1
|
Gao X, Zheng Q, Chen S, He H, Wei Y, Zhang T, Wang Y, Wang B, Huang D, Zhang S, Zhang S, Zhai J. BDE-209 toxicity: From spermiogenesis to sexual maturity in F1 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118231. [PMID: 40311472 DOI: 10.1016/j.ecoenv.2025.118231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Most studies of enviromental toxic chemicals focused on the meiosis stage during spermatogenesis, however, the research on the spermiogenesis damage phenotype of BDE-209 is limited. This study aimed to evaluate the processes by which BDE-209 regulates the formation of acrosomes and mitochondrial sheath (MS), key structures during spermiogenesis and fertilization. ICR mice were divided into control, low, medium, and high-dose BDE-209 groups and treated for 42 days. A comprehensive method combining ultrastructural analysis, transcriptomics, molecular biology, and fertility experiments was adopted. In mice exposed to BDE-209, testicular dysplasia, altered sex hormone concentrations, decreased semen quality, and head and tail deformities occurred. Chromatin condensation failure was present in BDE-209-exposed spermatozoa with decreased mRNA and protein levels of PRM1 and TNP1. BDE-209 disrupts the acrosome biogenesis process by disrupting the Golgi structure and the apical ectoplasmic specialization (ES) structure. BDE-209 exposure caused multiple damage to the MS and down-regulated the mRNA levels of Akap3, Akap4, Cfap44, Ccdc40, Dhah1, etc. These injuries resulted in subfertility in BDE-209 male mice, and the male offspring also exhibited gonadal dysplasia, sex hormonal changes, and decreased semen quality. Conclusively, BDE-209 exposure induced spermiogenesis defects and subfertility. F0 and F1 males showed a similar injury phenotype. This study advanced the understanding of the damage phenotype of spermiogenesis and complemented the reproductive toxicity of F1 male mice. These findings might be important for the study of related molecular mechanisms and the mitigation of BDE-209 exposure on offspring development.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Qi Zheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Siju Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dake Huang
- Department of Microbiology and Parasitology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
2
|
Guo J, Yang M, Huang R, Yu J, Peng K, Cai C, Huang X, Wu Q, Liu J. The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178336. [PMID: 39754942 DOI: 10.1016/j.scitotenv.2024.178336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs). Mangrove ecosystems have a complex influence on the behaviors of MPs and additives. Under the action of natural and unnatural factors, these pollutants exhibit complex behaviors including migration, interception, deposition and transformation, that are closely linked to those of particulate carbon, particularly carbon sequestration processes. MPs and additives hinder the CS function of mangroves by harming the growth of flora and fauna, influencing microbial nitrogen and sulfur cycles, and enhancing the degradation of organic matter in the sediment. The increasing accumulation and widespread occurrence of MPs and additives will greatly influence the carbon cycle. Future work is encouraged on systematic investigation of new alternatives to plastics and additives, and research methods to uncover the impact mechanisms of MPs and additives on BCEs. The developments of management measures and engineering technologies are also required to enhance pollutant control and mangrove CS.
Collapse
Affiliation(s)
- Junru Guo
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Mingqing Yang
- Fuzhou Urban and Rural Construction Group Company Limited, Fuzhou 350007, China
| | - Ruohan Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Junyi Yu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Fuzhou City Construction Investment Group Company Limited, Fuzhou 350014, China.
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Milić J, Lugonja N, Knudsen TŠ, Marinković V, Avdalović J, Ilić M, Nakano T. Polychlorinated biphenyls and polybrominated diphenyl ethers in infant food: Occurrence and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178011. [PMID: 39675289 DOI: 10.1016/j.scitotenv.2024.178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The objective of this study was to analyze the concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in infant food (infant formulas and human milk) collected in Serbia and to assess their exposure and associated health risks. A total of 101 PCB congeners and 26 PBDE congeners were analyzed. In infant formulas (IF), the total PCB levels averaged 63.17 ± 46.67 ng/g fat, with PentaCBs being the most abundant. The highest concentration was observed for PCB #101, at 3.69 ± 2.72 ng/g fat. Total PBDE levels in IF averaged 4.71 ± 2.96 ng/g fat, with DecaBDEs dominating. The highest concentration was determined for BDE #209, at 3.90 ± 2.38 ng/g fat. In human milk (HM), the total PCB levels averaged 82.27 ± 46.70 ng/g fat, with HexaCBs as the predominant group. PCB #153 had the highest concentration, at 12.98 ± 7.91 ng/g fat. Total PBDE levels averaged 4.17 ± 4.55 ng/g fat, with DecaBDEs being most abundant. BDE #209 had the highest concentration, at 3.17 ± 4.01 ng/g fat. The estimated daily intake of dl-PCBs for breastfed and formula-fed infants ranged from 11.79-13.96 to 0.37-0.44 pg WHO2005-PCB-TEQ/kg-bw/day, respectively. Hazard quotients for PBDEs ranged from 1.37-6.50 for breastfed infants to 0.65-5.90 for formula-fed infants, highlighting potential health concerns for breastfed infants. The pollutant levels in HM were comparable to those reported in other Central and Eastern European countries.
Collapse
Affiliation(s)
- Jelena Milić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Nikoleta Lugonja
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | | | - Jelena Avdalović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Mila Ilić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Takeshi Nakano
- Osaka University, Research Center for Environmental Preservation, Japan
| |
Collapse
|
4
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Long-term contamination of decabromodiphenyl ether reduces sediment multifunctionality: Insights from nutrient cycling, microbial ecological clusters, and microbial co-occurrence patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135792. [PMID: 39265393 DOI: 10.1016/j.jhazmat.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Despite the widespread detection of polybrominated diphenyl ethers in aquatic ecosystems, their long-term effects on sediment multifunctionality remain unclear. Herein, a 360-day microcosm experiment was conducted to investigate how decabromodiphenyl ether (BDE-209) contamination at different levels (0.2, 2, and 20 mg/kg dry weight) affects sediment multifunctionality, focusing on carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling. Results showed that BDE-209 significantly increased sediment total organic carbon, nitrate, ammonium, available phosphorus, and sulfide concentrations, but decreased sulfate. Additionally, BDE-209 significantly altered key enzyme activities related to nutrient cycling. Bacterial community dissimilarity was positively correlated with nutrient variability. Long-term BDE-209 exposure inhibited C degradation, P transport and regulation, and most N metabolic pathways, but enhanced C fixation, methanogenesis, organic P mineralization, inorganic P solubilization, and dissimilatory sulfate reduction pathways. These changes were mainly regulated by microbial ecological clusters and keystone taxa. Overall, sediment multifunctionality declined under BDE-209 stress, primarily related to microbial co-occurrence network complexity and ecological cluster diversity. Interestingly, sediment C and N cycling had greater impacts on multifunctionality than P and S cycling. This study provides crucial insights into the key factors altering multifunctionality in contaminated sediments, which will aid pollution control and mitigation in aquatic ecosystems.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
5
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Fang C, He Y, Yang Y, Fu B, Pan S, Jiao F, Wang J, Yang H. Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131813. [PMID: 37339576 DOI: 10.1016/j.jhazmat.2023.131813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Microplastics (MPs) are 1-5 mm plastic particles that are serious global contaminants distributed throughout marine ecosystems. However, their impact on intertidal sediment microbial communities is poorly understood. In this study, we conducted a 30-day laboratory tidal microcosm experiment to investigate the effects of MPs on microbial communities. Specifically, we used the biodegradable polymers polylactic acid (PLA) and polybutylene succinate (PBS), as well as the conventional polymers polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE). Treatments with different concentrations (1-5%, w/w) of PLA- and PE-MPs were also included. We analyzed taxonomic variations in archaeal and bacterial communities using 16S rRNA high-throughput sequencing. PLA-MPs at concentrations of 1% (w/w) rapidly altered microbiome composition. Total organic carbon and nitrite nitrogen were the key physicochemical factors and urease was the major enzyme shaping MP-exposed sediment microbial communities. Stochastic processes predominated in microbial assembly and the addition of biodegradable MPs enhanced the contribution of ecological selections. The major keystone taxa of archaea and bacteria were Nitrososphaeria and Alphaproteobacteria, respectively. MPs exposure had less effect on archaeal functions while nitrogen cycling decreased in PLA-MPs treatments. These findings expanded the current understanding of the mechanism and pattern that MPs affect sediment microbial communities.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
7
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Gao H, Wang C, Chen J, Wang P, Zhang J, Zhang B, Wang R, Wu C. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157073. [PMID: 35780888 DOI: 10.1016/j.scitotenv.2022.157073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Although sulfate (SO42-) reduction by sulfate-reducing bacteria (SRB) is an important sulfur cycling processes, little is known about how the persistent organic pollutants affect the SO42- reduction process in the eutrophic lake sediments. Here, we carried out a 120-day microcosm experiment to explore the effects of decabromodiphenyl ether (BDE-209) on SO42- reduction mediated by SRB in sediment collected from Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination significantly enhanced the activity of dissimilatory sulfite reductase (DSR) (r = 0.83), which led to an increased concentration of sulfide produced by SO42- reduction. This stimulatory effect of BDE-209 on DSR activity was closely related to variations in the dsrA- and dsrB-type SRB communities. The abundances and diversities of the dsrA- and dsrB-containing SRB increased and their community composition varied in response to BDE-209 contamination. The gene copies (r = 0.72), Chao 1 (r = 0.50), Shannon (r = 0.55), and Simpson (r = 0.70) indices of dsrB-containing SRB was positively correlated with BDE-209 contamination. Co-occurrence network analysis revealed that network complexity, connectivity, and the interspecific cooperative relationship in SRB were strengthened by BDE-209 contamination. The keystone species identified in the SRB community mainly belonged to the genera Candidatus Sulfopaludibacter for the dsrA-containing SRB and Desulfatiglans for the dsrB-containing SRB, and their relative abundances were positively correlated with DSR activity in the sediment. The relative abundance of the keystone species and SRB diversity were important microbial factors directly contributing to the variations in DSR activity based on structural equation modeling analysis. Notably, the results of abundance, community structure, and interspecific relationships showed that the dsrB-containing SRB may be more sensitive to the BDE-209 contamination than the dsrA-containing SRB. These results will help us understand the effects of BDE-209 on microbial sulfate reduction in eutrophic lakes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Cheng Wu
- Kunming Engineering Corporation Limited, Power China, 115 People's East Road, Kunming 650051, PR China
| |
Collapse
|
9
|
Shi B, Cheng C, Zhang Y, Du Z, Zhu L, Wang J, Wang J, Li B. Effects of 3,6-dichlorocarbazole on microbial ecology and its degradation in soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127315. [PMID: 34601412 DOI: 10.1016/j.jhazmat.2021.127315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The emerging contaminants polyhalogenated carbazoles (PHCZs) have been verified to be present in soils and sediments globally, and they show dioxin-like toxicity. However, there is a lack of soil ecological risk assessments on PHCZs despite their high detection rate and concentration in soils. The present study investigated the degradation and soil microbial influence of 3,6-dichlorocarbazole (3,6-DCCZ, a frequently detected PHCZ) in soil. The results showed that the half-lives of 3,6-DCCZ at concentrations of 0.100 mg/kg and 1.00 mg/kg were 7.75 d and 16.73 d, respectively. We found that 3,6-DCCZ was transformed into 3-chlorocarbazole (3-CCZ) by dehalogenation in soil. Additionally, intermediate products with higher molecular weights were detected, presumably because the -H on the carbazole ring was replaced by -CH3, -CH2-O-CH3, or -CH2-O-CH2CH3. 3,6-DCCZ exposure slightly increased the soil bacterial abundance and diversity and clearly changed the soil bacterial community structure. Through a comprehensive analysis of FAPROTAX, functional gene qPCR and soil enzyme tests, we concluded that 3,6-DCCZ exposure inhibited nitrification and nitrogen fixation but promoted denitrification, carbon dioxide fixation and hydrocarbon degradation processes in soil. This study provides valuable data for clarifying the PHCZ ecological risk in soil.
Collapse
Affiliation(s)
- Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Chao Cheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Yuanqing Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
10
|
Wang C, Gao H, Chen J, Wang P, Zhang J, Hu Y, Pan Y. Long-term effects of decabromodiphenyl ether on denitrification in eutrophic lake sediments: Different sensitivity of six-type denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145147. [PMID: 33609823 DOI: 10.1016/j.scitotenv.2021.145147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 05/28/2023]
Abstract
The widespread use of polybrominated diphenyl ethers inevitably results in their increased release into natural waters and subsequent deposition in sediments. However, their long-term effects on the bacteria participating in each step of denitrification in eutrophic lake sediments are still unknown. Here, we conducted a one-year microcosm experiment to determine the long-term effects of decabromodiphenyl ether (BDE-209), at low (2 mg kg-1 dry weight) and high (20 mg kg-1 dry weight) contamination levels, on six-type denitrifying bacteria and their activities in sediments collected from Taihu Lake, a typical eutrophic lake in China. At the end of the experiment, sediment denitrifying reductase activities were inhibited by BDE-209 at both levels, with the greatest inhibition seen for nitric oxide reductase activity. The higher nitrate concentration in the contaminated sediments was attributed to the inhibition of nitrate reductase activities. The abundances of six-type denitrifying genes (narG, napA, nirK, nirS, norB, and nosZ) significantly decreased under high BDE-209 treatment, and narG and napA genes were more sensitive to the toxicity of BDE-209. The results from pyrosequencing showed that BDE-209, at either treatment concentration, decreased the six-type denitrifying bacterial diversities and altered their community composition. This shift of six-type denitrifying bacterial communities might also be driven by the debrominated products concentrations of BDE-209 and variations in sediment inorganic nitrogen concentrations. In particular, some genera from phylum Proteobacteria such as Pseudomonas, Cupriavidus, and Azoarcus were decreased significantly because of BDE-209 and its debrominated products.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
11
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
12
|
Ke Y, Chen J, Hu X, Tong T, Huang J, Xie S. Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113615. [PMID: 31759679 DOI: 10.1016/j.envpol.2019.113615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Hu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Chen J, Gao H, Wang P, Wang C, Sun S, Wang X. Effects of decabromodiphenyl ether on activity, abundance, and community composition of phosphorus mineralizing bacteria in eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133785. [PMID: 31421332 DOI: 10.1016/j.scitotenv.2019.133785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are typical persistent organic pollutants (POPs) in the environment. However, little is known about their effects on phosphorus mineralizing bacteria (PMB) in eutrophic lake sediments, despite the critical role of PMB in phosphorus (P) biogeochemical cycling. In this study, we carried out a 60-day microcosm experiment to understand the effects of 2 and 20 mg kg-1 dry weight decabromodiphenyl ether (BDE-209) on the activity, abundance, diversity, and community composition of PMB in the sediment of Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination, regardless of the contamination levels, significantly increased the orthophosphate concentration in overlying water and available phosphorus concentration in sediments on day 60. Such increases may be explained by the stimulatory effects of BDE-209 on alkaline phosphatase (ALP) activity and PMB abundance. Moreover, based on Miseq sequencing of the phoD gene encoding ALP, Actinobacteria was the dominant PMB phylum in all treatments, and BDE-209 significantly increased the diversity of PMB and altered their community composition. In particular, the relative abundances of some PMB genera such as Bradyrhizobium were increased significantly after 60 days of the High treatment. A co-occurrence network analysis further revealed that the high level of BDE-209 contamination strengthened the connectivity and interspecific co-operative relationships in the PMB community. These results will help us to understand the effects of POPs on P biogeochemical cycling in eutrophic lakes and the associated microbial mechanisms.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shenghao Sun
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
14
|
Kong X, Jin D, Tai X, Yu H, Duan G, Yan X, Pan J, Song J, Deng Y. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:691-700. [PMID: 30849609 DOI: 10.1016/j.scitotenv.2019.02.385] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation of organic pollutants has been identified as an economically efficient and environmentally friendly method. Here, a pot experiment was conducted to evaluate the bioremediation efficiency of dibutyl phthalate (DBP) by Gordonia phthalatica sp. nov. QH-11 in agricultural soils, along with the effect of this exogenous organism on the native microbial community and ecosystem functions during the bioremediation process. The results showed that inoculation with strain QH-11 accelerated DBP degradation in the soil and decreased DBP accumulation in plants, thereby reducing the health risks associated with vegetables grown in those soils. High-throughput sequencing demonstrated that both DBP contamination and the bioremediation process significantly altered prokaryotic community composition, structure, and network interactions; however, these effects were greatly reduced after 30 d. Dibutyl phthalate affected the prokaryotic community by influencing soil properties rather than directly impacting on microorganisms. In addition, ecosystem functions, like the nitrogen cycle, were significantly altered. Contamination with DBP promoted nitrogen fixation and the denitrification processes while inhibiting nitrification. Bioremediation may mitigate some of the changes to nitrogen cycling, helping to maintain the balance of prokaryotic community function. According to this study, bioremediation through highly efficient degradation bacteria may be a safe and promising method for reducing PAEs contamination in soil-vegetable systems.
Collapse
Affiliation(s)
- Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Tai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Hao Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Junhua Song
- Institute for the Control of Agrochemicals, China Ministry of Agriculture and Rural Affairs, Beijing 100026, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|