the variations in soil bacterial compositions. These results indicated that soil bacterial taxonomic compositions were similar, while soil bacterial community structures were different among the five alpine grassland types. The environmental conditions, including SOM, TN, TP, pH, and SWC, might influence the soil bacterial communities on the Tibetan Plateau.
Collapse
|
13
|
Xu D, Gao T, Fang X, Bu H, Li Q, Wang X, Zhang R. Silicon addition improves plant productivity and soil nutrient availability without changing the grass:legume ratio response to N fertilization. Sci Rep 2020; 10:10295. [PMID: 32581317 PMCID: PMC7314743 DOI: 10.1038/s41598-020-67333-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Silicon (Si) plays an important role in plant nutrient capture and absorption, and also promotes plant mechanical strength and light interception in alpine meadows. In this study, we conducted a field experiment to examine the effect of nitrogen (N) application, with (N + Si) and without Si (N-only), on the potential for soil nutrient and the growth of grass and legume plant functional types (PFTs) in an alpine meadow. It was found that N + Si resulted in higher soil nutrient contents, leaf N and P concentrations, abundance and biomass of legume and grass PFTs than N-only. The aboveground biomass of grass (598 g m-2) and legume (12.68 g m-2) PFTs under 600 kg ha-1 ammonium nitrate (NH4NO3) per year addition with Si was significantly higher than that under the same level of N addition without Si (515 and 8.68 g m-2, respectively). The grass:legume biomass ratio did not differ significantly between the N + Si and N-only. This demonstrates that Si enhances N fertilization with apparently little effect on grass:legume ratio and increases plant-available nutrients, indicating that Si is essential for the plant community in alpine meadows.
Collapse
Affiliation(s)
- Danghui Xu
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China.
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China
| | - Xiangwen Fang
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Haiyan Bu
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Qiuxia Li
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Xiaona Wang
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Renyi Zhang
- State Key Laboratory of Grassland Agro-Ecosystems/School of Life Science, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, 730000, Gansu, China
| |
Collapse
|
14
|
Influence of Mining and Vegetation Restoration on Soil Properties in the Eastern Margin of the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124288. [PMID: 32560083 PMCID: PMC7344658 DOI: 10.3390/ijerph17124288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/30/2023]
Abstract
Mining causes serious destruction of the surface morphology and soil structure of lands, and vegetation restoration on post-mining lands provides an effective way for soil and water conservation. To determine the influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau, four land sites, including two vegetation restoration sites (restorated by Elymus nutans and Picea crassifolia, respectively), one non-vegetated mining site and one native grassland site, were selected. Fifty-two topsoil (0–10) samples were collected from these four sites, and then soil properties, trace metals and soil enzyme activities were analyzed. The results showed that there was an increase in soil pH (>8.0) after mining, while vegetation restoration decreased the soil pH compared with native grassland; the soil organic matter and total nitrogen in the site restored with E. nutans increased by 48.8% and 25.17%, respectively, compared with the site restored with P. crassifolia. The soil enzyme activities decreased after mining, and there were no significant increases in urease, phosphatase, β-glucosidase and β-1,4-N-acetylglucosaminidase activities after five years of restoration. In addition, the contents of soil trace metals (cadmium, chromium, mercury, lead and zinc) after mining were lower than the Chinese threshold (GB 15618/2018), but the content of arsenic in non-vegetated soil and P. crassifolia-restored soil exceeded the threshold by 22.61 times and 22.86 times, respectively. Therefore, As-contaminated land areas should be accurately determined and treated in a timely way to prevent arsenic from spreading, and plant species with tolerance to alkaline soil should be selected for vegetation restoration on post-mining lands.
Collapse
|
15
|
Short Term Effects of Revegetation on Labile Carbon and Available Nutrients of Sodic Soils in Northeast China. LAND 2020. [DOI: 10.3390/land9010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In response to land degradation and the decline of farmers’ income, some low quality croplands were converted to forage or grassland in Northeast China. However, it is unclear how such land use conversions influence soil nutrients. The primary objective of this study was to investigate the influences of short term conversion of cropland to alfalfa forage, monoculture Leymus chinensis grassland, monoculture Leymus chinensis grassland for hay, and successional regrowth grassland on the labile carbon and available nutrients of saline sodic soils in northeastern China. Soil labile oxidizable carbon and three soil available nutrients (available nitrogen, available phosphorus, and available potassium) were determined at the 0–50 cm depth in the five land uses. Results showed that the treatments of alfalfa forage, monoculture grassland, monoculture grassland for hay, and successional regrowth grassland increased the soil labile oxidizable carbon contents (by 32%, 28%, 15%, and 32%, respectively) and decreased the available nitrogen contents (by 15%, 19%, 34%, and 27%, respectively) in the 0–50 cm depth compared with cropland, while the differences in the contents of available phosphorus and available potassium were less pronounced. No significant differences in stratification ratios of soil labile carbon and available nutrients, the geometric means of soil labile carbon and available nutrients, and the sum scores of soil labile carbon and available nutrients were observed among the five land use treatments except the stratification ratio of 0–10/20–30 cm for available phosphorus and the values of the sum scores of soil labile carbon and available nutrients in the 0–10 cm depth. These findings suggest that short term conversions of cropland to revegetation have limited influences on the soil labile carbon and available nutrients of sodic soils in northeastern China.
Collapse
|
16
|
Wang W, Wu T, Chen Y, Li R, Xie C, Qiao Y, Zhu X, Hao J, Ni J. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:542-554. [PMID: 31254820 DOI: 10.1016/j.scitotenv.2019.06.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Ground ice is a distinctive feature of permafrost, and its thawing under climate change can alter the regional hydrological and biogeochemical cycles. Spatial variations and determinants of ground ice isotopes are critical to understand subsurface water cycling during freeze-thaw process in the context of climate change, while they are not well known in permafrost region due to lack of field investigation. We examined spatial distributions and controlling factors of ground ice isotopes using data of 8 soil profiles surveyed in permafrost areas of the Qinghai-Tibet Plateau (QTP). The stable isotope values (δ2H and δ18O) of subsurface water on the QTP were higher than those in Arctic tundra ecosystem and East Siberian permafrost region. Isotopic values of water components differed each other, and varied significantly among the sampling sites. The spatial distribution of isotopes was complex. Isotopes generally decreased with depth within the soil profile, implying a general isotope depth gradient across different permafrost-affected areas. Water source, evaporative and freeze-out fractionation, and cryoturbation affect soil water isotopes. Correlation analyses showed that δ2H and δ18O in soil water positively related to air temperature and soil temperature, while negatively related to soil moisture, depth, active layer thickness, vegetation coverage, elevation, and precipitation. Elevation and soil depth mainly controlled spatial distributions of ground ice isotopes. The results could provide a new insight into soil moisture movement and cycling during freeze-thaw process in the permafrost region of the QTP, which is helpful to understand subsurface water cycle mechanism in the context of permafrost degradation.
Collapse
Affiliation(s)
- Weihua Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Tonghua Wu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yaning Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ren Li
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Changwei Xie
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongping Qiao
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaofan Zhu
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junming Hao
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ni
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00774] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Li J, An C, Shang J, Zhao T, Zhang Q, Yang X, Ren C, Huang D, Liu K, Shao X. Spatial patterns in soil physicochemical and microbiological properties in a grassland adjacent to a newly built lake. Microbiologyopen 2019; 8:e912. [PMID: 31472010 PMCID: PMC6925176 DOI: 10.1002/mbo3.912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 11/07/2022] Open
Abstract
Soil water content (SWC) is an important determinant for nutrient cycling and microorganism activity in the grassland ecosystem. Lakes have a positive effect on the water supply of the neighboring ecosystem. However, information evaluating whether newly built lakes improve the physiochemical properties and microorganism activity of adjacent grassland soil is rare. A 15‐hectare artificial lake with a 2 m depth was built on grazed grassland to determine whether the change of soil physiochemical properties and microorganism activity of the adjacent grassland depended on the distance from the lake. SWC and total nitrogen (TN) were greater within 150 m of the lake than at distances over 150 m from the lake. The total organic carbon (TOC) increased first at 100–150 m from the lake and then decreased. The soil microbial biomass and the bacterial and fungal contents increased with increasing years after the construction of the lake. Gram‐negative bacteria and methanotrophic bacteria were greater within a 30 m distance of the lake. Over 60 m away from the lake, Actinobacteria, gram‐positive bacteria, and anaerobic bacteria showed higher abundances. In the area near the lake (<250 m distance), microorganisms were strongly correlated with SWC, EC, TN, and TOC and greatly correlated with the changes of total phosphorous (TP) and pH when the distance from the lake was over 250 m. The results indicated that the newly built lake could be a driving factor for improving the physiochemical properties and microorganism activity of adjacent grassland soil within a certain range.
Collapse
Affiliation(s)
- Jinsheng Li
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chan An
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- Department of Soil and Water Science, College of Resources and Environment Sciences, China Agricultural University, Beijing, China
| | - Tianchi Zhao
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qian Zhang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaomeng Yang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Ren
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ding Huang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kesi Liu
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Field Station of Grassland Ecosystem at Guyuan County, Zhangjiakou, China
| | - Xinqing Shao
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Fu D, Yang H, Wang L, Yang S, Li R, Zhang W, Ai X, Ai Y. Vegetation and soil nutrient restoration of cut slopes using outside soil spray seeding in the plateau region of southwestern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:47-54. [PMID: 30212674 DOI: 10.1016/j.jenvman.2018.08.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Outside soil spray seeding (OSSS) is used widely for road cut revegetation, and the artificial soil used in OSSS can improve slope soil conditions and nutrients, and help promote plant growth and succession. Three different slopes was investigated to evaluate the effectiveness of OSSS for restoration, including a natural slope (NS), a cut slope without any artificial recovery treatment (CSW) and a cut slope treated with OSSS (CSO). The recovery of cut slopes was determined by evaluating a number of factors, including indices associated with plants on the slopes, soil enzyme activities (urease and sucrase), and soil nutrient content (soil organic matter (SOM), total phosphorous (TP), total potassium (TK), available nitrogen (AN), available phosphorous (AP), available potassium (AK), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and sulphate (SO42-)). The results indicated that the vegetation and soil conditions differed between the three slopes. The Shannon-Wiener index (H), the Simpson index (D), and the Margalef index (R) values from the CSO and NS were lower than those of the CSW, whilst the Pielou index (E) value and vegetation canopy cover were higher for the CSO and NS than for the CSW. The content of SOM and AN in soil from the CSO was lower than in soil from the NS and CSW, and content of many nutrients were higher in soil from the CSO than in soil from the NS and CSW. This suggests that the restoration of vegetation and soil nutrients on the CSO was relatively successful. Our results indicated that the use of OSSS to restore cut slopes is effective in plateau areas. However, despite improvements in soil nutrient levels, there were still nutritional imbalances. Therefore, more attention should be paid to balancing nutrients in the later stage of OSSS implementation for the recovery of cut slopes at high altitudes.
Collapse
Affiliation(s)
- Dongqing Fu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hang Yang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Li Wang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Siqian Yang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ruirui Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenjuan Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xiaoyan Ai
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Yingwei Ai
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun 2018; 9:3951. [PMID: 30262803 PMCID: PMC6160441 DOI: 10.1038/s41467-018-06232-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
Input of labile carbon may accelerate the decomposition of existing soil organic matter (priming effect), with the priming intensity depending on changes in soil nitrogen availability after permafrost thaw. However, experimental evidence for the linkage between the priming effect and post-thaw nitrogen availability is unavailable. Here we test the hypothesis that elevated nitrogen availability after permafrost collapse inhibits the priming effect by increasing microbial metabolic efficiency based on a combination of thermokarst-induced natural nitrogen gradient and nitrogen addition experiment. We find a negative correlation between the priming intensity and soil total dissolved nitrogen concentration along the thaw sequence. The negative effect is confirmed by the reduced priming effect after nitrogen addition. In contrast to the prevailing view, this nitrogen-regulated priming intensity is independent of extracellular enzyme activities but associated with microbial metabolic efficiency. These findings demonstrate that post-thaw nitrogen availability regulates topsoil carbon dynamics through its modification of microbial metabolic efficiency. Soil nitrogen availability may alter carbon dynamics after permafrost thaw, but experimental evidence for this carbon-nitrogen interaction is still lacking. Here the authors show that elevated post-thaw nitrogen availability inhibits soil carbon release through its enhancement in microbial metabolic efficiency.
Collapse
|
21
|
Wang W, Wu T, Zhao L, Li R, Xie C, Qiao Y, Zhang H, Zhu X, Yang S, Qin Y, Hao J. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:366-376. [PMID: 29353782 DOI: 10.1016/j.scitotenv.2018.01.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Ground ice is a distinctive feature of permafrost terrain. The vertical distribution and factors controlling the hydrochemistry of ground ice are important for studying soil moisture and salt migration during the freeze-thaw process in soil. These factors are also important components of hydrological cycles in cold regions. The hydrochemical characteristics of ground ice on the Qinghai-Tibetan Plateau (QTP) are not well known. We examined the characteristics of ground ice hydrochemistry using data from 9 soil profiles in permafrost regions of the central QTP. The isotopes and anion concentrations of subsurface water on the QTP were higher than those in Arctic polygonal ground regions. The spatial distribution of anions was complex. Well-developed hydrochemical depth gradients occurred within the soil profile. Isotopes decreased and anions increased with depth, suggesting general vertical patterns of soil hydrochemistry across different permafrost regions. Cl- and SO42- concentrations in soil water increased with depth, while NO3- concentration did not change with depth. Freeze-out fractionation, self-purification, and desalination greatly impact soil hydrochemistry. The major factors controlling variation of soil water chemistry were soil moisture, air temperature, and active layer thickness. The results could provide a framework for understanding ground ice origins and the moisture and salt migration pathways in the context of permafrost changes. This information could be useful in developing process-based permafrost hydrologic models.
Collapse
Affiliation(s)
- Weihua Wang
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tonghua Wu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Lin Zhao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ren Li
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Changwei Xie
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongping Qiao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huiwen Zhang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China
| | - Xiaofan Zhu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Yang
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Qin
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junming Hao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Tian L, Zhao L, Wu X, Fang H, Zhao Y, Hu G, Yue G, Sheng Y, Wu J, Chen J, Wang Z, Li W, Zou D, Ping CL, Shang W, Zhao Y, Zhang G. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:192-202. [PMID: 29216462 DOI: 10.1016/j.scitotenv.2017.11.331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types. Alpine swamp meadow had larger topsoil C:N, C:P, N:P, and C:K ratios compared to the alpine meadow, alpine steppe, and alpine desert. In addition, the presence or absence of permafrost did not significantly impact soil nutrient stoichiometry in Tibetan grassland. Moreover, clay and silt contents explained approximately 32.5% of the total variation in soil C:N ratio. Climate, topography, soil properties, and vegetation combined to explain 10.3-13.2% for the stoichiometry of soil C:P, N:P, and C:K. Furthermore, soil C and N were weakly related to P and K in alpine grassland. These results indicated that the nutrient limitation in alpine ecosystem might shifts from N-limited to P-limited or K-limited due to the increase of N deposition and decrease of soil P and K contents under the changing climate conditions and weathering stages. Finally, we suggested that soil moisture and mud content could be good predictors of topsoil nutrient stoichiometry in Tibetan grassland.
Collapse
Affiliation(s)
- Liming Tian
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin Zhao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongbing Fang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yonghua Zhao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guojie Hu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangyang Yue
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Sheng
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jichun Wu
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji Chen
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wangping Li
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Defu Zou
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chien-Lu Ping
- Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, Palmer, AK 99645, USA
| | - Wen Shang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China
| | - Yuguo Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ganlin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
23
|
Wu X, Zhao L, Hu G, Liu G, Li W, Ding Y. Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1165-1174. [PMID: 28954377 DOI: 10.1016/j.scitotenv.2017.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Permafrost degradation can stimulate the decomposition of organic soil matter and cause a large amount of greenhouse gas emissions into the atmosphere. The light fraction organic matter (LFOM) is a labile substrate for microbial decomposition and probably plays an important role in future permafrost carbon cycles. However, little is known about the distribution of LFOM and its relationship with permafrost and environmental factors. Here, we investigated the light fraction carbon (LFC) and nitrogen (LFN) contents and stocks under meadows and wet meadows with different permafrost conditions on the southern Qinghai-Tibetan Plateau. Our results showed that LFC and LFN were mainly distributed in the upper 30cm of soils, and the sites with permafrost had significantly higher contents of LFC and LFN than those from the sites without existing permafrost. The LFC and LFN decreased sharply with depth, suggesting that the soil organic matter (SOM) in this area was highly decomposed in deep soils. Soil moisture and bulk density explained approximately 50% of the variances in LFC and LFN for all the sampling sites, while soil moisture explained approximately 30% of the variance in permafrost sites. Both the C:N ratios and LFC:LFN ratios in the sites with permafrost were higher than those in the sites without permafrost. The results suggested that the permafrost and land cover types are the main factors controlling LFOM content and stock, and that permafrost degradation would lead to a decrease of LFOM and soil C:N ratios, thus accelerating the decomposition of SOM.
Collapse
Affiliation(s)
- Xiaodong Wu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 West Donggang Road, Lanzhou 730000, China
| | - Lin Zhao
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 West Donggang Road, Lanzhou 730000, China.
| | - Guojie Hu
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 West Donggang Road, Lanzhou 730000, China
| | - Guimin Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou 730070, China
| | - Wangping Li
- School of Civil Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou 730050, China
| | - Yongjian Ding
- Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 West Donggang Road, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|