1
|
Čerba D, Vlaičević B, Davidović RA, Koh M, Ergović V, Turković Čakalić I. Chironomidae in shallow water bodies of a protected lowland freshwater floodplain ecosystem. Sci Prog 2023; 106:368504231172653. [PMID: 37198903 PMCID: PMC10358707 DOI: 10.1177/00368504231172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lowland floodplains are complex ecosystems comprised of standing and flowing waters interacting with terrestrial habitats, and the main force creating, shaping and influencing, both habitats and biotic communities, is a hydrological regime and water supply from the parent river. In areas not much altered by anthropogenic influence, the Danube creates such floodplain areas, and temporary shallow water bodies within represent biodiversity important habitats. In the Kopački Rit Nature Park floodplain in Croatia, diversity based on Chironomidae (Diptera) in both benthic and epiphytic communities was studied in eight ponds (temporary shallow water body) and at two channel locations (permanent shallow water body). At each location samples of sediment and macrophytes were taken at three sites. The benthic chironomid community was comprised of 29 taxa, most abundant being representatives of the Chironomus genus and Tanypus kraatzi in ponds, and Polypedilum nubeculosum and Cladotanytarsus sp. in channel samples. Cricotopus gr. sylvestris, Paratanytarsus sp. and Endochironomus tendens were dominant epiphytic chironomids (18 taxa). Non-metric multidimensional scaling and analysis of similarity analyses showed there was a clear grouping of sampling locations based on their position in the park and the distance from each other, more evident in the case of benthic chironomid communities. Furthermore, when the water bodies were compared based on the community structure from different locations and substrates, there was also a statistically significant separation. Community composition indicates high productivity and organic matter production of studied water bodies, but moreover, the differences in substrate preferences evident in 16 common out of 31 recorded chironomid taxa, indicate the importance of habitat complexity preservation in a floodplain.
Collapse
Affiliation(s)
- Dubravka Čerba
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Barbara Vlaičević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ramona-Ana Davidović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Miran Koh
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Viktorija Ergović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | |
Collapse
|
2
|
Milošević D, Medeiros AS, Cvijanović D, Jenačković Gocić D, Đurđević A, Čerba D, Stojković Piperac M. Implications of local niche- and dispersal-based factors that may influence chironomid assemblages in bioassessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51951-51963. [PMID: 35257340 DOI: 10.1007/s11356-022-19302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Local environmental factors and dispersal-based processes can both influence the structure of metacommunities in freshwater ecosystems. Describing these patterns is especially important for biomonitoring approaches that are based on inferences made from benthic macroinvertebrate assemblages. Here, we examine the metacommunity structure of chironomid assemblages collected from 28 sampling stations along the Southern Morava River, Serbia. We examined the extent of dispersal-based processes along a temporal scale. We obtained 8 models for the different sampling seasons that determined the spatial variables that best explained variability in chironomid assemblages. Spatial processes were found to be a significant predictor of variation for chironomids during the late winter/spring (March and May) and autumn (October and November), concordant with the known phenology of common taxa. Species sorting and mass effects were found to be significant processes that structured the chironomid metacommunity. In addition, biological interactions, inferred from fish biomass, and habitat traits, demonstrated by macrophyte and riparian vegetation, were found to influence species sorting. A high variability of chironomid metacommunity structure across sampling seasons suggests that monitoring programs that include macroinvertebrates in bioassessment should avoid months with pronounced spatial processes, and consequently maximize a correlation between community structure and local environmental factors.
Collapse
Affiliation(s)
- Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia.
- School for Resource and Environmental Studies, Faculty of Management, Dalhousie University, Halifax, Canada.
| | - Andrew S Medeiros
- School for Resource and Environmental Studies, Faculty of Management, Dalhousie University, Halifax, Canada
| | - Dušanka Cvijanović
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Dragana Jenačković Gocić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Aca Đurđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Dubravka Čerba
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milica Stojković Piperac
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
3
|
Diversity of Periphytic Chironomidae on Different Substrate Types in a Floodplain Aquatic Ecosystem. DIVERSITY 2022. [DOI: 10.3390/d14040264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different types of water bodies in lowland river floodplains represent vital biodiversity havens and encompass diverse microhabitats, which are essential for structuring different macroinvertebrate communities. Chironomidae larvae (Diptera) are an inseparable part of these communities, with their high richness and abundance. In three water body types within the Danube floodplain Kopački Rit in Croatia, over the course of four sampling campaigns, we recorded 51 chironomid taxa in periphyton on macrophytes, twigs, and glass slides. The most diverse were chironomid communities on macrophytes, whilst month-old periphyton on twigs supported the least taxa. Cricotopus gr. sylvestris, Dicrotendipes lobiger, Dicrotendipes spp., Endochironomus albipennis, Glyptotendipes pallens agg., Polypedilum sordens and Polypedilum spp. were present in all studied microhabitats. The type of substrate is a very important factor influencing Chironomidae diversity and abundance, which was evident in the presence and dominance of Corynoneura gr. scutellata and Monopelopia tenuicalcar in the dense macrophyte canopy epiphyton. Finding pristine floodplains such as Kopački Rit can be very challenging, as such areas are increasingly altered by human activities. Studies of resident species and the extent to which changes in the parent river influence floodplain communities are important for the protection and restoration of the floodplains.
Collapse
|
4
|
Miliša M, Stubbington R, Datry T, Cid N, Bonada N, Šumanović M, Milošević D. Taxon-specific sensitivities to flow intermittence reveal macroinvertebrates as potential bioindicators of intermittent rivers and streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150022. [PMID: 34517322 DOI: 10.1016/j.scitotenv.2021.150022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As complex mosaics of lotic, lentic, and terrestrial habitats, intermittent rivers and ephemeral streams (IRES) support high biodiversity. Despite their ecological importance, IRES are poorly represented in routine monitoring programs, but recent recognition of their considerable-and increasing-spatiotemporal extent is motivating efforts to better represent IRES in ecological status assessments. We examine response patterns of aquatic macroinvertebrate communities and taxa to flow intermittence (FI) across three European climatic regions. We used self-organizing map (SOM) to ordinate and classify sampling sites based on community structure in regions with continental, Mediterranean and oceanic climates. The SOM passively introduced FI, quantified as the mean annual % flow, and visualized its variability across classified communities, revealing a clear association between community structure and FI in all regions. Indicator species analysis identified taxa indicative of low, intermediate and high FI. In the continental region, the amphipod Niphargus was indicative of high FI and was associated with groundwater-fed IRES, whereas indicators of Mediterranean IRES comprised Odonata, Coleoptera and Heteroptera taxa, which favor lentic conditions. In the oceanic region, taxa indicative of relatively high FI included leuctrid stoneflies and a limnephilid caddisfly, likely reflecting the colonization of IRES by aerial adults from nearby perennial reaches. The Diptera families Chironomidae and Simuliidae showed contrasting FI preferences among regions, reflecting environmental heterogeneity between regions and the coarse taxonomic resolution to which these organisms were identified. These region-specific community and taxon responses of aquatic biota to FI highlight the need to adapt standard biotic indices to enable effective ecological status assessments in IRES.
Collapse
Affiliation(s)
- Marko Miliša
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS20244, 69625 Villeurbanne Cedex, France
| | - Núria Cid
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS20244, 69625 Villeurbanne Cedex, France; FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Marina Šumanović
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| |
Collapse
|
5
|
A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion. SUSTAINABILITY 2021. [DOI: 10.3390/su132111563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
European Union (EU) policy encourages the development of a blue economy (BE) by unlocking the full economic potential of oceans, seas, lakes, rivers and other water resources, especially in member countries in which it represents a low contribution to the national economy (under 1%). However, climate change represents a main barrier to fully realizing a BE. Enabling conditions that will support the sustainable development of a BE and increase its climate resiliency must be promoted. Romania has high potential to contribute to the development of the EU BE due to its geographic characteristics, namely the presence of the Danube Delta-Black Sea macrosystem, which is part of the Romanian Lower Danube Euroregion (RLDE). Aquatic living resources represent a sector which can significantly contribute to the growth of the BE in the RLDE, a situation which imposes restrictions for both halting biodiversity loss and maintaining the proper conditions to maximize the benefits of the existing macrosystem. It is known that climate change causes water quality problems, accentuates water level fluctuations and loss of biodiversity and induces the destruction of habitats, which eventually leads to fish stock depletion. This paper aims to develop an analytical framework based on multiple linear predictive and forecast models that offers cost-efficient tools for the monitoring and control of water quality, fish stock dynamics and biodiversity in order to strengthen the resilience and adaptive capacity of the BE of the RLDE in the context of climate change. The following water-dependent variables were considered: total nitrogen (TN); total phosphorus (TP); dissolved oxygen (DO); pH; water temperature (wt); and water level, all of which were measured based on a series of 26 physicochemical indicators associated with 4 sampling areas within the RLDE (Brăila, Galați, Tulcea and Sulina counties). Predictive models based on fish species catches associated with the Galati County Danube River Basin segment and the “Danube Delta” Biosphere Reserve Administration territory were included in the analytical framework to establish an efficient tool for monitoring fish stock dynamics and structures as well as identify methods of controlling fish biodiversity in the RLDE to enhance the sustainable development and resilience of the already-existing BE and its expansion (blue growth) in the context of aquatic environment climate variation. The study area reflects the integrated approach of the emerging BE, focused on the ocean, seas, lakes and rivers according to the United Nations Agenda. The results emphasized the vulnerability of the RLDE to climate change, a situation revealed by the water level, air temperature and water quality parameter trend lines and forecast models. Considering the sampling design applied within the RLDE, it can be stated that the Tulcea county Danube sector was less affected by climate change compared with the Galați county sector as confirmed by water TN and TP forecast analysis, which revealed higher increasing trends in Galați compared with Tulcea. The fish stock biodiversity was proven to be affected by global warming within the RLDE, since peaceful species had a higher upward trend compared with predatory species. Water level and air temperature forecasting analysis proved to be an important tool for climate change monitoring in the study area. The resulting analytical framework confirmed that time series methods could be used together with machine learning prediction methods to highlight their synergetic abilities for monitoring and predicting the impact of climate change on the marine living resources of the BE sector within the RLDE. The forecasting models developed in the present study were meant to be used as methods of revealing future information, making it possible for decision makers to adopt proper management solutions to prevent or limit the negative impacts of climate change on the BE. Through the identified independent variables, prediction models offer a solution for managing the dependent variables and the possibility of performing less cost-demanding aquatic environment monitoring activities.
Collapse
|
6
|
Non-Linear Visualization and Importance Ratio Analysis of Multivariate Polynomial Regression Ecological Models Based on River Hydromorphology and Water Quality. WATER 2021. [DOI: 10.3390/w13192708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multivariate polynomial regression (MPR) models were developed for five macrophyte indices. MPR models are able to capture complex interactions in the data while being tractable and transparent for further analysis. The performance of the MPR modeling approach was compared to previous work using artificial neural networks. The data were obtained from hydromorphologically modified Polish rivers with a widely varying water quality. The modeled indices were the Macrophyte Index for Rivers (MIR), the Macrophyte Biological Index for Rivers (IBMR), and the River Macrophyte Nutrient Index (RMNI). These indices measure the trophic and ecological status of the rivers. Additionally, two biological diversity indices, species richness (N) and the Simpson index (D), were modeled. The explanatory variables were physico-chemical properties depicting water quality and river hydromorphological status indices. In comparison to artificial neural networks, the MPR models performed similarly in terms of goodness of fit. However, the MPR models had advantages such as model simplicity and ability to be subject to effective visualization of complex nonlinear input–output relationships, as well as facilitating sensitivity analysis using importance ratios to identify effects of individual input variables.
Collapse
|
7
|
Wu Y, Ding R, Zhang X, Zhang J, Huang Q, Liu L, Shen H. Meet-in-metabolite analysis: A novel strategy to identify connections between arsenic exposure and male infertility. ENVIRONMENT INTERNATIONAL 2021; 147:106360. [PMID: 33401174 DOI: 10.1016/j.envint.2020.106360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite a trend in the use of systems epidemiology to fill the knowledge gap between risk-factor exposure and adverse outcomes in the OMICS data, such as the metabolome, seriously hindrances need to be overcome for identifying molecular connections. OBJECTIVES Using male infertility phenotypes and arsenic exposure, we aimed to identify intermediate biomarkers that reflect both arsenic exposure and male infertility with a meet-in-metabolite analysis (MIMA). METHODS Urinary arsenic levels and metabolome were measured by using inductively coupled plasma-mass spectrometry (ICP-MS) and HPLC-quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS), respectively. To identify arsenic-related metabolic markers (A-MIMA), the intermediate markers were profiled by orthogonal projections to latent structures (OPLS-DA). To detect infertility-related metabolic markers (I-MIMA), the intermediate markers were investigated by weighted gene co-expression network analysis. The key node markers, related to both A-MIMA and I-MIMA, were determined by O2PLS and defined as MIMA markers. Finally, network analysis was used to construct the MIMA-related metabolic network. RESULTS Twelve markers each were defined through the significant associations with arsenic exposure (A-MIMA) and/or infertility (I-MIMA), respectively. Seven of them, including acetyl-N-formyl-5-methoxykynurenamine, carnitine, estrone, 2-oxo-4-methylthiobutanoic acid, malonic acid, valine, and LysoPC (10:0), were defined through the associations with both arsenic exposure and male infertility (MIMA markers). These intermediate markers were involved majorly in oxidative stress, one-carbon metabolism, steroid hormone homeostasis, and lipid metabolism pathways. The core correlation network analysis further highlighted that testosterone is a vital link between the effect of arsenic and male infertility. CONCLUSIONS From arsenic exposure to male infertility, the arsenic methylation that coupled one-carbon metabolism disruption with oxidation stress may have extended its effect to fatty acid oxidation and steroidogenesis dysfunction. Testosterone is at the hub between arsenic exposure and male infertility modules and, along with the related metabolic pathways, may service as a potential surrogate marker in risk assessment for male dysfunction due to arsenic exposure.
Collapse
Affiliation(s)
- Yan Wu
- Department of Health Inspection and Quarantine, The School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Rui Ding
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province 350007, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
8
|
Lu K, Wu H, Guan Q, Lu X. Aquatic invertebrate assemblages as potential indicators of restoration conditions in wetlands of Northeastern China. Restor Ecol 2020. [DOI: 10.1111/rec.13283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kangle Lu
- Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences Changchun 130102 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100049 China
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences Changchun 130102 China
| | - Qiang Guan
- Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences Changchun 130102 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianguo Lu
- Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences Changchun 130102 China
| |
Collapse
|
9
|
Effects of variations in water quantity and quality in the structure and functions of invertebrates’ community of a Mediterranean urban stream. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00892-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pilotto F, Tonkin JD, Januschke K, Lorenz AW, Jourdan J, Sundermann A, Hering D, Stoll S, Haase P. Diverging response patterns of terrestrial and aquatic species to hydromorphological restoration. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:132-141. [PMID: 29947087 DOI: 10.1111/cobi.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 05/24/2023]
Abstract
Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10-164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15-120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.
Collapse
Affiliation(s)
- Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Jonathan D Tonkin
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, U.S.A
| | - Kathrin Januschke
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Armin W Lorenz
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Andrea Sundermann
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Daniel Hering
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Stefan Stoll
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Environmental Campus Birkenfeld, University of Applied Sciences Trier, Post Box 1380, 55761 Birkenfeld, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
11
|
Zajicek P, Radinger J, Wolter C. Disentangling multiple pressures on fish assemblages in large rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1093-1105. [PMID: 29426127 DOI: 10.1016/j.scitotenv.2018.01.307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
European large rivers are exposed to multiple human pressures and maintained as waterways for inland navigation. However, little is known on the dominance and interactions of multiple pressures in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. We determined the response of ten fish population metrics (FPM, related to densities of diagnostic guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures that can serve for fish-based assessments. Pressures' influences, impacts and interactions were determined for each FPM using bootstrapped regression tree models. Increased flow velocity, navigation intensity and the loss of floodplains had the highest influences on guild densities and biodiversity. Interactions between navigation intensity and loss of floodplains and between navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. Further, increased sedimentation, channelization, organic siltation, the presence of artificial embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river channel that comes along with inland navigation. In European large rivers, inland navigation constitutes a highly influential pressure that adds on top of the prevailing hydromorphological degradation. Therefore, river management has to consider river hydromorphology and inland navigation to efficiently rehabilitate the potamal region of large rives.
Collapse
Affiliation(s)
- Petr Zajicek
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Biology and Ecology of Fishes, Mueggelseedamm 310, 12587 Berlin, Germany.
| | - Johannes Radinger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Biology and Ecology of Fishes, Mueggelseedamm 310, 12587 Berlin, Germany; GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain.
| | - Christian Wolter
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Biology and Ecology of Fishes, Mueggelseedamm 310, 12587 Berlin, Germany.
| |
Collapse
|