1
|
Gopi S, Madesh S, Ramamurthy K, Almutairi MH, Almutairi BO, Namasivayam SKR, Arockiaraj J. Black seed (Nigella sativa) extract enhances early and late apoptosis through activation of caspase-3 mediated regulatory pathway in LC540 cells: A network pharmacological and molecular docking approach. Comput Biol Chem 2025; 118:108455. [PMID: 40203795 DOI: 10.1016/j.compbiolchem.2025.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Testicular cancer continues to rise in incidence globally, and conventional chemotherapy is often associated with severe side effects that significantly impact patient's quality of life. Identifying safer alternative therapies is becoming crucial day by day which leads to focus on naturally available phytocompounds with high bioactivity. Over the period of time, Nigella sativa (N. sativa) has garnered attention due to the presence of its rich bioactive compounds with antioxidant and anticancer properties, providing potential therapeutic benefits with minimal side effects. Since we used a network pharmacological based in-silico approach combined with in-vitro and in-vivo efficacy testing of N. sativa against testicular cancer. Molecular docking studies showed significant interactions between N. sativa phytochemicals and critical proteins involved in testicular and other cancer related pathways. Biochemical assays revealed decreased ROS levels with enhanced antioxidant enzyme activities such as SOD, CAT, GSH and reduced LDH levels. AO/PI staining further corroborated the enhanced apoptosis and necrosis rates in treated cells. m-RNA analysis demonstrated notable expression of inflammatory and apoptotic genes such as casp-3 and key testicular markers such as oct4, sox2 and other pro inflammatory cytokines. Histomorphological analysis of zebrafish testis showed decreased morphological alterations. With solid evidence of its anticancer effects through multiple biological mechanisms, including apoptosis induction, oxidative stress reduction, and oncogene suppression, these findings warrant further exploration of N. sativa as part of integrative cancer therapies to improve outcomes for patients with testicular cancer.
Collapse
Affiliation(s)
- Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Shaalan WM, Elbaghdady HAM, Sayed AEDH. Synergistic effects of thermal stress and 4-nonylphenol on oxidative stress and immune responses in juvenile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64024-64032. [PMID: 39528893 DOI: 10.1007/s11356-024-35419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Aquatic ecosystems face multiple stressors, including thermal fluctuations and chemical pollutants, which can detrimentally impact fish health and ecosystem integrity. This study investigates the individual and combined toxic effects of 4-nonylphenol (4-NP) and thermal stress on juvenile tilapia fish (Oreochromis niloticus). Four groups of fish were exposed to different stressors for 15 days: control, thermal stress (35 °C ± 1 °C), 4-NP exposure (1 mg/L), and a combination of thermal stress and 4-NP. Results reveal significant alterations in antioxidant enzyme activity, lipid peroxidation levels, and cytokine expression in response to stressors. Thermal stress and 4-NP exposure disrupt antioxidant defense mechanisms and increase oxidative stress. Thermal stress profoundly affects fish health and metabolism, impacting physiological functions and immunity. Thermal stress induces reactive oxygen species production, triggering antioxidant responses and affecting immune parameters. Exposure to 4-NP exacerbates oxidative stress, further compromising fish health. The observed increase in pro-inflammatory cytokines implies an immunostimulatory reaction to stressors. These findings underscore the complex interactions between environmental stressors, immune responses, and fish health. Further research is needed to fully understand these interactions and their implications for aquatic ecosystems. Implementing these biomarkers in ecological risk assessments can provide insights into the impacts of environmental stressors and inform conservation and management strategies in aquaculture.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
- Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University, 44801, Bochum, Germany
| | | | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
3
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Hussain SM, Bano AA, Ali S, Rizwan M, Adrees M, Zahoor AF, Sarker PK, Hussain M, Arsalan MZUH, Yong JWH, Naeem A. Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon 2024; 10:e26573. [PMID: 38434023 PMCID: PMC10906437 DOI: 10.1016/j.heliyon.2024.e26573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.
Collapse
Affiliation(s)
- Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Aumme Adeeba Bano
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Pallab K. Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Majid Hussain
- Department of Fisheries and Aquaculture, University of Okara, Okara, Punjab, 56300, Pakistan
| | | | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| | - Adan Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
5
|
Chakraborty P, Krishnani KK, Mulchandani A, Sarkar DJ, Das BK, Paniprasad K, Banerjee Sawant P, Kumar N, Sarkar B, Poojary N, Mallik A, Pal P. Toxicity assessment of poultry-waste biosynthesized nanosilver in Anabas testudineus (Bloch, 1792) for responsible and sustainable aquaculture development-A multi-biomarker approach. ENVIRONMENTAL RESEARCH 2023; 235:116648. [PMID: 37451582 DOI: 10.1016/j.envres.2023.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The current study investigates the potential utilization of poultry intestines for the synthesis of stable silver nanoparticles (AgNPs) and their impact on fish physiology. The AgNPs were synthesized and characterized using various analytical techniques. The toxicity of AgNPs on Anabas testudineus was evaluated, determining a 96-h LC50 value of 25.46 mg l-1. Subsequently, fish were exposed to concentrations corresponding to 1/10th, 1/25th, 1/50th, and 1/100th of the estimated LC50 for a duration of 60 days in a sub-acute study. A comprehensive range of biomarkers, including haematological, serum, oxidative stress, and metabolizing markers, were analyzed to assess the physiological responses of the fish. Additionally, histopathological examinations were conducted, and the accumulation of silver in biomarker organs was measured. The results indicate that silver tends to bioaccumulate in all biomarker organs in a dose- and time-dependent manner, except for the muscle tissue, where accumulation initially increased and subsequently decreased, demonstrating the fish's inherent ability for natural attenuation. Analysis of physiological data and integrated biomarker responses reveal that concentrations of 1/10th, 1/25th, and 1/50th of the LC50 can induce stress in the fish, while exposure to 1/100th of the LC50 shows minimal to no stress response. Overall, this study provides valuable insights into the toxicity and physiological responses of fish exposed to poultry waste biosynthesized AgNPs, offering potential applications in aquaculture while harnessing their unique features.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Kurcheti Paniprasad
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Paramita Banerjee Sawant
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Nalini Poojary
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Abhijit Mallik
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University, Imphal, 799210, India
| |
Collapse
|
6
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
7
|
Abd-Elkareem M, Sayed AEDH, Khalil NSA, Kotob MH. Nigella sativa seeds mitigate the hepatic histo-architectural and ultrastructural changes induced by 4-nonylphenol in Clarias gariepinus. Sci Rep 2023; 13:4109. [PMID: 36914664 PMCID: PMC10011539 DOI: 10.1038/s41598-023-30929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Due to its prevalence in aquatic environments and potential cytotoxicity, 4-nonylphenol (4-NP) has garnered considerable attention. As a medicinal plant with numerous biological activities, Nigella sativa (black seed or black cumin) seed (NSS) is widely utilized throughout the world. Consequently, this study aimed to examine the potential protective effects of NSS against 4-NP-induced hepatotoxicity in African catfish (Clarias gariepinus). To achieve this objective, 18 fish (351 ± 3 g) were randomly divided into three equal groups for 21 days. The first group serves as a control which did not receive any treatment except the basal diet. The second and third groups were exposed to 4-NP at a dose of 0.1 mg L-1 of aquarium water and fed a basal diet only or supplemented with 2.5% NSS, respectively. The histological, histochemical, and ultrastructural features of the liver were subsequently evaluated as a damage biomarker of the hepatic tissue. Our results confirmed that 4-NP was a potent hepatotoxic agent, as 4-NP-intoxicated fish exhibited many lesions. Steatohepatitis, ballooning degeneration, sclerosing cholangitis, and coagulative necrosis of melanomacrophagecenters (MMCs) were observed. Hemosiderin, lipofuscin pigments, and proliferation of fibroblasts, kupffer cells, and telocytes were also demonstrated in the livers of 4-NP-intoxicated fish. In addition, decreased glycogen content and increased collagen deposition were observed in the hepatic tissue. Hepatocytes exhibited ultrastructural alterations in the chromatin, rough endoplasmic reticulum, smooth endoplasmic reticulum, mitochondria, lysosomes, and peroxisomes. Co-administration of 2.5% NSS to 4-NP-intoxicated fish significantly reduced these hepatotoxic effects. It nearly preserved the histological, histochemical, and ultrastructural integrity of hepatic tissue.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Cell and Tissues Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Researches & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed H Kotob
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Sayed AEDH, Eid Z, Mahmoud UM, Lee JS, Mekkawy IAA. Reproductive Toxicity and Recovery Associated With 4-Non-ylphenol Exposure in Juvenile African Catfish ( Clarias garepinus). Front Physiol 2022; 13:851031. [PMID: 35480038 PMCID: PMC9035889 DOI: 10.3389/fphys.2022.851031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Although, the effects of 4-non-ylphenol (4-NP) on fish's reproductive hormones were assessed in several studies using adult models, however, the effect of this endocrine disruptor on immature fish's reproductive hormones was not addressed commonly. We aimed to study the apoptosis induction, hematotoxicity, reproductive toxicity, and the recovery associated with 4-NP exposure in juvenile African catfish [Clarias garepinus) using some hormones [17β-estradiol (E2), testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH)] and gonad histology as biomarkers. The toxic effects of 4-NP have been studied in many animal models, but there is still limited knowledge about the dose-dependent damage caused by 4-NP exposure in juvenile Clarias gariepinus. A healthy juvenile C. gariepinus was categorized into four groups (n = 3/group; three replicates in each group). The first group was the control, and the other three groups were subjected to 4-NP concentrations as 0.1, 0.2, and 0.3 mg/L for 15 days; they were left for a recovery period of another 15 days. The reproductive hormones of C. gariepinus exposed to 4-NP for 15 days exhibited significant variations between the treatment groups and the control (P < 0.05), which were evident in E2 and T-values, whereas FSH, LH, total protein, and lipid peroxidation values showed non-significant differences among all groups at P < 0.05. Such a situation referred to the fact that the 15-day recovery period was insufficient to remove the impacts of 4-NP doses in concern. The trend of dose-dependent increase/decrease was recorded for T, E2, FSH, and LH. The histopathological alterations of 4-NP treated in gonad tissues were recorded in juvenile C. gariepinus, reflecting their sensitivity to 4-NP estrogenic-like effects. Overall, our results investigate that recovery has improved the reproductive toxicity caused by 4-NP in juvenile C. garepinus. Significant variations between the treated groups and the control group (P < 0.05) were evident in hematological parameters except for hemoglobin (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). The parameters exhibiting significance decreased with such increased doses [red blood cells (RBCs), hematocrit (Hct), and white blood cells (WBCs)]. Similar patterns of significant variations toward the increase or decrease were recorded following the 15-day recovery period. Apoptotic frequency in erythrocytes and brain cells has increased significantly with increased 4-NP exposure, indicating that 4-NP caused cytotoxic effects, such as apoptosis in a dose-dependent manner. However, these cellular alterations greatly decreased after the 15-day recovery period.
Collapse
Affiliation(s)
| | - Zainab Eid
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Usama M. Mahmoud
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Imam A. A. Mekkawy
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MA, Abou Khalil NS. The protective effect of Nigella sativa seeds against monosodium glutamate-induced hepatic dysfunction in rats. Toxicol Rep 2022; 9:147-153. [PMID: 35145878 PMCID: PMC8818490 DOI: 10.1016/j.toxrep.2022.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
MSG-challenged rats were characterized by hepatic dysfunction and redox imbalance along with increased programmed cell death. The negative consequences of MSG consumption have been partially overcome by the nutritional inclusion of NSS. NSS restores the redox potential and ameliorates the histopathological deteriorations and apoptosis in the liver. These outcomes are of major importance in paving the road towards the incorporation of NSS as a candidate strategy against MSG-related abnormalities.
Monosodium glutamate (MSG) is one of the most commonly used feed additives which poses a threat to public health. Nigella sativa is a promising natural approach in this issue due to its antioxidant, hypolipidemic, and cytoprotective characters. Here, we investigated the potential protective effect of Nigella sativa seed (NSS) against MSG-induced hepatotoxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose together with NSS at a dose of 30 g/kg feed. NSS succeeded in boosting serum alkaline phosphatase activity and total cholesterol, triglycerides, and glucose levels. It reduced lipid peroxides in the serum and down-regulated glutathione reductase and superoxide dismutase 2 immuno-expression in the hepatic cells. NSS intervention provided cytoprotection by improving the histo-architecture of the liver and reducing the number of apoptotic cells. NSS was effective in protecting against the hepatotoxicity of MSG through its antioxidant and anti-apoptotic effects. These findings are of utmost significance in directing the attention towards the incorporation of NSS in our food industry as well as a health remedy in traditional medicine to fight MSG-related hepatic abnormalities.
Collapse
|
10
|
Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective Effects of Black Cumin ( Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. Int J Mol Sci 2021; 22:ijms22169078. [PMID: 34445781 PMCID: PMC8396533 DOI: 10.3390/ijms22169078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-β signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|
11
|
Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT. An updated knowledge of Black seed ( Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25:100404. [PMID: 32983848 PMCID: PMC7501064 DOI: 10.1016/j.hermed.2020.100404] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2019] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
N. sativa (N. sativa) has been used since ancient times, when a scientific concept about the use of medicinal plants for the treatment of human illnesses and alleviation of their sufferings was yet to be developed. It has a strong religious significance as it is mentioned in the religious books of Islam and Christianity. In addition to its historical and religious significance, it is also mentioned in ancient medicine. It is widely used in traditional systems of medicine for a number of diseases including asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, back pain and inflammation. The importance of this plant led the scientific community to carry out extensive phytochemical and biological investigations on N. sativa. Pharmacological studies on N. sativa have confirmed its antidiabetic, antitussive, anticancer, antioxidant, hepatoprotective, neuro-protective, gastroprotective, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator activity. The present review is an effort to explore the reported chemical composition and pharmacological activity of this plant. It will help as a reference for scientists, researchers, and other health professionals who are working with this plant and who need up to date knowledge about it.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Laboratory Medicine Al-Hada and Taif Military Hospital, Saudi Arabia
| | - Syed Amir Ashraf
- Dept. of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hisham H Saad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Shadma Wahab
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Saudi Arabia
| | - M Ali
- College of pharmacy, Dept. of Pharmacognosy, Jazan University, Saudi Arabia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tanwir Athar
- Bioactive Natural Product Laboratory, Hamdard University, India.,Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Dietary Black Seed Effects on Growth Performance, Proximate Composition, Antioxidant and Histo-Biochemical Parameters of a Culturable Fish, Rohu ( Labeo rohita). Animals (Basel) 2020; 11:ani11010048. [PMID: 33383700 PMCID: PMC7824491 DOI: 10.3390/ani11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Stress-related losses are of major concern in aquaculture practices. Black seed is a medicinal plant species widely used as natural antioxidants and hepatic-nephric protector. Rohu is a commercially valuable culturable fish species. The present study was undertaken to assess the effects of dietary black seeds on the growth performance and antioxidant status of rohu. Fingerlings were fed on diets containing 0.0%, 1.0% and 2.5% black seed for 28 days. The results showed that rohu fed on black seed supplemented diets has increased growth rate. Moreover, black seed supplementation improved the muscles protein contents and antioxidant status as indicated by decreased lipid peroxidation and increased antioxidant enzymes levels in the liver, kidney, gills and brain of rohu. The black seed fed rohu showed decreased hepatic–nephric marker key-functioning marker enzymes levels. The histo-architecture of liver and kidney remained unchanged following black seed supplementation. Black seed is cheap and locally available in Pakistan. On the basis of the present study results, 2.5% black seed supplementation is suggested in rohu diet to increase its growth and avoid oxidative stress related losses. The results of the present study will be useful for nutritionists, aquaculturists and researchers in formulating aqua feeds. Abstract This feeding trial was conducted to investigate the effects of dietary black seed (Nigella sativa) supplementation on the growth performance, muscles proximate composition, antioxidant and histo-biochemical parameters of rohu (Labeo rohita). Fingerlings (8.503 ± 0.009 g) were fed on 0.0%, 1% and 2.5% black seed supplemented diets for 28 days. Fish sampling was done on the 7th, 14th, 21st and 28th day of experiment. The results of the present study indicated that black seed supplementation significantly increased growth performance and muscles protein contents of rohu over un-supplemented ones. Lipid peroxidation levels significantly decreased in all the studied tissues (liver, gills, kidney and brain) of black seed fed rohu, whereas the antioxidant enzymes (catalase, glutathione-S-transferase, glutathione peroxidase and reduced glutathione) activities were increased in all the studied tissues of black seed supplemented rohu at each sampling day. The hepatic-nephric marker enzymes levels were decreased for black seed fed rohu. The present study showed that tested black seed levels are safe for rohu. Black seed is cheaply available in local markets of Pakistan; therefore, based on the results of the present study, it is suggested that black seed has potential to be used as natural growth promoter and antioxidant in the diet of rohu.
Collapse
|
13
|
Abd-Elkareem M, Abou Khalil NS, Sayed AEDH. Cytoprotective effect of Nigella sativa seed on 4-nonylphenol-induced renal damage in the African catfish (Clarias gariepinus). CHEMOSPHERE 2020; 259:127379. [PMID: 32590174 DOI: 10.1016/j.chemosphere.2020.127379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
4-Nonylphenol (4-NP) is a nephrotoxic substance that is highly prevalent in aquatic environments. Nigella sativa seed (NSS) has many biological activities and is widely used throughout the world as a medicinal product. Therefore, in the present study, we investigated the cytoprotective effect of NSS on 4-NP-induced renal damage in African catfish (Clarias gariepinus). Thirty fish were divided into five equal groups: an untreated control group and four groups that were challenged with 4-NP at a dose of 0.1 mg L-1 of aquarium water and fed a basal diet supplemented with 0%, 1%, 2.5%, and 5% NSS, respectively, for 3 weeks. Histological, histochemical, and ultrastructural features of the kidney were then assessed as biomarkers for renal tissue damage. Our results confirmed that 4-NP was a potent cytotoxic agent for the kidney tissue and induced renal damage, with 4-NP-intoxicated fish showing necrosis in the epithelial cells of the renal corpuscles, renal proximal convoluted tubules, and intertubular hematopoietic tissue, as well as loss of or a decrease in microvilli, a decrease in mitochondria, and an increase in the lysosomes in the epithelial cells of the proximal convoluted tubules. The kidneys of 4-NP-intoxicated fish also showed increased numbers of Perls' Prussian blue-positive melanomacrophage centers and intraepithelial T-lymphocytes in the proximal convoluted tubules and plasma cells. The administration of NSS to 4-NP-challenged fish significantly minimized the cytotoxic effect of 4-NP, maintaining the normal kidney structure, with concentrations of 2.5% and 5% of feed being most effective for protecting the kidney against 4-NP-induced renal damage.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Anatomy, Histology, and Embryology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
14
|
Sayed AEDH, Kotb AM, Oda S, Kashiwada S, Mitani H. Protective effect of p53 knockout on 4-nonylphenol-induced nephrotoxicity in medaka (Oryzias latipes). CHEMOSPHERE 2019; 236:124314. [PMID: 31310970 DOI: 10.1016/j.chemosphere.2019.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
In the past few decades, environmental pollutants have become common because of misused nonionic surfactants and detergents. Nonylphenol ethoxylates (NPs) are one of the most important contaminants of water. Therefore, the present study aimed to investigate the protective blocking effect of apoptosis (deficient P53 gene) on 4-nonylphenol (4-NP)-induced nephrotoxicity of medaka (Oryzias latipes). We divided 36 fish into six groups: two different control groups of wild type (Wt; Hd-rR) control and p53 (-/-) control, and four different treated with 4-nonylphenol (50 μg/L and 100 μg/L) for 15 days. Histology, immunochemistry, and TUNEL assays confirmed that 4-NP causes nephrotoxicity. Our results showed that 4-NP administration significantly disturbed the kidney structure and function and 4-NP-treated fish showed dilated glomerular vessels, had less glomerular cellular content, decreased expression of glomerular proteins, and an increased level of apoptosis compared with a Wt control group (P < 0.05). As p53 is an apoptotic inducer, some protection in p53-deficient medaka was found as nephrotoxic effects of 4-NP were minimized significantly. Our study demonstrated for the first time to our knowledge that 4-NP induces apoptosis, causing nephrotoxicity in medaka. We found that blocking apoptosis blocking was able to protect the kidney from the toxic effects of 4-NP.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71516 Assiut, Egypt
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
15
|
Gender differences in pharmacokinetics and tissue distribution of 4-n-nonylphenol in rats. Arch Toxicol 2019; 93:3121-3139. [DOI: 10.1007/s00204-019-02581-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
16
|
Abstract
Seed oil of Nigella sativa L. is a popular edible oil in Egypt. How to improve the extraction efficiency of the oil will expand the use of the resource. In this paper, the four extraction factors, particle size of the seed, liquid-seed ratio, extraction time, and temperature, were optimized by the single-factor and orthogonal experiment to increase the extraction yield and linoleic acid concentration. The results showed that the twice extraction technology could increase the oil rate of 23.55% compared with the once extraction technology. The extraction rate of the once extraction could reach 33.51% under the conditions of liquid-seed ratio: 9 : 1 mL/g, extraction temperature: 35°C, extraction time: 1 h, and particle size: 60 meshes. The optimum twice extraction conditions with the extraction rate of 43.78% were 8 : 1 ml/g, 40°C, 1.5 h, and 60 meshes. Besides, the highest concentration of linoleic acid (58.09 mg/g) was twice extraction condition with 7 : 1 mL/g, 40°C, 2 h, and 60 meshes.
Collapse
|
17
|
Mohamed WA, El-Houseiny W, Ibrahim RE, Abd-Elhakim YM. Palliative effects of zinc sulfate against the immunosuppressive, hepato- and nephrotoxic impacts of nonylphenol in Nile tilapia (Oreochromis niloticus). AQUACULTURE 2019; 504:227-238. [DOI: 10.1016/j.aquaculture.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00363-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Sayed AEDH, Abd-Elkareem M, Abou Khalil NS. Immunotoxic effects of 4-nonylphenol on Clarias gariepinus: Cytopathological changes in hepatic melanomacrophages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:83-90. [PMID: 30537592 DOI: 10.1016/j.aquatox.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023]
Abstract
Melanomacrophage centres (MMCs) play a key role in the immune response in fish. They are considered sensitive bio-monitoring structures with roles in the assessment of toxicant impacts. The aim of this study was to examine the potential histopathological effect of 4-nonylphenol (4-NP) on hepatic MMCs in Clarias gariepinus. To achieve this objective, adult male fish were divided randomly and equally into two groups: a control group and a group that was exposed to 4-NP (dissolved in water at a dose of 0.1 mg/L) for 21 days. The 4-NP-intoxicated hepatic MMCs contained numerous necrotic macrophages. Superoxide dismutase 2 was immuno-expressed in the hepatic MMCs in both groups, with no significant difference. Histomorphometric examination revealed that the sizes and numbers of MMCs were dramatically higher in the livers of 4-NP-exposed C. gariepinus than in control fish. Following 4-NP challenge, in the liver, the abundance of lipofuscin and haemosiderin pigments increased, and single-pigmented macrophages, aggregated groups of deformed red blood cells (RBCs) and macrophages were present near blood vessels and hepatic sinusoids. These results reveal that 4-NP exerts immunological effects on hepatic MMCs in C. gariepinus and support the utility of MMCs as a cytological biomarker for aquatic exposure to 4-NP.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Mahmoud Abd-Elkareem
- Anatomy, Histology and Embryology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Saleh A, Anwar MM, Zayed AE, Ezz Eldeen MES, Afifi G, Alnashiri HM, Gomaa AMS, Abd-Elkareem M, Abou-Elhamd AS, Shaheen ES, Mohamed GA, Hetta HF, Kotb AM. Impact of Ginkgo biloba extract and magnetized water on the survival rate and functional capabilities of pancreatic β-cells in type 2 diabetic rat model. Diabetes Metab Syndr Obes 2019; 12:1339-1347. [PMID: 31496771 PMCID: PMC6689767 DOI: 10.2147/dmso.s209856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a widely distributed disease that affects large population worldwide. This study aimed to verify the role of Ginkgo biloba (GB) extract and magnetized water (MW) on the survival rate and functional capabilities of pancreatic β-cells in type 2 diabetic rats. MATERIALS AND METHODS T2D was induced by feeding the rats on a high-fat diet (20% fat, 45% carbohydrate, 22% protein) for eight weeks followed by intra-peritoneal injection of a single low dose of streptozotocin (25mg/Kg). Forty rats were randomly assigned to four groups (n=10 rats) as follows: non treated control and three diabetic groups. One diabetic group served as a positive control (diabetic), while the other two groups were orally administered with water extract of GB leaves (0.11 g/kg/day) and MW (600 gauss) for four weeks, respectively. RESULTS The β-cell mass and insulin expression in these cells increased markedly after both treatments, particularly in GB treated group. In addition, the immune-expression of the two antioxidant enzymes; glutathione and superoxide dismutase 2 (SOD2) in the pancreatic tissue demonstrated a down-regulation in GB and MW treated groups as compared with the diabetic group. CONCLUSION A four-week treatment of GB and MW protected pancreatic β-cell cells and improved their insulin expression and antioxidant status in type 2 diabetic rats.
Collapse
Affiliation(s)
- Ahmed Saleh
- Department of Physics, Faculty of Science, Jazan University, Jazan, KSA
- Exploratory Center of Science and Technology
, Cairo, Egypt
| | - Mamdouh M Anwar
- Department of Pharmacology, Faculty of Pharmacy, Jazan University, Jazan, KSA
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed E Zayed
- Department of Biology, Faculty of Science, Jazan University, Jazan, KSA
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Manal El Sayed Ezz Eldeen
- Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Gamal Afifi
- Department of Physics, Faculty of Science, Jazan University, Jazan, KSA
- National Institute for Laser Enhanced Sciences, Cairo University
, Giza, Egypt
| | | | - Asmaa MS Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Alaa Sayed Abou-Elhamd
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Ghada A Mohamed
- Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Correspondence: Helal F HettaDepartment of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, 231 Albert B. Sabin Way, PO Box 670595, OH45267-0595, USAEmail
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| |
Collapse
|
21
|
Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1785614. [PMID: 29991974 PMCID: PMC6016160 DOI: 10.1155/2018/1785614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We aimed in our current study to explore the protective effect of Ginkgo biloba (GB) and magnetized water (MW) against nephrotoxicity associating induced type 2 diabetes mellitus in rat. Here, we induced diabetes by feeding our lab rats on a high fat-containing diet (4 weeks) and after that injecting them with streptozotocin (STZ). We randomly divided forty rats into four different groups: nontreated control (Ctrl), nontreated diabetic (Diabetic), Diabetic+GB (4-week treatment), and Diabetic+MW (4-week treatment). After the experiment was finished, serum and kidney tissue samples were gathered. Blood levels of glucose, triglycerides, cholesterol, creatinine, and urea were markedly elevated in the diabetic group than in the control group. In all animals treated with GB and MW, the levels of urea, creatinine, and glucose were significantly reduced (all P < 0.01). GB and MW attenuated glomerular and tubular injury as well as the histological score. Furthermore, they normalized the contents of glutathione reductase and SOD2. In summary, our data showed that GB and MW treatment protected type 2 diabetic rat kidneys from nephrotoxic damages by reducing the hyperlipidemia, uremia, oxidative stress, and renal dysfunction.
Collapse
|