1
|
Bayaumy FEA, Rizk SA, Darwish AS. Superb bio-effectiveness of Cobalt (II) phthalocyanine and Ag NPs adorned Sm-doped ZnO nanorods/cuttlefish bone to annihilate Trichinella spiralis muscle larvae and adult worms: In-vitro evaluation. Parasitol Int 2024; 101:102899. [PMID: 38663799 DOI: 10.1016/j.parint.2024.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Herein, innovative biocides are designed for the treatment of Trichinella spiralis muscle larvae (ML) and adult worms. Samarium-doped ZnO nanorods (Sm-doped ZnO) are stabilized onto the laminar structure of cuttlefish bone (CB) matrix and adorned by either Ag NPs or cobalt phthalocyanine (CoPc) species. Physicochemical characteristics of such nanocomposites are scrutinised. Adorning of Sm-doped ZnO/CB with Ag NPs shortens rod-like shaped Sm-doped ZnO nanoparticles and accrues them, developing large-sized detached patches over CB moiety. Meanwhile, adorning of Sm-doped ZnO/CB by CoPc species degenerates CB lamellae forming semi-rounded platelets and encourages invading of Sm-doped ZnO nanorods deeply inside gallery spacings of CB. Both nanocomposites possess advanced parasiticidal activity, displaying quite intoxication for ML and adult worms (≥88% mortality) within an incubation period of <48 h at concentrations around 200 μg/ml. CoPc@Sm-doped ZnO/CB nanocomposite exhibits faster killing efficiency of adult worms than that of Ag@Sm-doped ZnO/CB at a concentration of ∼75 μg/ml showing entire destruction of parasite after 24 h incubation with the former nanocomposite and just 60% worm mortality after 36 h exposure to the later one. Morphological studies of the treated ML and adult worms show that CoPc@Sm-doped ZnO/CB exhibits a destructive impact on the parasite body, creating featureless and sloughed fragments enriched with intensive vacuoles. Hybridization of cuttlefish bone lamellae by CoPc species is considered a springboard for fabrication of futuristic aggressive drugs against various food- and water-borne parasites.
Collapse
Affiliation(s)
- Fatma E A Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Sameh A Rizk
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Atef S Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
2
|
Shi HX, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Potential role of AgNPs within wastewater in deteriorating sludge floc structure and settleability during activated sludge process: Filamentous bacteria and quorum sensing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119536. [PMID: 37972492 DOI: 10.1016/j.jenvman.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Excellent sludge floc structure and settleability are essential to maintain the process stability and excellent effluent quality during the activated sludge process. The underlying effect of silver nanoparticles (AgNPs) within wastewater on sludge floc structure and settleability is still unclear. The potential role of AgNPs in promoting filamentous bacterial proliferation and deteriorating sludge floc structure and settleability based on quorum sensing (QS) were investigated in this study. The results indicated that N-acyl homoserine lactose (AHL) concentration sharply increased from 23.56 to 108.41 ng/g VSS in the sequencing batch reactor with 1 mg/L AgNPs. AgNPs strengthened communication between filamentous bacteria, which triggered the filamentous bacterial QS system involving the synthetic gene hdtS and sensing genes traR and lasR. Filamentous bacterial proliferation was promoted by the triggered QS via positively regulating its cell cycle progression including chromosomal replication and divisome formation. In addition, extracellular protein production was obviously increased from 43.56 to 97.91 mg/g VSS through QS by regulating arginine and tyrosine secretion during filamentous bacterial proliferation under 1 mg/L AgNPs condition, which led to an increase in the negative charge and hydrophily at the cell surface. AgNPs resulted in an obvious increase in the surface energy barrier (WT) between bacteria. The change in the physicochemical properties of extracellular polymeric substance (EPS) induced by QS among filamentous bacteria obviously inhibited bacterial aggregation between filamentous bacteria and floc-forming bacteria under AgNPs condition, thus resulting in serious deterioration of the sludge floc structure and settleability. This study provided new insights into the microcosmic mechanism for the effect of AgNPs on sludge floc structure and settleability.
Collapse
Affiliation(s)
- Hong-Xin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL, 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
3
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Sun C, Hu K, Mu D, Wang Z, Yu X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022; 10:microorganisms10102080. [PMID: 36296356 PMCID: PMC9609405 DOI: 10.3390/microorganisms10102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people's productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants.
Collapse
Affiliation(s)
- Chunshui Sun
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Ke Hu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Dashuai Mu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Zhijun Wang
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiuxia Yu
- College of Marine Science, Shandong University, Weihai 264209, China
- Correspondence:
| |
Collapse
|
5
|
de Celis M, Belda I, Marquina D, Santos A. Phenotypic and transcriptional study of the antimicrobial activity of silver and zinc oxide nanoparticles on a wastewater biofilm-forming Pseudomonas aeruginosa strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153915. [PMID: 35219669 DOI: 10.1016/j.scitotenv.2022.153915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The extensive use of nanoparticles (NPs) in industrial processes makes their potential release into the environment an issue of concern. Ag and ZnO NPs are among the most frequently used NPs, potentially reaching concentrations of 1-4 and 64 mg/kg, respectively, in Wastewater Treatment Plants (WWTPs), with unknown effects over microbial populations. Thus, we examined, in depth, the effect of such NPs on a P. aeruginosa strain isolated from a WWTP. We evaluated the growth, ROS production and biofilm formation, in addition to the transcriptomic response in presence of Ag and ZnO NPs at concentrations potentially found in sewage sludge. The transcriptomic and phenotypic patterns of P. aeruginosa in presence of Ag NPs were, in general, similar to the control treatment, with some specific transcriptional impacts affecting processes involved in biofilm formation and iron homeostasis. The biofilms formed under Ag NPs treatment were, on average, thinner and more homogeneous. ZnO NPs also alters the biofilm formation and iron homeostasis in P. aeruginosa, however, the higher and more toxic concentrations utilized caused an increase in cell death and eDNA release. Thus, the biofilm development was characterized by EPS production, via eDNA release. The number of differentially expressed genes in presence of ZnO NPs was higher compared to Ag NPs treatment. Even though the responses of P. aeruginosa to the presence of the studied metallic NPs was at some extent similar, the higher and more toxic concentrations of ZnO NPs produced greater changes concerning cell viability and ROS production, causing disruption in biofilm development.
Collapse
Affiliation(s)
- M de Celis
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - I Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - D Marquina
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - A Santos
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Cao C, Huang J, Yan CN. Unveiling changes of microbial community involved in N and P removal in constructed wetlands with exposing to silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128642. [PMID: 35286932 DOI: 10.1016/j.jhazmat.2022.128642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are environmentally friendly engineered systems to purify wastewater, with low-cost and easy maintenance. However, it is not clear on responses of functional microbes for nitrogen (N) and phosphorus (P) biotransformation in CWs to silver nanoparticles (Ag NPs). The high throughput sequencings were employed to reveal microbial communities in vertical flow subsurface CWs with stable operation for 120 days. The results indicated that NH4+-N, TN and TP removal of soil layer decreased by 43.56%, 15.7% and 22.7% under stress of Ag NPs. Microbial richness index and compositions were affected, and control wetland enriched Sulfurospirillum, Desulfarculaceae and Flavobacterium whereas CWs exposed to Ag NPs enriched Desulfosporosinus and Desulfurispora from LEfSe analysis. Moreover, after dosing Ag NPs, relative abundances of functional genes amoA and hao for nitrification, nirK and norB for denitrification and ppx and phoA/phoD for phosphorus conversions in upper soil were significantly downregulated. Inhibition on functional bacteria and genes of Ag NPs explained poor removal efficiencies of nitrogen and phosphorus pollutants in CWs. Our findings give an insight into ecological toxicity of Ag NPs on CWs with N and P bioconversions and provide the understanding of response of nitrifiers, denitrifies and PAOs.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Bao S, Xiang D, Xue L, Xian B, Tang W, Fang T. Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118661. [PMID: 34896219 DOI: 10.1016/j.envpol.2021.118661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and its sulfidized form (ZnS NPs) are increasingly entering into freshwater systems through multiple pathways. However, their impacts on the composition and function of sedimentary microbial communities are still largely unknown. Here, two kinds of lake-derived microcosms were constructed and incubated with ZnO NPs, or ZnS NPs to investigate the short-term (7 days) and long-term (50 days) impacts on sedimentary microbial communities and nitrogen cycling. After 7 days, both ZnO NPs and ZnS NPs dosed microbial communities experienced distinct alterations as compared to the undosed controls. By day 50, the structural shifts of microbial communities caused by ZnO NPs were significantly enlarged, while the microbial shifts induced by ZnS NPs were largely resolved. Additionally, ZnO NPs and ZnS NPs could significantly alter nitrogen species and nitrogen cycling genes in sediments, revealing their non-negligible impacts on nitrogen cycling processes. Furthermore, our data clearly indicated that the impacts of ZnO NPs and ZnS NPs on nitrogen cycling differed distinctly in different lake-derived microcosms, and the impacts were significantly correlated with microbial community structure. Overall, this research suggests that the entrance of pristine or sulfidized ZnO NPs into freshwater systems may significantly impact the sedimentary microbial community structure and nitrogen cycling.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Dong F, Quevedo AC, Wang X, Valsami-Jones E, Kreft JU. Experimental evolution of Pseudomonas putida under silver ion versus nanoparticle stress. Environ Microbiol 2021; 24:905-918. [PMID: 34904333 DOI: 10.1111/1462-2920.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/13/2021] [Indexed: 11/30/2022]
Abstract
Whether the antibacterial properties of silver nanoparticles (AgNPs) are simply due to the release of silver ions (Ag+ ) or, additionally, nanoparticle-specific effects, is not clear. We used experimental evolution of the model environmental bacterium Pseudomonas putida to ask whether bacteria respond differently to Ag+ or AgNP treatment. We pre-evolved five cultures of strain KT2440 for 70 days without Ag to reduce confounding adaptations before dividing the fittest pre-evolved culture into five cultures each, evolving in the presence of low concentrations of Ag+ , well-defined AgNPs or Ag-free controls for a further 75 days. The mutations in the Ag+ or AgNP evolved populations displayed different patterns that were statistically significant. The non-synonymous mutations in AgNP-treated populations were mostly associated with cell surface proteins, including cytoskeletal membrane protein (FtsZ), membrane sensor and regulator (EnvZ and GacS) and periplasmic protein (PP_2758). In contrast, Ag+ treatment was selected for mutations linked to cytoplasmic proteins, including metal ion transporter (TauB) and those with metal-binding domains (ThiL and PP_2397). These results suggest the existence of AgNP-specific effects, either caused by sustained delivery of Ag+ from AgNP dissolution, more proximate delivery from cell-surface bound AgNPs, or by direct AgNP action on the cell's outer membrane.
Collapse
Affiliation(s)
- Feng Dong
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xiang Wang
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection (IMI) & Centre for Computational Biology (CCB), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Montes de Oca-Vásquez G, Solano-Campos F, Vega-Baudrit JR, López-Mondéjar R, Vera A, Moreno JL, Bastida F. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140919. [PMID: 32711321 DOI: 10.1016/j.scitotenv.2020.140919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Increased utilization of silver nanoparticles (AgNPs) can result in an accumulation of these particles in the environment. The potential detrimental effects of AgNPs in soil may be associated with the low fertility of soils in semiarid regions that are usually subjected to restoration through the application of organic amendments. Microbial communities are responsible for fundamental processes related to soil fertility, yet the potential impacts of low and realistic AgNPs concentrations on soil microorganisms are still unknown. We studied the effects of realistic citrate-stabilized AgNPs concentrations (0.015 and 1.5 μg kg-1) at two exposure times (7 and 30 days) on a sandy clay loam Mediterranean soil unamended (SU) and amended with compost (SA). We assessed soil microbial biomass (microbial fatty acids), soil enzyme activities (urease, β-glucosidase, and alkaline phosphatase), and composition of the microbial community (bacterial 16S rRNA gene and fungal ITS2 sequencing) in a microcosm experiment. In the SA, the two concentrations of AgNPs significantly decreased the bacterial biomass after 7 days of incubation. At 30 days of incubation, only a significant decrease in the Gram+ was observed at the highest AgNPs concentration. In contrast, in the SU, there was a significant increase in bacterial biomass after 30 days of incubation at the lowest AgNPs concentration. Overall, we found that fungal biomass was more resistant to AgNPs than bacterial biomass, in both SA and SU. Further, the AgNPs changed the composition of the soil bacterial community in SA, the relative abundance of some bacterial taxa in SA and SU, and fungal richness in SU at 30 days of incubation. However, AgNPs did not affect the activity of extracellular enzymes. This study demonstrates that the exposure time and organic amendments modulate the effects of realistic concentrations of AgNPs in the biomass and composition of the microbial community of a Mediterranean soil.
Collapse
Affiliation(s)
- Gabriela Montes de Oca-Vásquez
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica; Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Costa Rica.
| | - Frank Solano-Campos
- School of Biological Sciences, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - José R Vega-Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica; Laboratory of Polymer Science and Technology, School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, Praha 4 14220, Czech Republic
| | - Alfonso Vera
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José L Moreno
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Felipe Bastida
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
10
|
McGee CF. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31061-31073. [PMID: 32514926 DOI: 10.1007/s11356-020-09548-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/01/2020] [Indexed: 05/16/2023]
Abstract
The nitrogen cycle is an integral biogeochemical function for maintaining healthy environments. Nitrogen is a key nutrient that must be continuously replenished through recycling mechanisms to sustain ecosystems, disruption to which can result in compromised ecosystem functioning. Certain stages in the microbial conversion of nitrogen compounds are performed by a limited range of micro-organisms making these key functional species in ecosystems. The growing industrial use of silver nanoparticles (AgNPs) potentially poses significant risks for microbial nitrogen cycling species. AgNPs possess potent antimicrobial properties and are expected to reach a range of natural environments through several routes of exposure. Certain functional nitrogen cycling microbes have been shown to be highly susceptible to AgNP toxicity. The current literature indicates that AgNPs can negatively affect certain nitrogen fixing, nitrifying and denitrifying microbes in vitro. In vivo studies investigating the effect of AgNPs on nitrogen cycling microbial communities and nitrogen transformation rates in soil, sediment and sludge environments have also indicated disruption of these functional processes. This review provides a comprehensive description of the current state of knowledge regarding the toxicity of AgNPs to nitrogen cycling communities. The aim of the review is to highlight the most susceptible stages in the nitrogen cycle and the implications for the affected ecosystems.
Collapse
Affiliation(s)
- Conor Francis McGee
- Department of Agriculture, Food and the Marine, Cellbridge, Co. Kildare, Ireland.
| |
Collapse
|
11
|
Zou X, Li P, Wang X, Zheng S, Dai F, Zhang H. Silver nanoparticle and Ag +-induced shifts of microbial communities in natural brackish waters: Are they more pronounced under oxic conditions than anoxic conditions? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113686. [PMID: 31812524 DOI: 10.1016/j.envpol.2019.113686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
With the burst of silver nanoparticles (AgNPs) applications, their potential entry into the environment has attracted increasing concern. To date, researches about the impacts of AgNPs on microbial communities have been scarcely conducted in the brackish waters. Here, the effects of interactions of AgNPs and Ag+ (as a positive control) with dissolved oxygen on natural brackish water microbial communities were investigated for 30 d. The introduction of AgNPs and Ag+ in natural brackish waters resulted in distinct bacterial community composition and structure as well as reduction of the richness and diversity, effects that were not eliminated completely during the tested periods. Anoxic conditions could attenuate the effects of AgNPs and Ag+ on the community, and dissolved oxygen made more contributions to community compositions for short-term exposure. High doses of AgNPs had more pronounced long-term impacts than Ag+ amendment. Compared with the controls, two general AgNP and Ag+ responses, namely, sensitivity and resistance, were observed. Sensitive species mainly included those of the genera Synechococcus and unclassified_f_Rhodobacteraceae, while resistant species mostly belonged to the phylum Bacteroidetes and participated in carbon metabolic processes. Our results indicated that the microbial communities that were involved in nutrient cycles (such as carbon, nitrogen, and sulfide) and photoautotrophic bacteria that contained bacteriochlorophyll were adversely affected by AgNPs and Ag+. In addition, dissolved oxygen could further change the microbial communities. These results implied that under different oxygen conditions AgNPs possibly resulted in varying microbial survival strategies and affected the biogeochemical cycling of nutrients in natural brackish waters.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Penghui Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiaodan Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Shenghui Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fuqiang Dai
- College of Harbour and Environmental Engineering, Jimei University, Xiamen, China
| | - Hongwu Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
12
|
Chen Y, Mao Y, Song M, Yin Y, Liu G, Cai Y. Occurrence and leaching of silver in municipal sewage sludge in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109929. [PMID: 31718800 DOI: 10.1016/j.ecoenv.2019.109929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Sewage treatment plants effectively remove silver (Ag) from sewage. Sewage sludge can therefore be important Ag sinks, polluting the environment with this element. In this work, we report a nation-wide survey on the Ag content of sewage sludge in China (0.23-19.02 mg kg-1, average 2.72 mg kg-1). Furthermore, we identify that sludge disposal represents an important Ag pollution source (84.48 tons in 2016) for the environment by estimating the national and provincial inventories of sludge-borne Ag in China. Also the positive correlations between the per capita gross domestic product (GDP)/provincial GDP and the content/mass loadings of Ag highlighted the impact of human activities on Ag pollution. In different samples, strong complexation of thiosulfate contributed to the highest leaching concentration (95.00-438.15 μg kg-1) and ratio (1.9-8.8%) of Ag, emphasizing the necessity of a long-term risk assessment for landfill and land application of sludge.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Maoyong Song
- University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| |
Collapse
|
13
|
Cao C, Huang J, Guo Y, Yan CN, Xiao J, Ma YX, Liu JL, Guan WZ. Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:931-940. [PMID: 31229850 DOI: 10.1016/j.envpol.2019.05.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/07/2019] [Accepted: 05/27/2019] [Indexed: 05/22/2023]
Abstract
The widely usage of silver nanoparticles in a range of consumer products inevitably results in its being released to the wastewater. As a result, the potential negative effects associated with AgNPs on wastewater treatment systems need to be assessed to develop the regulatory guidelines. In this paper, the exposure experiment at environmentally relevant concentration (100 μg L-1) were conducted to demonstrate the effects of AgNPs on the pollutant removals in constructed wetlands (CWs) with different plants and the spatial distribution of silver. Before adding AgNPs, the system with Arundo donax (VF2) had the better nitrogen removal than Cyperus alternifolius (VF1). After exposure for about 94 d, the average removal efficiencies of NH4+-N significantly reduced by 32.43% and 23.92%, TN of 15.82% and 17.18% and TP of 22.74% and 20.46% in VF1 and VF2, respectively, while the COD removal had no difference. However, presence of 100 μg L-1 AgNPs for about 450 d showed no inhibition effects on nutrient removals in two experimental CWs. Two wetlands showed high removal efficiencies of about 98% on AgNPs, indicating CWs could play a crucial role to control the AgNPs release to environment. It was found that AgNPs mainly accumulated in the soil layer with the Ag content of 0.45-5.96 μg g-1 dry weight in lower soil and 2.84-11.37 μg g-1 dry weight in upper soil. The roots of Cyperus alternifolius absorbed more AgNPs, with higher bioconcentration factors (1.32-1.44) than that of 0.59 in Arundo donax. The differences of translocation factors on leaves and stems in two test plants showed that AgNPs assimilated by roots in Cyperus alternifolius were more easily transferred to the leaves. The obtained results showed that the macrophyte Cyperus alternifolius could be better choice for immobilization of AgNPs.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Yang Guo
- Security Support Center for Urban Water Supply of Jiangsu Province, Nanjing, 210036, China
| | - Chun Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Xuan Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jia Liang Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wen Zhu Guan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
14
|
Wang D, Tang G, Yang Z, Li X, Chai G, Liu T, Cao X, Pan B, Li J, Sheng G, Zheng X, Ren Z. Long-term impact of heavy metals on the performance of biological wastewater treatment processes during shock-adaptation-restoration phases. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:152-159. [PMID: 30909140 DOI: 10.1016/j.jhazmat.2019.03.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
The present work investigated the long-term (30 days of shock-adaptation and 60 days of restoration) impact of Cu2+, Hg2+ and Ag+ shock loading on the performance of biological wastewater treatment processes. Under the same inhibitory concentration (IC15), Cu2+ had the most significant impact on the treatment efficiency. During the shock-adaptation phase, Ag+ led to up to 4 times of biopolymers generation compared to that of the blank one; Hg2+ inhibited the nitrification process but showed little influence on other parameters; Cu2+ and Ag+ inhibited the activity of sDHA completely and decreased the content of ATP significantly, as well they caused abnormal ROS generation and corresponding CAT and SOD increment. Till 60 days of restoration can the activity of enzymes be restored to the control level, which agreed well with the results of effluent quality. Cu2+ decreased the biodiversity of the sludge to a large extent, followed by Ag+ and Hg2+. At the phylum level, Verrucomicrobia was decreased nearly to zero after 30 days of Cu2+ shock. At the genera level, Zoogloea was almost vanished after 15 days of Cu2+ shock.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Gang Tang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhangjie Yang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Xiaoxiao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Guodong Chai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Tong Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Guoping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
15
|
Chai H, Xiang Y, Chen R, Shao Z, Gu L, Li L, He Q. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway. BIORESOURCE TECHNOLOGY 2019; 280:51-58. [PMID: 30754005 DOI: 10.1016/j.biortech.2019.02.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is an energy-saving wastewater treatment process, however, the nitrogen removal pathways are not clear. An enhanced SND sequencing batch biofilm reactor with a SND ratio above 97.3% was built to treat low carbon to nitrogen ratio wastewater. When traditional nitrification was inhibited, ammonia removal efficiency still reached 45% in 8 h while the NO3- and NO2- concentration was less than 3 mg/L and 0.01 mg/L during the complete process, respectively. The pathways that could not be suppressed by the inhibitors (ATU and ClO3-) were stimulated by heterotrophic nitrifiers and aerobic denitrifiers with periplasmic nitrate reductase and contributed 55% of the total removed NH4+ and produced 51% of the emitted N2O. The contributions of different nitrogen removal pathways indicate that the unconventional pathways are important in wastewater treatment system and inhibitors should be carefully used in nitrogen removal pathway assays.
Collapse
Affiliation(s)
- Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China.
| | - Yu Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Rong Chen
- Xian University Architecture & Technology, Int Sci & Technol Cooperat Ctr Urban Alternat Wat, Key Lab Northwest Water Resource Environm & Ecol, MOE, Engn Technol Res Ctr Wastewater Treatment & R, 13 Yanta Rd, Xian 710055, Shanxi, PR China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Li Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| |
Collapse
|
16
|
Ward CS, Pan JF, Colman BP, Wang Z, Gwin CA, Williams TC, Ardis A, Gunsch CK, Hunt DE. Conserved Microbial Toxicity Responses for Acute and Chronic Silver Nanoparticle Treatments in Wetland Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3268-3276. [PMID: 30776221 DOI: 10.1021/acs.est.8b06654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most studies of bacterial exposure to environmental contaminants focus on acute treatments; however, the impacts of single, high-dose exposures on microbial communities may not readily be extended to the more likely scenario of chronic, low-dose contaminant exposures. Here, in a year-long, wetland mesocosm experiment, we compared microbial community responses to pulse (single 450 mg dose of silver) and chronic (weekly 8.7 mg doses of silver for 1 year) silver nanoparticle (Ag0 NP) treatments, as well as a chronic treatment of "aged" sulfidized silver nanoparticles (Ag2S NPs). While mesocosms exposed to Ag2S NPs never differed significantly from the controls, both Ag0 NP treatments exhibited reduced microbial diversity and altered community composition; however, the effects differed in timing, duration, and magnitude. Microbial community-level impacts in the acute Ag0 NP treatment were apparent only within the first weeks and then converged on the control mesocosm composition, while chronic exposure effects were observed several months after exposures began, likely due to interactive effects of nanoparticle toxicity and winter environmental conditions. Notably, there was a high level of overlap in the taxa which exhibited significant declines (>10×) in both treatments, suggesting a conserved toxicity response for both pulse and chronic exposures. Thus, this research suggests that complex, but short-term, acute toxicological studies may provide critical, cost-effective insights into identifying microbial taxa sensitive to long-term chronic exposures to Ag NPs.
Collapse
Affiliation(s)
- Christopher S Ward
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
- Program in Environmental Health and Toxicology , Duke University , Durham , North Carolina 27708 , United States
| | - Jin-Fen Pan
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering , Ocean University of China , Qingdao , 266003 , P. R. China
| | - Benjamin P Colman
- Biology Department , Duke University , Durham , North Carolina 27708 , United States
| | - Zhao Wang
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
| | - Carley A Gwin
- Civil and Environmental Engineering , Duke University , Durham , North Carolina 27708, United States
| | - Tiffany C Williams
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
| | - Abby Ardis
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
| | - Claudia K Gunsch
- Civil and Environmental Engineering , Duke University , Durham , North Carolina 27708, United States
| | - Dana E Hunt
- Marine Laboratory , Duke University , Beaufort , North Carolina 28516 , United States
- Program in Environmental Health and Toxicology , Duke University , Durham , North Carolina 27708 , United States
- Biology Department , Duke University , Durham , North Carolina 27708 , United States
- Civil and Environmental Engineering , Duke University , Durham , North Carolina 27708, United States
| |
Collapse
|
17
|
Gerhard WA, Gunsch CK. Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports. ENVIRONMENT INTERNATIONAL 2019; 124:312-319. [PMID: 30660844 DOI: 10.1016/j.envint.2018.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
While ballast water has long been linked to the global transport of invasive species, little is known about its microbiome. Herein, we used 16S rRNA gene sequencing and metabarcoding to perform the most comprehensive microbiological survey of ballast water arriving to hub ports to date. In total, we characterized 41 ballast, 20 harbor, and 6 open ocean water samples from four world ports (Shanghai, China; Singapore; Durban, South Africa; Los Angeles, California). In addition, we cultured Enterococcus and E. coli to evaluate adherence to International Maritime Organization standards for ballast discharge. Five of the 41 vessels - all of which were loaded in China - did not comply with standards for at least one indicator organism. Dominant bacterial taxa of ballast water at the class level were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia. Ballast water samples were composed of significantly lower proportions of Oxyphotobacteria than either ocean or harbor samples. Linear discriminant analysis (LDA) effect size (LEfSe) and machine learning were used to identify and test potential biomarkers for classifying sample types (ocean, harbor, ballast). Eight candidate biomarkers were used to achieve 81% (k nearest neighbors) to 88% (random forest) classification accuracy. Further research of these biomarkers could aid the development of techniques to rapidly assess ballast water origin.
Collapse
Affiliation(s)
- William A Gerhard
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States
| | - Claudia K Gunsch
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States.
| |
Collapse
|
18
|
Darwish AS, Bayaumy FE, Ismail HM. Photoactivated water-disinfecting, and biological properties of Ag NPs@Sm-doped ZnO nanorods/cuttlefish bone composite: In-vitro bactericidal, cercaricidal and schistosomicidal studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:996-1011. [DOI: 10.1016/j.msec.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023]
|
19
|
How Microbial Aggregates Protect against Nanoparticle Toxicity. Trends Biotechnol 2018; 36:1171-1182. [DOI: 10.1016/j.tibtech.2018.06.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
20
|
Danley-Thomson AA, Huang EC, Worley-Morse T, Gunsch CK. Evaluating the role of total organic carbon in predicting the treatment efficacy of biosand filters for the removal of Vibrio cholerae in drinking water during startup. J Appl Microbiol 2018; 125:917-928. [PMID: 29741280 DOI: 10.1111/jam.13909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022]
Abstract
AIMS In biosand filters (BSF), treatment is largely driven by the development of a biolayer (schmutzdecke) which establishes itself during the startup phase. In this study, the effect of changing influent total organic carbon (TOC) loading on the removal efficiency of Vibrio cholerae in laboratory-operated BSFs was quantified. METHODS AND RESULTS BSFs were charged with high, medium or low TOC influents and removal efficacy and schmutzdecke composition was monitored over 2 months. The highest V. cholerae removal efficiencies were observed in the BSF receiving the lowest TOC. Schmutzdecke composition was found to be influenced by influent TOC, in terms of microbial community structure and amount of extracellular polymeric substance (EPS). CONCLUSIONS Physical/chemical attachment was shown to be important during startup. The BSF receiving influent water with lower TOC had a higher attachment coefficient than the BSF receiving high TOC water, suggesting more physical/chemical treatment in the lower TOC BSF. The high TOC BSF had more EPS than did the biofilm from the low-TOC BSF, suggesting that schmutzdecke effects may be more significant at high TOC. SIGNIFICANCE AND IMPACT OF THE STUDY Overall, this study confirms that influent water characteristics will affect BSF treatment efficacy of V. cholerae especially during the startup phase.
Collapse
Affiliation(s)
- A A Danley-Thomson
- Department of Environmental and Civil Engineering, Florida Gulf Coast University, Fort Myers, FL, USA.,Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - E C Huang
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | | - C K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|