1
|
Chen XX, Li C, Selvaraj KK, Ji QS, Fang ZH, Yang SG, Li SY, Zhang LM, He H. Correlation analysis between the in vivo bioavailability and in vitro bioaccessibility of nitro PAHs in soil: Application of simplified FOREhST in vitro methods based on the Chinese pharmacopoeia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168722. [PMID: 38008317 DOI: 10.1016/j.scitotenv.2023.168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.
Collapse
Affiliation(s)
- Xian-Xian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Qing-Song Ji
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Zhi-Hong Fang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shao-Gui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shi-Yin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
2
|
Rezaei Kalantary R, Jaafarzadeh N, Rezvani Ghalhari M, Hesami Arani M. Cancer risk assessment of polycyclic aromatic hydrocarbons in the soil and sediments of Iran: a systematic review study. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:597-612. [PMID: 34700370 DOI: 10.1515/reveh-2021-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants containing several hydrocarbon rings affecting human health according to the published monitoring data. Most of these compounds can be absorbed by the soil and sediments due to the abundance of production resources of these compounds in the soil around the cities and sediments of the Iranian coast. Cancer risk assessment (CRA) is one of the most effective methods for quantifying the potentially harmful effects of PAHs on human health. In this study, the published papers that monitored PAHs in Iran's soil and sediments were reviewed. The extraction of different data and their equivalent factors were performed according to BaP equivalent, which is the main factor for calculating CRA of PAHs. The highest concentrations of PAHs were found in the sediments of Assaluyeh industrial zones (14,844 μg/kg), Khormousi region (1874.7 μg/kg), and Shadegan wetland (1749.5 μg/kg), respectively. Dermal exposure to sediments was 96% in adults, and 4% in children, and ingestion exposure to sediment was 99% in adults and 99.2% in children. Children dermal exposure to soil was 53%, and the accidental exposure to soil was 47%. In adults, dermal exposure to soil was 96% and the accidental exposure was 4%. The results of the present study indicated a significant, the carcinogenic risk of Polycyclic Aromatic Hydrocarbons in sediments of southern regions and soils of central regions of Iran is significant.
Collapse
Affiliation(s)
- Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Hesami Arani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li C, Xu S, Guan DX, Chen XX, He H. Assessment of DDT and its Metabolites Bioaccessibility in Historically Contaminated Soils Using Unfed and Fed in Vitro Methods. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:672-677. [PMID: 35039886 DOI: 10.1007/s00128-021-03420-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Bioaccessibility of hydrophobic organic contaminants (HOCs) from unintentional ingestion of soil is increasingly assessed with in vitro gastrointestinal models incorporating a sorption sink. In this study, the bioaccessibility of DDTs in contaminated soils (n = 11) was determined using "unfed" unified bioaccessibility method (UBM) and fed organic estimation human simulation test (FOREhST) with/without Tenax as an absorbent. By adding Tenax, the bioaccessibility of DDTs determined using UBM was significantly increased from 4.9-30.6% to 31.6-86.0%. In contrast, the bioaccessibility of DDTs determined using FOREhST without/with Tenax were similar with values of 20.0-60.9% vs 31.5-47.6%, implying that the influence of food components on the absorption efficiency of the sink should not be overlooked. Much high fraction of DDTs (bioaccessibility: 11.7-24.8%) remained in FOREhST supernatant after Tenax collection, suggesting that prediction of bioavailability through bioaccessibility obtained by absorbent needs to be treated with caution when bioaccessibility is determined using a "fed state" in vitro method.
Collapse
Affiliation(s)
- Chao Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Shen Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xian-Xian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Chen X, Li H, Kong X, Cheng X, Li C, He H, Selvaraj KK, Yang S, Li S, Zhang L. Evaluating the adsorption performance of Tenax TA® in different containers: An isolation tool to study the bioaccessibility of nitro-PAHs in spiked soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150429. [PMID: 34844299 DOI: 10.1016/j.scitotenv.2021.150429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The improved in vitro gastrointestinal simulation methods, with the addition of the adsorption sink, are considered as a promising tool for predicting the bioaccessibility of contaminants. However, the problem associated with the recovery of the adsorption sink from the complex matrix needs more understand. Although previous studies tried to solve this shortcoming by using the containers (a vessel to hold the adsorption sink), there is no systematic comparison study on the impact of containers on bioaccessibility till now, especially for nitro-polycyclic aromatic hydrocarbons (nitro-PAHs). In order to understand the problem, commonly used containers in previous studies (dialysis bags and stainless-steel screen) were selected and deployed in the Fed Organic Estimation Human Simulation Test (FOREhST) method to compare the effects of these containers on the bioaccessibility of nitro-PAHs desorbed from the five different types of soils into the gastrointestinal fluid (GIF). Results showed that in order to maintain a constant sorptive gradient for the high molecular weight (MW) nitro-PAHs, 0.25 g of Tenax TA® were required in FOREhST. Compared with Tenax TA® encapsulated in dialysis bag (Tenax-EDBG), the use of Tenax TA® encapsulated in dissolution basket (Tenax-EDBT) significantly increased the bioaccessibility of nitro-PAHs in the soil from 5.6-31.4% to 17.2-70.6%, due to the better diffusion performance. The bioaccessibility of nitro-PAHs by FOREhST extraction with Tenax-EDBT showed a significant negative correlation with soil total organic carbon (TOC), whereas a weak correlation with pH. This study provides the researchers with a more standardized in vitro method to quantify the bioaccessibility of PAHs and their derivatives in soil.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China.
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
5
|
Cavalcanti JVFL, Fraga TJM, de Lima VF, Dos Santos e Silva DF, Loureiro Leite MDA, do Nascimento CWA, Schuler ARP, da Motta Sobrinho MA. Advanced Oxidation of Polycyclic Aromatic Hydrocarbons in Soils Contaminated with Diesel Oil at Pilot‐Scale. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tiago José Marques Fraga
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Valmir Félix de Lima
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Daniella Fartes Dos Santos e Silva
- Federal University of Rio de Janeiro Group of Studies in Bioeconomy School of Chemistry 149 Athos da Silveira Ramos Avenue, Cidade Universitária, Ilha do Fundão 21941-909 Rio de Janeiro Brazil
| | - Mirella De Andrade Loureiro Leite
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | | | - Alexandre Ricardo Pereira Schuler
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Maurício Alves da Motta Sobrinho
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| |
Collapse
|
6
|
Lu M, Li G, Yang Y, Yu Y. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142001. [PMID: 32892057 DOI: 10.1016/j.scitotenv.2020.142001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Generally, human oral exposure assessments of contaminants have not considered the absorption factor in the human gastrointestinal tract, thus overestimating human exposure and associated health risk. Currently, more researchers are adding the absorption factor into human exposure assessment, and bioaccessibility measured by in-vitro methods is generally replacing bioavailability for estimation because of the cheap and rapid determination. However, no single unified in-vitro method is used for bioaccessibility measurement of organic pollutants, although several methods have been developed for these pollutants and have shown good in vitro-in vivo correlation between bioaccessibility and bioavailability. The present review has focused on the development of in-vitro methods, validation of these methods through in-vivo assays, determination of factors influencing bioaccessibility, application of bioaccessibility in human exposure assessment, and the challenges faced. Overall, most in-vitro methods were validated using bioavailability, and better in vitro-in vivo correlations were obtained when absorption sinks were added to the digestion solution to mimic dynamic absorption of organic chemicals by small intestine. Incorporating bioaccessibility into the estimation of human exposure by oral ingestion significantly decreases the estimated exposure dose. However, more investigations on bioaccessibility of hydrophobic organic compounds are urgently needed because many challenges for in-vitro methods remain to be overcome.
Collapse
Affiliation(s)
- Meijuan Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Cavalcanti JVFL, Fraga TJM, Loureiro Leite MDA, Dos Santos E Silva DF, de Lima VF, Schuler ARP, do Nascimento CWA, da Motta Sobrinho MA. In-depth investigation of Sodium percarbonate as oxidant of PAHs from soil contaminated with diesel oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115832. [PMID: 33120152 DOI: 10.1016/j.envpol.2020.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sodium percarbonate (SPC, 2Na2CO3∙3H2O2), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil. Then, the samples were air-dried, mixed and characterized. Subsequently, raw soil was contaminated with diesel and treated by photo-Fenton reaction (H2O2/Fe2+/UV). SPC played a significant role in the generation of hydroxyl radicals under the catalytic effect of ferrous ions (Fe2+), hydrogen peroxide (H2O2) and radiation. These radicals provoked the photodegradation of polycyclic aromatic hydrocarbons (PAHs), in the soil remediation. A factorial design 33 was carried out to assess the variables which most influenced the decrease in total organic carbon (TOC). The study was performed with the following variables: initial concentration of [H2O2] and [Fe2+], between 190.0 and 950.0 mmol L-1 and 0.0-14.4 mmol L-1, respectively. UV radiation was supplied from sunlight, blacklight lamps, and system without radiation. All experiments were performed with 5.0 g of contaminated soil in 50.0 mL of solution. The initial concentration of Fe2+ showed the statistically most significant effect. The oxidation efficiency evaluated in the best condition showed a decrease from 34,765 mg kg-1 to 15,801 mg kg-1 in TOC and from 85.750 mg kg-1 to 20.770 mg kg-1 in PAHs content. Moreover, the sums of low and high molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs and HMW-PAHs) were 19.537 mg kg-1 and 1.233 mg kg-1, respectively. Both values are within the limits recommended by the United Sates Environmental Protection Agency (USEPA) and evidenced the satisfactory removal of PAHs from contaminated soil, being an alternative to classic oxidation protocols.
Collapse
Affiliation(s)
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| | - Mirella de Andrade Loureiro Leite
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Daniella Fartes Dos Santos E Silva
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Valmir Félix de Lima
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Alexandre Ricardo Pereira Schuler
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| |
Collapse
|
8
|
Trujillo-Rodríguez MJ, Rosende M, Miró M. Combining in vitro oral bioaccessibility methods with biological assays for human exposome studies of contaminants of emerging concern in solid samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Umeh AC, Duan L, Naidu R, Esposito M, Semple KT. In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues. ENVIRONMENT INTERNATIONAL 2019; 133:105186. [PMID: 31639608 DOI: 10.1016/j.envint.2019.105186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The gastrointestinal mobilization and oral bioaccessibility of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) from soils remain unexplored, including associated incremental lifetime cancer risks. This study investigated the gastrointestinal mobilization of PAHs and their NERs from contrasting soils, using a physiologically based extraction test that incorporates a silicone-rod (Si-Org-PBET) as PAH sink. Associated cancer risks following soil ingestion were also evaluated. Four solvent-spiked and aged soils, and four long-term contaminated manufactured gas plant (MGP) soils, were utilized. Total-extractable PAH concentrations were measured after exhaustive solvent extractions of soils. We evaluated the PAH sorption efficiency of the silicone rods and associated sorption kinetics, using PAH-spiked silica sand as the contaminated matrix. We then assessed gastrointestinal mobilization of benzo[a]pyrene and benzo[a]pyrene NERs from the solvent-spiked soils, and mobilization of six PAHs and their NERs from the MGP soils. PAH oral bioaccessibility was determined. The incremental lifetime cancer risks (ILCRs), using Si-Org-PBET- and total-extractable PAH concentrations from the MGP soils, were calculated. Sorption kinetics modelling showed that 95% of mobilized PAHs sorbed to the silicone rods within 2-19 h, depending on PAH physico-chemical properties. Total-extractable and Si-Org-PBET extractable PAH concentrations exceeded health investigation levels (3 mg/kg based on benzo[a]pyrene toxic equivalent quotients) in soils. PAH oral bioaccessibility approached 100% for solvent-spiked soils, but only 24-36% for the MGP soils. Associated ILCRs exceeded target levels (10-5) for one MGP soil, particularly for 2-3 year olds, despite oral bioaccessibility considerations. In contrast, mobilized PAH NERs did not exceed health investigation and ILCR levels, as the NERs were highly sequestered, especially in the MGP soils. PAH nonextractable residues in long-term contaminated soils are unlikely to be mobilized in concentrations that pose cancer risks to humans following soil ingestion, and do not need to be considered in risk assessments.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Monica Esposito
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
10
|
Souza LA, Rosende M, Korn MGA, Miró M. Flow-through dynamic microextraction system for automatic in vitro assessment of chyme bioaccessibility in food commodities. Anal Chim Acta 2018; 1026:51-61. [DOI: 10.1016/j.aca.2018.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022]
|