1
|
Li Y, Tan L, Jin S, Xu H, Chen L, Kemp DB, Sinha A, Ma L, Huang C, R Edwards L, Cheng H. Mercury deposition in central China from the Last Glacial Maximum to the early Holocene recorded in an accurately-dated stalagmite. Sci Bull (Beijing) 2025; 70:90-95. [PMID: 39174403 DOI: 10.1016/j.scib.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Characterization of transport pathways and depositional changes in Mercury (Hg) and their connection to climatic and environmental changes on various time scales are crucial for better understanding the anthropogenic impacts on the global Hg cycle in the Anthropocene epoch. In this study, we examined Hg variations recorded in a stalagmite from central China, covering the period from 25.5 to 10.9 thousand years ago. Our data show a marked increase in Hg concentrations during the late Last Glacial Maximum, which coincided with the period of highest dust deposition on the Chinese Loess Plateau. Hg concentrations were lower during Heinrich events 1 and 2 and the Younger Dryas but higher during the Bølling-Allerød and the early Holocene. We suggest that regional dust load, which enhances atmospheric dry deposition of Hg, is the primary factor influencing Hg deposition in central China on glacial-interglacial timescales. On millennial-to-centennial timescales, climate also plays a significant role. Warmer and wetter conditions increase vegetation, litterfall, and soil/rock weathering, which in turn boost mineral dissolution and soil erosion in the vadose zone. These processes collectively result in higher Hg concentrations in the stalagmite.
Collapse
Affiliation(s)
- Yanzhen Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Liangcheng Tan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Simin Jin
- State Key Laboratory of Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Hai Xu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lüfan Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - David B Kemp
- State Key Laboratory of Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ashish Sinha
- Department of Earth Science, California State University Dominguez Hills, Carson CA 90747, USA
| | - Le Ma
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Chunju Huang
- State Key Laboratory of Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Lawrence R Edwards
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis MN 55455, USA
| | - Hai Cheng
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
McCarter CPR, Sebestyen SD, Coleman Wasik JK, Engstrom DR, Kolka RK, Jeremiason JD, Swain EB, Monson BA, Branfireun BA, Balogh SJ, Nater EA, Eggert SL, Ning P, Mitchell CPJ. Long-Term Experimental Manipulation of Atmospheric Sulfate Deposition to a Peatland: Response of Methylmercury and Related Solute Export in Streamwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17615-17625. [PMID: 36445185 DOI: 10.1021/acs.est.2c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Changes in sulfate (SO42-) deposition have been linked to changes in mercury (Hg) methylation in peatlands and water quality in freshwater catchments. There is little empirical evidence, however, of how quickly methyl-Hg (MeHg, a bioaccumulative neurotoxin) export from catchments might change with declining SO42- deposition. Here, we present responses in total Hg (THg), MeHg, total organic carbon, pH, and SO42- export from a peatland-dominated catchment as a function of changing SO42- deposition in a long-term (1998-2011), whole-ecosystem, control-impact experiment. Annual SO42- deposition to half of a 2-ha peatland was experimentally increased 6-fold over natural levels and then returned to ambient levels in two phases. Sulfate additions led to a 5-fold increase in monthly flow-weighted MeHg concentrations and yields relative to a reference catchment. Once SO42- additions ceased, MeHg concentrations in the outflow streamwater returned to pre-SO42- addition levels within 2 years. The decline in streamwater MeHg was proportional to the change in the peatland area no longer receiving experimental SO42- inputs. Importantly, net demethylation and increased sorption to peat hastened the return of MeHg to baseline levels beyond purely hydrological flushing. Overall, we present clear empirical evidence of rapid and proportionate declines in MeHg export from a peatland-dominated catchment when SO42- deposition declines.
Collapse
Affiliation(s)
- Colin P R McCarter
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, OntarioM1C 1A4, Canada
| | - Stephen D Sebestyen
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota55744, United States
| | - Jill K Coleman Wasik
- Department of Plant and Earth Science, University of Wisconsin - River Falls, 410 S. 3rd Street, River Falls, Wisconsin54022, United States
| | - Daniel R Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd Street N., Marine on St. Croix, Minnesota55047, United States
| | - Randall K Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota55744, United States
| | - Jeff D Jeremiason
- Department of Chemistry, Gustavus Adolphus College, 800 W College AvenueSt. Peter, Minnesota56082, United States
| | - Edward B Swain
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota55108, United States
| | - Bruce A Monson
- Minnesota Pollution Control Agency, 520 Lafayette Road North, Saint Paul, Minnesota55155, United States
| | - Brian A Branfireun
- Department of Biology, The University of Western Ontario, London, OntarioN5B 2A7, Canada
| | - Steven J Balogh
- Metropolitan Council Environmental Services, 2400 Childs Road, Saint Paul, Minnesota55106, United States
| | - Edward A Nater
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota55108, United States
| | - Susan L Eggert
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota55744, United States
| | - Paris Ning
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, OntarioM1C 1A4, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, OntarioM1C 1A4, Canada
| |
Collapse
|
3
|
Pierce CE, Furman OS, Nicholas SL, Wasik JC, Gionfriddo CM, Wymore AM, Sebestyen SD, Kolka RK, Mitchell CPJ, Griffiths NA, Elias DA, Nater EA, Toner BM. Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1433-1444. [PMID: 34979084 DOI: 10.1021/acs.est.1c04662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We examined the composition and spatial correlation of sulfur and mercury pools in peatland soil profiles by measuring sulfur speciation by 1s X-ray absorption near-edge structure spectrocopy and mercury concentrations by cold vapor atomic fluorescence spectroscopy. Also investigated were the methylation/demethylation rate constants and the presence of hgcAB genes with depth. Methylmercury (MeHg) concentration and organic disulfide were spatially correlated and had a significant positive correlation (p < 0.05). This finding is consistent with these species being products of dissimilatory sulfate reduction. Conversely, a significant negative correlation between organic monosulfides and MeHg was observed, which is consistent with a reduction in Hg(II) bioavailability via complexation reactions. Finally, a significant positive correlation between ester sulfate and instantaneous methylation rate constants was observed, which is consistent with ester sulfate being a substrate for mercury methylation via dissimilatory sulfate reduction. Our findings point to the importance of organic sulfur species in mercury methylation processes, as substrates and products, as well as potential inhibitors of Hg(II) bioavailability. For a peatland system with sub-μmol L-1 porewater concentrations of sulfate and hydrogen sulfide, our findings indicate that the solid-phase sulfur pools, which have a much larger sulfur concentration range, may be accessible to microbial activity or exchanging with the porewater.
Collapse
Affiliation(s)
- Caroline E Pierce
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Olha S Furman
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Sarah L Nicholas
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jill Coleman Wasik
- Plant and Earth Science Department, University of Wisconsin River Falls, River Falls, Wisconsin 54022, United States
| | - Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ann M Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephen D Sebestyen
- USDA Forest Service, Northern Research Station, Grand Rapids, Minnesota 55744, United States
| | - Randall K Kolka
- USDA Forest Service, Northern Research Station, Grand Rapids, Minnesota 55744, United States
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Scarborough, Ontario M1C 1A4, Canada
| | - Natalie A Griffiths
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Edward A Nater
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Brandy M Toner
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
4
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
5
|
Cooke CA, Martínez-Cortizas A, Bindler R, Sexauer Gustin M. Environmental archives of atmospheric Hg deposition - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134800. [PMID: 31887515 DOI: 10.1016/j.scitotenv.2019.134800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Environmental archives offer an opportunity to reconstruct temporal trends in atmospheric Hg deposition at various timescales. Lake sediment and peat have been the most widely used archives; however, new records from ice, tree rings, and the measurement of Hg stable isotopes, are offering new insights into past Hg cycling. Preindustrial Hg deposition has been studied over decadal to millennial timescales extending as far back as the late Pleistocene. Exploitation of mercury deposits (mainly cinnabar) first began during the mid to late Holocene in South America, Europe, and Asia, but increased dramatically during the Colonial era (1532-1900) for silver production. However, evidence for preindustrial Hg pollution is restricted to regions directly downwind or downstream of cinnabar or precious metal mining centers. Excluding these areas, there has been an approximately four-fold increase in atmospheric deposition globally over the industrial era (i.e., since 1800-1850), though regional differences exist, especially during the early 20th Century. Lake sediments, peat, ice, and tree rings are all influenced by (and integrate) a range of processes. For example, lake sediments are influenced by atmospheric deposition, sediment focusing, and the input of allochthonous material from the watershed, peat records reflect atmospheric deposition and biotic uptake, ice cores are a record of Hg scrubbed during precipitation, and tree rings record atmospheric concentrations. No archive represents an absolute record of past Hg deposition or concentrations, and post-depositional transformation of Hg profiles remains an important topic of research. However, natural archives continue to provide important insight into atmospheric Hg cycling over various timescales.
Collapse
Affiliation(s)
- Colin A Cooke
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada; Environmental Monitoring and Science Division, Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta T5J 5C6 Canada.
| | - Antonio Martínez-Cortizas
- EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno Reno, Nevada 89557, United States
| |
Collapse
|
6
|
McCarter CPR, Rezanezhad F, Gharedaghloo B, Price JS, Van Cappellen P. [Not Available]. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 225:103497. [PMID: 31102982 DOI: 10.1016/j.jconhyd.2019.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The dual-porosity structure of peat and the extremely high organic matter content give rise to a complex medium that typically generates prolonged tailing and early 50% concentration breakthrough in the breakthrough curves (BTCs) of chloride (Cl-) and other anions. Untangling whether these observations are due to rate-limited (physical) diffusion into inactive pores, (chemical) adsorption or anion exclusion remains a critical question in peat hydrogeochemistry. This study aimed to elucidate whether Cl- is truly conservative in peat, as usually assumed, and whether the prolonged tailing and early 50% concentration breakthrough of Cl- observed is due to diffusion, adsorption, anion exclusion or a combination of all three. The mobile-immobile (MiM) dual-porosity model was fit to BTCs of Cl- and deuterated water measured on undisturbed cores of the same peat soils, and equilibrium Cl- adsorption batch experiments were conducted. Adsorption of Cl- to undecomposed and decomposed peat samples in batch experiments followed Freundlich isotherms but did not exhibit any trends with the degree of peat decomposition and sorption became negligible below aqueous Cl- concentrations of ~310 mg L-1. The dispersivity determined by fitting the Cl- BTCs whether assuming adsorption or no adsorption were significantly different than determined by the deuterated water (p < .0001). However, no statistical differences in dispersivity (p = .27) or immobile water content (p = .97) was observed between deuterated water and Cl- when accounting for anion exclusion. A higher degree of decomposition significantly increased anion exclusion (p < .0001) but did not influence the diffusion of either tracer into the immobile porosity. Contrary to previous assumptions, Cl- is not truly conservative in peat due to anion exclusion, and adsorption at higher aqueous concentrations, but the overall effect of anion exclusion on transport is likely minimal.
Collapse
Affiliation(s)
- C P R McCarter
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - F Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - B Gharedaghloo
- Department of Geography and Environmental Management, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - J S Price
- Department of Geography and Environmental Management, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - P Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
7
|
McCarter CPR, Weber TKD, Price JS. Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 217:17-31. [PMID: 30201556 DOI: 10.1016/j.jconhyd.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/11/2018] [Indexed: 05/21/2023]
Abstract
There is sparse information on reactive solute transport in peat; yet, with increasing development of peatland dominated landscapes, purposeful and accidental contaminant releases will occur, so it is important to assess their mobility. Previous experiments with peat have only evaluated single-component solutions, such that no information exists on solute transport of potentially competitively adsorbing ions to the peat matrix. Additionally, recent studies suggest chloride (Cl-) might not be conservative in peat, as assumed by many past peat solute transport studies. Based on measured and modelled adsorption isotherms, this study illustrates concentration dependent adsorption of Cl- to peat occurred in equilibrium adsorption batch (EAB) experiments, which could be described with a Sips isotherm. However, Cl- adsorption was insignificant for low concentrations (<500 mg L-1) as used in breakthrough curve experiments (BTC). We found that competitive adsorption of Na+, K+, and NH4+ transport could be observed in EAB and BTC, depending on the dissolved ion species present. Na+ followed a Langmuir isotherm, K+ a linear isotherm within the tested concentration range (~10 - 1500 mg L-1), while the results for NH4+ are inconclusive due to potential microbial degradation. Only Na+ showed clear evidence of competitive behaviour, with an order of magnitude decrease in maximum adsorption capacity in the presence of NH4+ (0.22 to 0.02 mol kg-1), which was confirmed by the BTC data where the Na+ retardation coefficient differed between the experiments with different cations. Thus, solute mobility in peatlands is affected by competitive adsorption.
Collapse
Affiliation(s)
- Colin P R McCarter
- Dep. of Geography and Environmental Management, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
| | - Tobias K D Weber
- Institute for Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, Emil-Wolff-Straße 27, DE-70599 Stuttgart, Germany
| | - Jonathan S Price
- Dep. of Geography and Environmental Management, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|