1
|
Yin M, Lancia M, Zhang Y, Qiu W, Zheng C. Experimental and modeling insights into mixing-limited reactive transport in heterogeneous porous media: Role of stagnant zones. WATER RESEARCH 2024; 266:122383. [PMID: 39265213 DOI: 10.1016/j.watres.2024.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The understanding of mixing-controlled reactive dynamics in heterogeneous porous media remains limited, presenting significant challenges for modeling subsurface contaminant transport processes and for designing cost-effective environmental remedial efforts. The complexity of accurately observing, measuring, and modeling mixing-limited reactive transport has led to inadequate exploration of these critical processes. This study investigates the mixing and reaction kinetics affected by stagnant zones, which are commonly found in alluvial aquifers-aquitards and fracture-matrix systems. By conducting experiments involving conservative and bimolecular reactive transport through porous media within translucent chambers filled with two sizes of glass beads and under varying flow rates, we explored the effects of grain size and hydrodynamic conditions. Using a high-resolution camera, we monitored the concentration changes of conservative and reactive tracers, with subsequent interpretation through three-dimensional numerical simulations. The outcomes revealed the emergence of distinct mixing interfaces within both mobile and stagnant zones, culminating in a bi-peaked plume formation. Notably, the mixing and reaction times in media containing stagnant zones were found to be approximately 10 times longer than in homogeneous media. These findings, through experimental and modeling efforts, advance our understanding of mixing-limited reactive transport phenomena within heterogeneous media, underscoring the significant role of stagnant zones-a topic previously underexplored.
Collapse
Affiliation(s)
- Maosheng Yin
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Michele Lancia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chunmiao Zheng
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Wu Z, Wu S, Hou Y, Zhang M, Liang J, Cai C. Contrast of hydraulic conductivity induces transport of combined pollutants in high- and low-permeability systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117297. [PMID: 39520746 DOI: 10.1016/j.ecoenv.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The transport process of pollutants in the environment can be influenced by heterogeneous geologic architecture and pollutant interactions. However, there has been a lack of research on co-transport behaviors of combined pollutants in heterogeneous aquifers. In this study, a series of two-dimensional tank experiments were carried out to study the transport behavior of toluene and naphthalene in both homogeneous and heterogeneous aquifers. The results revealed that the coexisting solutes facilitated the transport of toluene and naphthalene in the homogeneous aquifers, potentially due to competitive adsorption between these compounds. In the high- and low-permeability systems, the transport rates for both toluene and naphthalene decreased while exhibiting characteristics such as early arrival, long tails, and multiple peaks. The spatial analysis of pollutant distribution indicated that hydraulic conductivity contrast played a critical role in inducing back diffusion phenomenon. Furthermore, toluene exhibited more pronounced matrix diffusion compared to naphthalene in heterogeneous aquifers, characterized by higher concentrations, wider diffusion range in low-permeability zones. And the β value for toluene is smaller than naphthalene in CTRW model, indicating that the former is more sensitive to the hydraulic conductivity contrast. This study provides novel insights into understanding the co-transport behavior of combined pollutants in heterogenous aquifers.
Collapse
Affiliation(s)
- Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Hou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Jianhong Liang
- Institute of Karst Geology, Chinese Academy of Geological Sciences/Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin, Guangxi 541004, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
He F, Xu L, Wang H, Jiang C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. TOXICS 2024; 12:773. [PMID: 39590953 PMCID: PMC11598522 DOI: 10.3390/toxics12110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
In situ chemical oxidation (ISCO) is commonly used for the remediation of contaminated sites, and molecular oxygen (O2) after activation by aquifer constituents and artificial remediation agents has displayed potential for efficient and selective removal of soil and groundwater contaminants via ISCO. In particular, Fe-based materials are actively investigated for O2 activation due to their prominent catalytic performance, wide availability, and environmental compatibility. This review provides a timely overview on O2 activation by Fe-based materials (including zero-valent iron-based materials, iron sulfides, iron (oxyhydr)oxides, and Fe-containing clay minerals) for degradation of organic pollutants. The mechanisms of O2 activation are systematically summarized, including the electron transfer pathways, reactive oxygen species formation, and the transformation of the materials during O2 activation, highlighting the effects of the coordination state of Fe atoms on the capability of the materials to activate O2. In addition, the key factors influencing the O2 activation process are analyzed, particularly the effects of organic ligands. This review deepens our understanding of the mechanisms of O2 activation by Fe-based materials and provides further insights into the application of this process for in situ remediation of organic-contaminated sites.
Collapse
Affiliation(s)
- Fangru He
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Lianrui Xu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Qiu H, Xu J, Yuan Y, Alesi EJ, Liang X, Cao B. Low-disturbance land remediation using vertical groundwater circulation well technology: The first commercial deployment in an operational chemical plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173804. [PMID: 38848922 DOI: 10.1016/j.scitotenv.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Soil and groundwater contamination by organic pollutants from chemical plants presents significant risks to both environmental and human health. We report a significant field trial where a chemical plant in operation showed soil and groundwater pollution, as verified by sampling and laboratory tests. While many remediation methods are effective, they often require the temporary shutdown of plant operations to install necessary equipment. This paper introduces a novel combination of low-disturbance contaminant remediation technologies, including groundwater circulation well (GCW), pump and treat (P&T), and in-situ chemical oxidation (ISCO) technologies, that can be applied on the premises of an active plant without halting production. The groundwater with dissolved contaminants is removed through P&T and GCW, while GCW enhances ISCO that focus on eliminating the remaining hard-to-pump contaminants. Results show: (1) after two years of remediation effort, the contaminant levels in soil and groundwater were significantly reduced; (2) the average concentration reduction rate of four contaminants, including 1,2-dichloroethane, methylbenzene, ethylbenzene, and M&P-xylene, exceeds 98 %; (3) the presented remediation strategy results in the improvement of remediation efficiency. Specifically, the concentration of 1,2-dichloroethane in observation wells dropped from 40,550.7 μg/L to 44.6 μg/L. This study offers a first-of-its-kind commercial deployment of a GCW-based remediation strategy in an active plant setting. Moreover, the combined remediation approach presented here can serve as a model for designing contaminant remediation projects that require minimal operational disruption.
Collapse
Affiliation(s)
- Huiyang Qiu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China.
| | - Yizhi Yuan
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany
| | - Xin Liang
- Jiangsu Zhongchuan Ecological Environment Co., Ltd, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
5
|
Fang Z, Ke H, Ma Y, Zhao S, Zhou R, Ma Z, Liu Z. Design optimization of groundwater circulation well based on numerical simulation and machine learning. Sci Rep 2024; 14:11506. [PMID: 38769108 PMCID: PMC11106317 DOI: 10.1038/s41598-024-62545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
The optimal design of groundwater circulation wells (GCWs) is challenging. The key to purifying groundwater using this technique is its proficiency and productivity. However, traditional numerical simulation methods are limited by long modeling times, random optimization schemes, and optimization results that are not comprehensive. To address these issues, this study introduced an innovative approach for the optimal design of a GCW using machine learning methods. The FloPy package was used to create and implement the MODFLOW and MODPATH models. Subsequently, the formulated models were employed to calculate the characteristic indicators of the effectiveness of the GCW operation, including the radius of influence (R) and the ratio of particle recovery (Pr). A detailed collection of 3000 datasets, including measures of operational efficiency and key elements in machine learning, was meticulously compiled into documents through model execution. The optimization models were trained and evaluated using multiple linear regression (MLR), artificial neural networks (ANN), and support vector machines (SVM). The models produced by the three approaches exhibited notable correlations between anticipated outcomes and datasets. For the optimal design of circulating well parameters, machine learning methods not only improve the optimization speed, but also expand the scope of parameter optimization. Consequently, these models were applied to optimize the configuration of the GCW at a site in Xi'an. The optimal scheme for R (Q = 293.17 m3/d, a = 6.09 m, L = 7.28 m) and optimal scheme for Pr (Q = 300 m3/d, a = 3.64 m, L = 1 m) were obtained. The combination of numerical simulations and machine learning is an effective tool for optimizing and predicting the GCW remediation effect.
Collapse
Affiliation(s)
- Zhang Fang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
| | - Hao Ke
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Yanling Ma
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Siyuan Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhe Ma
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhiguo Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
6
|
Zhang Z, Yang J, Gong C, Wang W, Ran B, Wang G, Zhang Q, Wang YL. Enhancing predictions of remedial reagent transport via a vertical groundwater circulation well with high-resolution aquifer characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171041. [PMID: 38369162 DOI: 10.1016/j.scitotenv.2024.171041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The vertical groundwater circulation well (GCW) is a commonly used technique in contaminated sites to remove secondary contaminants from low permeable zones. Early GCW studies often used simple subsurface hydraulic properties, such as anisotropic homogeneous aquifers or low conductivity lens/blocks, to mimic the complex subsurface heterogeneity. Although studies based on simplified representations of aquifer heterogeneity provide straightforward flow and transport information for engineering design of a GCW, they may over- or under-estimate contaminant fate and transport in the field. The objective of this study is to identify key heterogeneity factors that control the capture zone extension and to examine the extent to which the accuracy of estimated heterogeneity spatial distributions influences the prediction of remedial reagent transport. To achieve these objectives, we utilized Monte Carlo simulation to investigate the extension of the circulation zone in heterogeneous aquifers and to identify the key factors that contribute most to the variability of the circulation zone. Three commonly used geostatistical approaches (equivalent homogeneous, kriging, and highly parameterized methods) were employed to estimate the spatial distributions of key factors. The reliabilities of these estimated fields were evaluated through their remedial reagent transport predictability. The key factor analysis revealed that the mean porosity value, the variance of lnK, and the correlation length of lnK profoundly influence the lateral expansion of the capture zone. Neglecting the aquifer hydraulic conductivity heterogeneity underestimates the extension of the circulation zone and the spread of remedial reagent. Additionally, utilizing a highly parameterized approach to estimate the high-resolution K field can accurately reproduce the key remedial reagent distributions. The concentration arrival time and peak concentration are significantly improved compared to those predictions based on the equivalent homogeneous and kriged K fields.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, China; School of Water and Environment, Chang'an University, China
| | - Jingbo Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, China; School of Water and Environment, Chang'an University, China
| | - Chengcheng Gong
- Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, China; School of Water and Environment, Chang'an University, China
| | - Bin Ran
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, China; School of Water and Environment, Chang'an University, China
| | - Guangqi Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, China; School of Water and Environment, Chang'an University, China
| | - Qian Zhang
- Shaanxi Provincial Academy of Environmental Science, China
| | - Yu-Li Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan.
| |
Collapse
|
7
|
Shen D, Li L, Luo J, Jia J, Tang L, Long Y, Shentu J, Lu L, Liu W, Qi S. Enhanced removal of toluene in heterogeneous aquifers through injecting encapsulated ozone micro-nano bubble water. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133810. [PMID: 38382340 DOI: 10.1016/j.jhazmat.2024.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Lili Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Jia Jia
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310012, PR China
| | - Lu Tang
- Hangzhou Environmental Protection Co., Ltd, Hangzhou 310000, PR China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
8
|
Wu Z, Wu S, Hou Y, Cao H, Cai C. Facilitated transport of toluene and naphthalene with humic acid in high- and low-permeability systems: Role of ionic strength and cationic type. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133487. [PMID: 38219592 DOI: 10.1016/j.jhazmat.2024.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The occurrence of colloids on pollutants transport in groundwater has attracted more attention. However, the research on the regulation mechanism of colloids on combined pollutants transport in heterogeneous aquifers is limited. In this study, a series of tank experiments were conducted to systematically investigate the effects of ionic strength, and cation type on humic acid (HA) facilitated transport of toluene (TOL), and naphthalene (NAP) in high- and low-permeability systems. The results showed that HA facilitated pollutants transport in low Na+ solution. In Ca2+ solution, the presence of HA hindered pollutants transport, and the inhibition increased with the increase of ionic strength. Both in Na+ solution and low Ca2+ solution, the influence of heterogeneous structure on pollutant transport played a dominant role, and TOL and NAP had a greater transport potential in the high permeability zone (HPZ) due to the preferential flow. Whereas, deposition of HA aggregates, and electrostatic attractive interaction had negative effects on transport than groundwater flow in high Ca2+ solution. Pollutants were prone to accumulate at the bottom of the HPZ, and the top of the low permeability zone (LPZ). These new findings provide insights into the mechanism of colloids influence on the pollutants transport in heterogenous aquifer.
Collapse
Affiliation(s)
- Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yao Hou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongjian Cao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
9
|
Wei KH, Zheng YM, Sun Y, Zhao ZQ, Xi BD, He XS. Larger aggregate formed by self-assembly process of the mixture surfactants enhance the dissolution and oxidative removal of non-aqueous phase liquid contaminants in aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169532. [PMID: 38145683 DOI: 10.1016/j.scitotenv.2023.169532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Surfactants can transfer non-aqueous phase liquid (NAPL) contaminants to the aqueous phase, and enhance the removal of the latter in groundwater. However, the extensive use of surfactants causes secondary contamination and increases the non-target consumption of oxidants. It is pressing to develop a surfactant with high phase transfer efficiency and sound compatibility with oxidants to minimize the use of surfactants for groundwater remediation. The phase transfer capability of different surfactants and their binary mixtures, their enhanced KMnO4 oxidation performance for NAPL contaminants as well as influencing factors were investigated to solve the above-mentioned question. The results showed that Tween20, SDBS and BS-12 perform best in terms of phase transfer capability among nonionic, anionic and amphoteric surfactants respectively, and only SDBS and BS-12 produce a synergistic effect among the binary mixtures. The CMC of SDBS/BS-12 was lower than its ideal CMC value, and the self-assembly process of SDBS/BS-12 also formed larger aggregates, which improved the phase transfer performance. Compared to other single surfactants, the removal efficiency of petroleum hydrocarbons in the aquifer sediments was raised by 7.4-33.8 % using the mixed surfactant. The SDBS/BS-12 mixture was compatible with KMnO4 and boosted the reaction of NAPL contaminants with KMnO4 by transferring from the NAPL phase to the aqueous phase. As a result, the NAPL toluene and phenanthrene removal efficiency increased from 37 % and 29 % to 80 % and 86 % respectively. Natural organic matters inhibited the phase transfer efficiency of the SDBS/BS-12 mixture, whereas anions and monovalent cations enhanced the phase transfer capability of the mixture. High-valent cations led to precipitation in the SDBS/BS-12, which could be eliminated by adding Na2Si2O5. The SDBS/BS-12 mixture delivered the same phase transfer efficiency with the dosage of 1.73-23.07 % of other single surfactants, and its cost was equivalent to 0.25-41.7 % of the latter, thus embracing bright application prospects.
Collapse
Affiliation(s)
- Kun-Hao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Ming Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Qian Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Ciampi P, Esposito C, Bartsch E, Alesi EJ, Petrangeli Papini M. Pump-and-treat (P&T) vs groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation? ENVIRONMENTAL RESEARCH 2023; 234:116538. [PMID: 37399987 DOI: 10.1016/j.envres.2023.116538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Pump-and-treat (P&T) is commonly used to remediate contaminated groundwater sites. The scientific community is currently engaged in a debate regarding the long-term effectiveness and sustainability of P&T for groundwater remediation. This work aims to provide a quantitative comparative analysis of the performance of an alternative system to traditional P&T, to support the development of sustainable groundwater remediation plans. Two industrial sites with unique geological frameworks and contamination with dense non-aqueous phase liquid (DNAPL) and arsenic (As) respectively, were selected for the study. At both locations, attempts were made for decades to clean up groundwater contamination by pump-and-treat. In response to persistently high levels of pollutants, groundwater circulation wells (GCWs) were installed to explore the possibility of accelerating the remediation process in unconsolidated and rock deposits. This comparative evaluation focuses on the different mobilization patterns observed, resulting variations in contaminant concentration, mass discharge, and volume of extracted groundwater. To facilitate the fusion of multi-source data, including geological, hydrological, hydraulic, and chemical information, and enable the continuous extraction of time-sensitive information, a geodatabase-supported conceptual site model (CSM) is utilized as a dynamic and interactive interface. This approach is used to assess the performance of GCW and P&T at the investigated sites. At Site 1, the GCW stimulated microbiological reductive dichlorination and mobilized significantly higher 1,2-DCE concentrations than P&T, despite recirculating a smaller volume of groundwater. At Site 2, As removal rate by GCW resulted generally higher than pumping wells. One conventional well mobilized higher masses of As in the early stages of P&T. This reflected the P&T's impact on accessible contaminant pools in early operational periods. P&T withdrew a significantly larger volume of groundwater than the GCW. The outcomes unveil the diverse contaminant removal behavior characterizing two distinct remediation strategies in different geological environments, revealing the dynamics and decontamination mechanisms that feature GCWs and P&T and emphasizing the limitations of traditional groundwater extraction systems in targeting aged pollution sources. GCWs have been shown to reduce remediation time, increase mass removal, and minimize the significant water consumption associated with P&T. These benefits pave the way for more sustainable groundwater remediation approaches in various hydrogeochemical scenarios.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Ernst Bartsch
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
11
|
Guleria A, Chakma S. Mechanistic insights into contaminant transport dynamics in the saturated porous system in the presence of low permeability region using numerical simulations and temporal moment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89071-89087. [PMID: 37452242 DOI: 10.1007/s11356-023-28779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The influence of low permeability porous media (LPPM) on contaminant transport dynamics in saturated porous systems was investigated using numerical simulations and temporal moments of contaminant concentrations. Two-dimensional flow and contaminant transport simulations were conducted, considering various parameters such as longitudinal dispersivity (ranging from 15 to 60 m), the ratio of transverse to longitudinal dispersivity (ranging from 0.05 to 0.2), retardation factor (ranging from 1 to 4), and hydraulic gradient (ranging from 0.005 to 0.02) for both homogeneous and heterogeneous porous systems. The findings revealed significant differences in the transport behavior of conservative and highly reactive contaminants between the porous systems without and with the LPPM region. The center of mass of contaminant plume and peak concentration zone were observed inside the LPPM region for the heterogeneous porous system, especially during the source off-loading period. Furthermore, asymmetric distributions of the zeroth temporal moment (ZTM), mean residence time (MRT), and variance of the breakthrough curve (BTC) were observed along the longitudinal distance within the LPPM region for heterogeneous porous system, highlighting the impact of heterogeneity on contaminant plume evolution dynamics. The moment analysis results provided insights into the influence of LPPM region on time-averaged contaminant transport dynamics in adjacent porous systems. These findings can help risk managers understand the complex fate and transport dynamics in heterogeneous porous systems. Future studies could explore the modelling of multispecies contaminants in heterogeneous saturated porous systems subjected to fluctuating water table.
Collapse
Affiliation(s)
- Abhay Guleria
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
12
|
Bolhari A, Sale T. Processes governing treatment of contaminants in low permeability zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163010. [PMID: 36965716 DOI: 10.1016/j.scitotenv.2023.163010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Herein we embrace the premise that aquifers are commonly composed of transmissive and low k (permeability) zones. Contaminants stored and subsequently released from low k zones sustain aqueous phase plumes for problematic periods. Processes governing the occurrence and treatment of contaminants in low k zones are advanced via conceptual models and a laboratory tank study. A two-dimensional sand tank with interbedded low k clay layers is flushed for 92 days with water spiked with 100 mg/L fluorescein, a proxy for chlorinated solvent contamination, and 67 mg/L bromide, a conservative tracer. Given active sources, fluorescein and bromide diffuses into the clay layers. Subsequently, the tank is flushed with water for 38 days. Water only flushing illustrates how the release of contaminants stored in low k zones sustains downgradient plumes. Next, an alkaline persulfate solution (40,000 mg/L persulfate at pH 11) is delivered to the tank for eight days. A fiber optic cable, placed on the glass wall of the sand tank, and a spectrometer with an ultraviolet light source are used to track depletion of fluorescein in transmissive sand and low k clay zones through time. Lastly, the tank is flushed with water only for 69 days to evaluate the efficacy of treatment with respect to mitigating releases from low k zones. Results indicate that flushing the tank with an alkaline persulfate solution, at a laboratory-scale, was effective in depleting fluorescein in both the transmissive and low k zones. Novelly, results capture concurrent transport of reactants and contaminants in domains governed by advection in transmissive zones and diffusion in low k zones.
Collapse
Affiliation(s)
- Azadeh Bolhari
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA; University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas Sale
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Hitzelberger M, Khan NA, Mohamed RAM, Brusseau ML, Carroll KC. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13675-13685. [PMID: 36126139 PMCID: PMC9664819 DOI: 10.1021/acs.est.2c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the most common per- and polyfluoroalkyl substances (PFAS) and is a significant risk driver for these emerging contaminants of concern. A series of two-dimensional flow cell experiments was conducted to investigate the impact of flow field heterogeneity on the transport, attenuation, and mass removal of PFOS. A simplified model heterogeneous system was employed consisting of a lower-permeability fine sand lens placed within a higher-permeability coarse sand matrix. Three nonreactive tracers with different aqueous diffusion coefficients, sodium chloride, pentafluorobenzoic acid, and β-cyclodextrin, were used to characterize the influence of diffusive mass transfer on transport and for comparison to PFOS results. The results confirm that the attenuation and subsequent mass removal of the nonreactive tracers and PFOS were influenced by mass transfer between the hydraulically less accessible zone and the coarser matrix (i.e., back diffusion). A mathematical model was used to simulate flow and transport, with the values for all input parameters determined independently. The model predictions provided good matches to the measured breakthrough curves, as well as to plots of reductions in mass flux as a function of mass removed. These results reveal the importance of molecular diffusion and pore water velocity variability even for systems with relatively minor hydraulic conductivity heterogeneity. The impacts of the diffusive mass transfer limitation were quantified using an empirical function relating reductions in contaminant mass flux (MFR) to mass removal (MR). Multi-step regression was used to quantify the nonlinear, multi-stage MFR/MR behavior observed for the heterogeneous experiments. The MFR/MR function adequately reproduced the measured data, which suggests that the MFR/MR approach can be used to evaluate PFOS removal from heterogeneous media.
Collapse
Affiliation(s)
- Michael Hitzelberger
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Naima A Khan
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Ruba A M Mohamed
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Mark L Brusseau
- University of Arizona Environmental Science Department, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenneth C Carroll
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
- University of Arizona Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Ding XH, Feng SJ, Zheng QT. Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments. WATER RESEARCH 2022; 222:118925. [PMID: 35932709 DOI: 10.1016/j.watres.2022.118925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Contaminants stored in the low permeability sediments will continue to threaten the adjacent shallow groundwater system after the aquifer is remediated. Understanding the storage and discharge behavior of contaminants in the aquitards is essential for the efficient remediation of contaminated sites, but most of the previous analytical studies focused on nonreactive solutes in a single homogenous aquitard. This study presents novel analytical solutions for the forward and back diffusion of contaminants through multi-layer low permeability sediments considering abiotic and biotic environmental degradation. Three representative source depletion patterns (i.e., instantaneous, linear, and exponential patterns) were selected to describe the dissolution of dense non-aqueous phase liquids (DNAPL) in the aquifer more realistically. At the forward diffusion stage, the mass storage of contaminants in the aquitards with the instantaneous pattern is the largest, nearly twice that with the exponential pattern. A simple equivalent homogeneous model is generally adopted in the risk assessment. However, relative to the proposed multi-layer model, it will significantly underestimate the onset of the back-diffusion of heterogeneous aquitards and overestimate the persistence of aquifer plumes. The previously-reported semi-infinite boundary assumption is also not applicable, with a maximum error of over 200% in the long-term prediction of back diffusion behavior of a thin aquitard. Moreover, when the degradation half-life is less than 16 years, less than 10% of the contaminants stored in the aquitards will diffuse into the overlying aquifer, suggesting that biostimulation or bioaugmentation can effectively mitigate back-diffusion risk. Overall, the proposed diffusion-reaction coupled model with multi-layer media is of great value and high demand in predicting the back-diffusion behavior of heterogeneous aquitards and guiding the soil bioremediation.
Collapse
Affiliation(s)
- Xiang-Hong Ding
- Department of Geotechnical Engineering, Tongji University, Si Ping Road 1239, Shanghai 200092, China.
| | - Shi-Jin Feng
- Department of Geotechnical Engineering, Tongji University, Si Ping Road 1239, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Qi-Teng Zheng
- Department of Geotechnical Engineering, Tongji University, Si Ping Road 1239, Shanghai 200092, China
| |
Collapse
|
15
|
Wei KH, Ma J, Xi BD, Yu MD, Cui J, Chen BL, Li Y, Gu QB, He XS. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128738. [PMID: 35338938 DOI: 10.1016/j.jhazmat.2022.128738] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Accidental oil leaks and spills can often result in severe soil and groundwater pollution. In situ chemical oxidation (ISCO) is a powerful and efficient remediation technology. In this review, the applications and recent advances of three commonly applied in-situ oxidants (hydrogen peroxide, persulfate, and permanganate), and the gap in remediation efficiency between lab-scale and field-scale applications is critically assessed. Feasible improvements for these measures, especially solutions for the 'rebound effect', are discussed. The removal efficiencies reported in 108 research articles related to petroleum-contaminated soil and groundwater were analyzed. The average remediation efficiency of groundwater (82.7%) by the three oxidants was higher than that of soil (65.8%). A number of factors, including non-aqueous phase liquids, adsorption effect, the aging process of contaminants, low-permeability zones, and vapor migration resulted in a decrease in the remediation efficiency and caused the residual contaminants to rebound from 19.1% of the original content to 57.7%. However, the average remediation efficiency of ISCO can be increased from 40.9% to 75.5% when combined with other techniques. In the future, improving the utilization efficiency of reactive species and enhancing the contact efficiency between oxidants and petroleum contaminants will be worthy of attention. Multi-technical combinations, such as the ISCO coupled with phase-transfer, viscosity control, controlled release or natural attenuation, can be effective methods to solve the rebound problem.
Collapse
Affiliation(s)
- Kun-Hao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Min-Da Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bao-Liang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing-Bao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
16
|
Zhang M, Dong J, Sun M, Jiang D, Sun C, Li X, Offiong NAO. Experimental study of viscosity modification coupled with phase transfer catalysis for enhanced remediation of non-aqueous phase trichloroethene polluted heterogeneous aquifer. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128452. [PMID: 35168099 DOI: 10.1016/j.jhazmat.2022.128452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The degradation of dense non-aqueous phase liquid trichloroethene in low permeability zone is a challenging issue due to limited mass transfer between water-soluble oxidants (i.e., MnO4-) and residual phase trichloroethene and the bypassing of amendments in low permeability zone. This work accomplished trichloroethene oxidation enhancement through coupling viscosity modification by using xanthan with phase transfer of MnO4- by using phase transfer catalyst (PTC). Experiments were conducted by sand columns and 2D-tanks, and results revealed that after ~11.7 g of trichloroethene was injected in each tank, the mass of trichloroethene degradation was 1.3, 5.9, 6.9 and 8.5 g in MnO4-, MnO4- + xanthan, MnO4- + PTC and MnO4- + PTC + xanthan reaction systems, respectively. Combining PTC and xanthan with MnO4- increased the rate of continuous formation of Cl-, reflected in the acceleration of heterogeneous reactions and MnO4- transport enhancement in low permeability zone by PTC and xanthan. Moreover, PTC promoted dissolved Mn (Ⅱ) and Mn (Ⅲ) formation in the process of MnO4- reduction, and thus effectively inhibited MnO2 generation. In conclusion, the results revealed that PTC and xanthan could perform their respective contributions to mass transfer and amendment transport for jointly enhanced the remediation of trichloroethene polluted heterogeneous aquifer.
Collapse
Affiliation(s)
- Mengyue Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Minglu Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Dihan Jiang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Chen Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Xinheng Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Nnanake-Abasi O Offiong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Farhat SK, Newell CJ, Lee SA, Looney BB, Falta RW. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103987. [PMID: 35286952 DOI: 10.1016/j.jconhyd.2022.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Groundwater fate and transport modeling results demonstrate that matrix diffusion plays a role in attenuating the expansion of groundwater plumes of "non-degrading" or highly recalcitrant compounds. This is especially significant for systems where preferred destructive attenuation processes, such as biological and abiotic degradation, are weak or ineffective for plume control. Under these conditions, models of nondestructive physical attenuation processes, traditionally dispersion or sorption, do not demonstrate sufficient plume control unless matrix diffusion is considered. Matrix diffusion has been shown to be a notable emergent impact of geological heterogeneity, typically associated with back diffusion and extending remediation timeframes through concentration tailing of the trailing edge of a plume. However, less attention has been placed on evaluating how matrix diffusion can serve as an attenuation mechanism for the leading edge of a plume of non-degrading compounds like perfluoroalkyl acids (PFAAs), including perfluorooctane sulfonate (PFOS). In this study, the REMChlor-MD model was parametrically applied to a generic unconsolidated and heterogeneous geologic site with a constant PFOS source and no degradation of PFOS in the downgradient edge of the plume. Low levels of mechanical dispersion and retardation were used in the model for three different geologic heterogeneity cases ranging from no matrix diffusion (e.g., sand only) to considerable matrix diffusion using low permeability ("low-k") layers/lenses and/or aquitards. Our analysis shows that, in theory, many non-degrading plumes may expand for significant time periods before dispersion alone would eventually stabilize the plume; however, matrix diffusion can significantly slow the rate and degree of this migration. For one 100-year travel time scenario, consideration of matrix diffusion results in a simulated PFOS plume length that is over 80% shorter than the plume length simulated without matrix diffusion. Although many non-degrading plumes may continue to slowly expand over time, matrix diffusion resulted in lower concentrations and smaller plume footprints. Modeling multiple hydrogeologic settings showed that the effect of matrix diffusion is more significant in transmissive zones containing multiple low-k lenses/layers than transmissive zones underlain and overlain by low-k aquitards. This study found that at sites with significant matrix diffusion, groundwater plumes will be shorter, will expand more slowly, and may be amenable to a physical, retention-based, Monitored Natural Attenuation (MNA) paradigm. In this case, a small "Plume Assimilative Capacity Zone" in front of the existing plume could be reserved for slow, de minimus, future expansion of a non-degrading plume. If potential receptors are protected in this scenario, then this approach is similar to allowances for expanding plumes under some existing environmental regulatory programs. Accounting for matrix diffusion may support new strategic approaches and alternative paradigms for remediation even for sites and conditions with "non-degrading" constituents such as PFAAs, metals/metalloids, and radionuclides.
Collapse
Affiliation(s)
- Shahla K Farhat
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Charles J Newell
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Sophia A Lee
- Naval Facilities Engineering and Expeditionary Warfare Center, 1000 23rd Avenue, Port Hueneme, CA 93043, United States.
| | - Brian B Looney
- Savannah River National Laboratory, Aiken, 773-42A, SC 29808, United States.
| | - Ronald W Falta
- Department of Environmental Engineering and Earth Sciences, 336 Brackett Hall, Clemson University, SC 29634, United States.
| |
Collapse
|
18
|
Borden RC, Cha KY. Evaluating the impact of back diffusion on groundwater cleanup time. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103889. [PMID: 34583230 DOI: 10.1016/j.jconhyd.2021.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Back diffusion of groundwater contaminants from low permeability (K) zones can be a major factor controlling the time to reach cleanup goals in downgradient monitor wells. We identify the aquifer and contaminant characteristics that have the greatest influence on the time (TOoM) after complete source removal for contaminant concentrations to decline by 1, 2 and 3 Orders-of-Magnitude (T1, T2 and T3). Two aquifer configurations are evaluated: (a) layered geometry (LG) with finite thickness low K layers; and (b) boundary geometry (BG) with thick semi-infinite low K boundaries. A semi-analytical modeling approach (Muskus and Falta, 2018) is used to simulate the concentration decline following source removal for a range of conditions and generate ≈21,000 independent values of T1, T2 and T3. Linear regression is applied to interpret this large dataset and develop simple relationships to estimate TOoM from three characteristic parameters - the mass residence time (TM), diffusion time (TD), and ratio of low K to high K mass storage (γ). TM is most important predictor of T1, T2 and T3 for both geometries and is equal to the combined high and low K contaminant mass divided by the mass flux, at the end of the loading period (TL). For LG, T3 is strongly influenced by TD = RLLD2/(4D*), where RL is the low K retardation factor, LD is the half-thickness of the embedded low K layers, and D* is the effective diffusion coefficient. For BG, T3 is strongly influenced by γ. Contaminant decay in low K zones can significantly reduce cleanup times when λLTD > 0.01, where λL is the effective first order decay rate in the low K zone. The 1st Damköhler (Da), equal to TM/TD, provides a useful indicator of the relative importance of back diffusion on TOoM. Back diffusion impacts are greatest on T3 when 0.01 > Da > 0.1, then decrease with increasing Da. Back diffusion has less impacts on T2, with limited influence on T1. The results are summarized in a simple conceptual model to aid in evaluating the impact of back diffusion on the time for concentrations to decline by 1-3 OoM.
Collapse
Affiliation(s)
- Robert C Borden
- North Carolina State University, Campus Box 7908, Raleigh, NC 27695, USA.
| | - Ki Young Cha
- Draper Aden Associates, 114 Edinburgh South Drive, Cary, NC 27511, USA
| |
Collapse
|
19
|
Inglis AM, Head NA, Chowdhury AIA, Nunez Garcia A, Reynolds DA, Hogberg D, Edwards E, Lomheim L, Weber K, Wallace SJ, Austrins LM, Hayman J, Auger M, Sidebottom A, Eimers J, Gerhard JI, O'Carroll DM. Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation. WATER RESEARCH 2021; 201:117305. [PMID: 34119968 DOI: 10.1016/j.watres.2021.117305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation through the injection of electron donors and bacterial cultures is effective at treating chlorinated solvent contamination. However, it has had limited application in low permeability zones where amendments cannot be delivered successfully. This field-scale study investigated the application of electrokinetics to enhance the delivery of lactate at a clay site contaminated with chlorinated solvents. Groundwater and soil samples were collected before, during and for 1 year after the 71-day field test and analyzed for a wide suite of chemical and biological parameters. Lactate was successfully delivered to all monitoring locations. Lactate emplacement resulted in the stimulation of bacterial populations, specifically within the phylum Firmicutes, which contains fermenters and strict anaerobes. This likely led to biodegradation, as the field trial resulted in significant decreases in both soil and aqueous phase chlorinated solvent concentrations. Contaminant decreases were also partially attributable to dilution, given evidence of some advective lactate flux. This research provides evidence that electrokinetically-enhanced bioremediation has potential as a treatment strategy for contaminated low permeability strata.
Collapse
Affiliation(s)
- Ainsley M Inglis
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Nicholas A Head
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Ahmed I A Chowdhury
- Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - David A Reynolds
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | - Dave Hogberg
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | - Elizabeth Edwards
- University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada
| | - Line Lomheim
- University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada
| | - Kela Weber
- Royal Military College of Canada, 13 General Crerar Crescent, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Royal Military College of Canada, 13 General Crerar Crescent, Kingston, ON K7K 7B4, Canada
| | - Leanne M Austrins
- Dow Chemical, Environmental Remediation and Compliance, Midland, MI, 48674, USA
| | | | - Marlaina Auger
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | | | - Jake Eimers
- Jacobs, 72 Victoria St S, Kitchener, N2G 4Y9, ON, Canada
| | - Jason I Gerhard
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052 Australia.
| |
Collapse
|
20
|
Mostafazadeh F, Kilanehei F, Hassanlourad M. Experimental evaluation of self-remediation mechanism by groundwater flow in unconfined aquifers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1005-1018. [PMID: 33259679 DOI: 10.1002/wer.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/01/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The main goal of this study is to investigate the effect of soil properties such as permeability on the dispersion and movement of a water dissolved contaminant in three types of soil in saturated and 2D conditions. The experimental modeling was conducted using a constructed sand box. In order to evaluate the effect of soils particle size on the distribution and self-remediation of the contaminant, three types of soil, as coarse, medium, and fine-grained sand were used. Results of experiments showed that, at the first 25% of the test time, the contaminated area reduction rate in all three specimens varies significantly, so that for the medium and coarse sand, it is 2.2 and 3 times that of fine sand, respectively. The contaminant width reduction at the first 25% of the test time was 5%, 6%, and 35% for the fine, medium, and coarse sand, respectively, while the contaminant length reduction was 13%, 18%, and 37% for the fine, medium, and coarse sand, respectively. In addition, by comparing the contaminant movement in the saturated and semi-saturated areas, it was observed that the longitudinal and transverse movement of the contaminant under the water level are almost 2.5 times of the semi-saturated area. PRACTITIONER POINTS: Reduction rate of solution area in fine, medium and coarse-grained sample are nearly convex, linear and concave-shaped, respectively. The remediation process in saturated zones is implemented in both directions with higher intensity in a shorter time than unsaturated zones. In the strip formed plumes, the volume of the self-remediation is proportional to the time intervals during the test. In the elliptic masses the self-purification amount is lower at the beginning, due to the small cross-section ending of the contamination mass.
Collapse
Affiliation(s)
- Farzad Mostafazadeh
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Fouad Kilanehei
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Mahmoud Hassanlourad
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
21
|
Esfahani SG, Valocchi AJ, Werth CJ. Using MODFLOW and RT3D to simulate diffusion and reaction without discretizing low permeability zones. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 239:103777. [PMID: 33550040 DOI: 10.1016/j.jconhyd.2021.103777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Low permeability zones (LPZs) are major sources of groundwater contamination after active remediation to remove pollutants in adjacent high permeability zones (HPZs). Slow back diffusion from LPZs to HPZs can extend management of polluted sites by decades. Numerical models are often used to simulate back diffusion, estimate cleanup times, and develop site management strategies. Sharp concentration gradients of pollutants are present at the interface between HPZs and LPZs, and hence accurate simulation requires fine grid sizes resulting in high computational burden. Since the MODFLOW family of codes is widely used in practice, we develop a new approach for modeling pollutant back diffusion using MODFLOW/RT3D that eliminates the need for fine discretization of the LPZ. Instead, the LPZ is treated as an impermeable region in MODFLOW, while in RT3D the LPZ is conceptualized as a series of immobile zones coupled with a mobile zone at the HPZ/LPZ interface. Finite volume discretization of diffusion and reaction within the LPZ is then modeled as mass transfer and reaction among several immobile species. This results in a simulation domain with significantly fewer grid cells compared to that required if all LPZs are discretized, providing potential for improved computational efficiency. Cases, including a layer of HPZ over an LPZ, a thin/thick lens of LPZ embedded in HPZ, and multiple lens of LPZs embedded in HPZ are tested by the new approach for tracer and reactive scenarios.
Collapse
Affiliation(s)
- Somayeh G Esfahani
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX 78712, United States
| | - Albert J Valocchi
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3121 Digital Computer Lab MC 250, Urbana, IL 61801, United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX 78712, United States.
| |
Collapse
|
22
|
Experimental and Numerical Study of Biochar Fixed Bed Column for the Adsorption of Arsenic from Aqueous Solutions. WATER 2021. [DOI: 10.3390/w13070915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two laboratory tests were carried out to verify the suitability of an Italian commercial biochar as an adsorbing material. The chosen contaminant, considered dissolved in groundwater, was As. The circular economic concept demands the use of such waste material. Its use has been studied in recent years on several contaminants. The possibility of using an efficient material at low cost could help the use of low-impact technologies like permeable reactive barriers (PRBs). A numerical model was used to derive the kinetic constant for two of the most used isotherms. The results are aligned with others derived from the literature, but they also indicate that the use of a large amount of biochar does not improve the efficiency of the removal. The particular origin of the biochar, together with its grain size, causes a decrease in contact time required for the adsorption. Furthermore, it is possible that a strong local decrease in the hydraulic conductibility does not allow for a correct dispersion of the flow, thereby limiting its efficiency.
Collapse
|
23
|
Optimization and Analysis of a Slow-Release Permanganate Gel for Groundwater Remediation in Porous and Low-Permeability Media. WATER 2021. [DOI: 10.3390/w13060755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Potassium permanganate (KMnO4) is a strong oxidant that can quickly destroy DNAPLs into innocuous products. Slow-release permanganate gel (SRPG), a mixture of colloidal silica (CS) and KMnO4, has been recently developed as novel treatment option for dilute and large plumes of DNAPLs in groundwater. The objective of this study was to characterize and optimize gelling and release properties of a SRPG solution in saturated porous media. It was hypothesized that CS and KMnO4 content of the SRPG constrain gelation and release duration. Batch and column tests showed that gelation could be delayed through manipulation of the KMnO4 content. In column tests, silica content had little effect on the gelation lag stage and release rate but influenced duration of permanganate release. Flow tank tests comparing Bindzil 1440 (B-40) SRPGs with pure KMnO4 solutions under varying media conditions demonstrated that the presence of CS enhanced lateral spread and prolonged release duration of the oxidant.
Collapse
|
24
|
Liu JW, Wei KH, Xu SW, Cui J, Ma J, Xiao XL, Xi BD, He XS. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144142. [PMID: 33302075 DOI: 10.1016/j.scitotenv.2020.144142] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 05/16/2023]
Abstract
Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.
Collapse
Affiliation(s)
- Jian-Wu Liu
- Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
| | - Kun-Hao Wei
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Wei Xu
- Shengli Oilfield Company, SINOPEC, Dongying 257026, China
| | - Jun Cui
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao-Long Xiao
- Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
| | - Bei-Dou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Song He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
25
|
Muniruzzaman M, Rolle M. Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 237:103754. [PMID: 33517148 DOI: 10.1016/j.jconhyd.2020.103754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Low-permeability aquitards can significantly affect the transport, distribution, and persistence of contaminant plumes in subsurface systems. Although such low-permeability materials are often charged, the key role of charge-induced electrostatic processes during contaminant transport has not been extensively studied. This work presents a detailed investigation exploring the coupled effects of heterogeneous distribution of physical, chemical and electrostatic properties on reactive contaminant transport in field-scale groundwater systems including spatially distributed clay zones. We performed an extensive series of numerical experiments in three distinct heterogeneous sandy-clayey domains with different levels of complexity. The flow and reactive transport simulations were performed by explicitly resolving the complex velocity fields, the small-scale electrostatic processes, the compound-specific diffusive/dispersive fluxes and the chemical processes utilizing a multi-continua based reactive transport code (MMIT-Clay). In each particular domain, numerical experiments were performed focusing on both the forward and back diffusion through the sandy-clayey interfaces. The results illuminate the control of microscopic electrostatic mechanisms on macroscopic mass transfer. Coulombic interactions in the clay's diffuse layer can significantly accelerate or retard a particular species depending on its charge. Furthermore, the chemical heterogeneity plays a major role in mass storage and release during reactive transport. Neglecting such processes can lead to substantial over- or underestimation of the overall transport behavior, which underlines the need for integrated physical, chemical and electrostatic approaches to accurately describe mass transfer processes in systems including low-permeability inclusions.
Collapse
Affiliation(s)
- Muhammad Muniruzzaman
- Geological Survey of Finland, Vuorimiehentie 5, PO Box 96, 02151 Espoo, Finland; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark.
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
You X, Liu S, Dai C, Guo Y, Zhong G, Duan Y. Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140703. [PMID: 32758831 DOI: 10.1016/j.scitotenv.2020.140703] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, water quality problems that impact human health, especially groundwater pollution, have been intensely studied, and this has contributed to new ideas and policies around the world such as Low Impact Development (LID) and Superfund legislation. The fundamental to many of these problems is pollutant occurrence and migration in saturated porous media, especially in groundwater. Such environments often contain contrasting zones of high and low permeability with significant differences in hydraulic conductivity (~10-4 and 10-8 m/s, respectively). High-permeability zones (HPZs) represent the primary pathways for pollutant transport in groundwater, while low-permeability zones (LPZs) are often diffusion dominated and serve as both sinks and sources (i.e., via back-diffusion) of pollutants over many decades. In this review, concepts and mechanisms of solute source depletion, contaminant accumulation, and back-diffusion in high- and low-permeability systems are presented, and new insights gained from both experimental and numerical studies are analyzed and summarized. We find that effluent monitoring and novel image analysis techniques have been adroitly used to investigate temporal and spatial evolutions of contaminant concentration; simultaneously, mathematical models are constantly upscaled to verify, optimize and extend the experimental data. However, the spatial concentration data during back-diffusion lacks diversity due to the limitations of pollutant species in studies, the microscopic mechanisms controlling pollutant transformation are poorly understood, and the impacts of these reactions on contaminant back-diffusion are rarely considered. Hence, most simulation models have not been adequately validated and are not capable of accurately predicting pollutant fate and cleanup in realistic heterogeneous aquifers. Based on these, some hypotheses and perspectives are mentioned to promote the investigation of contaminant migration in high- and low-permeability systems in groundwater.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Yangtze River Water Environment Key Laboratory of the Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yiping Guo
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| | - Guihui Zhong
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| |
Collapse
|
27
|
Qin X, Hua Y, Sun H, Xie J, Zhao Y. Visualization study on aniline-degrading bacteria AN-1 transport in the aquifer with the low-permeability lens. WATER RESEARCH 2020; 186:116329. [PMID: 32889365 DOI: 10.1016/j.watres.2020.116329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The geological conditions of the contaminated sites will affect the migration of microorganisms in the underground environment. In order to study the effect of low-permeability lens on bacterial transport, green fluorescent protein labeling combined with light transmission method was used to reveal the bacterial transport in the heterogeneous aquifer. The experiment has the advantages of real-time monitoring and no disturbance. The results showed that the bacteria gave priority to bypass the lens to flow away. The lens had a significant effect on hindering the bacterial transport due to adsorption and straining. The larger permeability coefficient ratio between the bulk media and the low-permeability lens was, the more obvious the obstruction was. AN-1 cannot enter the lens until the ratio decreased to the order of 102. With the increase of the flow velocity, the bacterial plume changed a lot. The higher flow velocity reduced the adsorption and retention of AN-1 to the media, resulting in some microorganisms remaining in the pores washed down. When the flow came to 2.0 m·d-1, AN-1 cannot adhere to the media due to the excessive fluid shear stress.
Collapse
Affiliation(s)
- Xueming Qin
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuduo Hua
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - He Sun
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Jiayin Xie
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yongsheng Zhao
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Hydraulic Conductivity Estimation Using Low-Flow Purging Data Elaboration in Contaminated Sites. WATER 2020. [DOI: 10.3390/w12030898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogeological characterization is required when investigating contaminated sites, and hydraulic conductivity is an important parameter that needs to be estimated. Before groundwater sampling, well water level values are measured during low-flow purging to check the correct driving of the activity. However, these data are generally considered only as an indicator of an adequate well purging. In this paper, water levels and purging flow rates were considered to estimate hydraulic conductivity values in an alluvial aquifer, and the obtained results were compared with traditional hydraulic conductivity test results carried on in the same area. To test the applicability of this method, data coming from 59 wells located in the alluvial aquifer of Malagrotta waste disposal site, a large area of 160 ha near Rome, were analyzed and processed. Hydraulic conductivity values were estimated by applying the Dupuit’s hypothesis for steady-state radial flow in an unconfined aquifer, as these are the hydraulic conditions in pumping wells for remediation purposes. This study aims to show that low-flow purging procedures in monitoring wells—carried out before sampling for groundwater characterization—represent an easy and inexpensive method for soil hydraulic conductivity estimation with good feasibility, if correctly carried on.
Collapse
|
29
|
Injection of Zerovalent Iron Gels for Aquifer Nanoremediation: Lab Experiments and Modeling. WATER 2020. [DOI: 10.3390/w12030826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the main technical problems faced during field-scale injections of iron microparticles (mZVI) for groundwater nanoremediation is related to their poor colloidal stability and mobility in porous media. In this study, a shear-thinning gel, composed of a mixture of two environmentally friendly biopolymers, i.e., guar gum and xanthan gum, was employed to overcome these limitations. The slurry rheology and particle mobility were characterized by column transport tests. Then, a radial transport experiment was performed to mimic the particle delivery in more realistic conditions. The gel, even at a low polymeric content (1.75 g/L), proved effective in enhancing the mobility of high concentrated mZVI suspensions (20 g/L) in field-like conditions. The high radius of influence (73 cm) and homogeneous iron distribution were achieved by maintaining a low injection overpressure (<0.4 bar). Based only on the information derived from column tests, the MNMs 2018 software (Micro- and Nanoparticle transport, filtration, and clogging Model-Suite) was able to predict the particle distribution and pressure build-up measured in the radial domain. Experimental and simulated results showed good agreement, thus proving that a simplified experimental-modeling procedure based on 1D column tests could be used to effectively upscale the slurry behavior to more representative scales, e.g., radial domains.
Collapse
|
30
|
Xie W, Yuan S, Tong M, Ma S, Liao W, Zhang N, Chen C. Contaminant Degradation by •OH during Sediment Oxygenation: Dependence on Fe(II) Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2975-2984. [PMID: 32023045 DOI: 10.1021/acs.est.9b04870] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been documented that contaminants could be degraded by hydroxyl radicals (•OH) produced upon oxygenation of Fe(II)-bearing sediments. However, the dependence of contaminant degradation on sediment characteristics, particularly Fe(II) species, remains elusive. Here we assessed the impact of the abundance of Fe(II) species in sediments on contaminant degradation by •OH during oxygenation. Three natural sediments with different Fe(II) contents and species were oxygenated. During 10 h oxygenation of 200 g/L sediment suspension, 2 mg/L phenol was negligibly degraded for sandbeach sediment (Fe(II): 9.11 mg/g), but was degraded by 41% and 52% for lakeshore (Fe(II): 9.81 mg/g) and farmland (Fe(II): 19.05 mg/g) sediments, respectively. •OH produced from Fe(II) oxygenation was the key reactive oxidant. Sequential extractions, X-ray diffraction, Mössbauer, and X-ray absorption spectroscopy suggest that surface-adsorbed Fe(II) and mineral structural Fe(II) contributed predominantly to •OH production and phenol degradation. Control experiments with specific Fe(II) species and coordination structure analysis collectively suggest the likely rule that Fe(II) oxidation rate and its competition for •OH increase with the increase in electron-donating ability of the atoms (i.e., O) complexed to Fe(II), while the •OH yield decreases accordingly. The Fe(II) species with a moderate oxidation rate and •OH yield is most favorable for contaminant degradation.
Collapse
Affiliation(s)
- Wenjing Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Sicong Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Wenjuan Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Na Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
31
|
You X, Liu S, Dai C, Zhong G, Duan Y, Tu Y. Acceleration and centralization of a back-diffusion process: Effects of EDTA-2Na on cadmium migration in high- and low-permeability systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135708. [PMID: 31787287 DOI: 10.1016/j.scitotenv.2019.135708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Pollutant accumulation in the low-permeability zones (LPZs) in groundwater systems is regarded as a secondary source, and its consequent back-diffusion can extend the timeframe of pump-and-treat remediation. However, the bioavailability and mobility of heavy metals and the medium characteristics can be changed during the process. This study investigated the accumulation and back-diffusion law of toxic metals and the effects of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on them by implementing a series of tank experiments. In these experiments, a cadmium solution was injected first, and deionized water or EDTA-2Na constantly washed the system consisting of different medium layers. The experimental results showed that the cadmium breakthrough curves had some concentration gradient reverse points where the curves fluctuated with elution by deionized water, which did not exist when EDTA-2Na was the eluent. In these scenarios, the mass of accumulated cadmium in the media before elution was large, with a value of 931 mg (153 mg/kg), when the low-permeability medium was clay. However, when EDTA-2Na was injected together with cadmium, the value dropped to 319 mg (52.3 mg/kg), greatly reducing the cadmium accumulation. Additionally, the use of EDTA-2Na as an eluent resulted in the appearance of a secondary peak in the breakthrough curve, showing that EDTA-2Na accelerated and centralized the back-diffusion. Notably, the reduced cadmium accumulation in LPZs with the elution by EDTA-2Na was partly due to a reduced adsorption capacity of the clay minerals. The above results can advance the technology related to pump-and-treat remediation.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Yangtze River Water Environment Key Laboratory of the Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Guihui Zhong
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
32
|
Vaezihir A, Bayanlou MB, Ahmadnezhad Z, Barzegari G. Remediation of BTEX plume in a continuous flow model using zeolite-PRB. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 230:103604. [PMID: 32005456 DOI: 10.1016/j.jconhyd.2020.103604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Adsorption is a well-known phenomenon that causes the remediation of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene). Zeolite is typically useful for the removal of BTEX from groundwater. In this study, the migration of the BTEX plume was investigated in a bench-scale tank model as a shallow aquifer. The objective of this research was to analyze the performance of a natural zeolite in-situ PRB remediation technique. Natural zeolite was applied as a physical permeable reactive barrier. In the first part of the experiment, 40 ml of BTEX as a contaminant was injected at the injection point (BI) into the sand tank. Samples were taken periodically via 14 boreholes for BTEX test for 23 days and analyzed using a GC-FID instrument. The results indicated high removal rates of BTEX by passing through the zeolite barrier. Zeolite barrier reduced the BTEX concentration up to 90% of the initial value. However, the barrier efficiency started to decrease after 132 h since pollution injection reached a minimum amount (%53 of the initial value) due to occupying the free space and grain pore where BTEX was adsorbed onto the surface of zeolite, thereby decreasing the barrier efficiency.
Collapse
Affiliation(s)
- Abdorreza Vaezihir
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
| | | | - Zeinab Ahmadnezhad
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| | - Ghodrat Barzegari
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| |
Collapse
|
33
|
Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions. MATERIALS 2019; 12:ma12223644. [PMID: 31698681 PMCID: PMC6888005 DOI: 10.3390/ma12223644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Composting is one of the most important methods of sewage sludge management. This paper describes the methods of computer image analysis used for objective comparison of the appearance of composted materials under diverse conditions in terms of size and thermal insulation of the composting chambers. The research material was a mixture of sewage sludge and barley straw. The composting process was performed under strictly controlled laboratory conditions, using 10 composting chambers with five different volumes. In half of them additional thermal insulation was used, while in the others no insulation was applied. A proper composting process run was observed only in the three chambers with the largest volume and with additional thermal insulation. The images of the materials were subjected to a wide analysis, wherein the values of 17 parameters regarding color and texture were estimated. Significant differences were observed in the appearances between materials obtained during the properly running composting processes and those obtained in the chambers of insufficient size and thermal insulation. The values of the considered parameters determined for images of the composted material under normal and abnormal conditions were significantly different from each other. Thus, these parameters may be used as indicators of a correctly conducted composting process. In the cases of 15 parameters, the values of these differences exceeded 10%, and in the cases of 10 parameters 50%, while in the cases of three parameters as much as 100%.
Collapse
|
34
|
Zhang M, Dong Y, Gao S, Cai P, Dong J. Effective stabilization and distribution of emulsified nanoscale zero-valent iron by xanthan for enhanced nitrobenzene removal. CHEMOSPHERE 2019; 223:375-382. [PMID: 30784744 DOI: 10.1016/j.chemosphere.2019.02.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The reactivity and delivery of remediants and treatment of organic contaminants in heterogeneous aquifer are particularly challenging issues for injection-based remedial treatments. Our objective was to enhance the reactivity and delivery of nanoscale zero-valent iron (nZVI) and improve the sweeping efficiency of nZVI into low permeable zones (LPZs) to reduce nitrobenzene (NB). This was accomplished by conducting batch and transport experiments that quantified NB degradation by different modified nZVI and the ability of emulsified nZVI (EZVI) or xanthan carried EZVI (XG-EZVI) to penetrate and cover a lens. By incorporating the xanthan and emulsified oil with nZVI, it possessed higher stability and stronger reactivity to reduce NB. Results showed that the stability of EZVI was improved by xanthan, and there were no adverse effects on NB removal in use of XG-EZVI at limited xanthan addition of ≦100 mg L-1. By the injection of XG-EZVI in 2D-tank experiments, the degradation of NB was 8 times that of EZVI added, while NB adsorption on media was only 1/50 of initial NB. 1205 mg of NB totally entered into the tank, the quality of aniline in effluent was approximately 90.0 mg in addition of XG-EZVI at 40 h, but not detected in presence of EZVI. The greater NB reduction by XG-EZVI resulted from higher sweeping efficiency in LPZ. These observations support the couple use of xanthan and emulsified oil for modifying nZVI as a means of achieving greater stability and reactivity and enhancing nZVI delivery into LPZs for the treatment of NB.
Collapse
Affiliation(s)
- Mengyue Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yang Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Song Gao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peiyao Cai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
35
|
Tatti F, Petrangeli Papini M, Torretta V, Mancini G, Boni MR, Viotti P. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 222:89-100. [PMID: 30878242 DOI: 10.1016/j.jconhyd.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/05/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Contaminants removal stoked inside low permeability zones of aquifers is one of the most important challenge of groundwater remediation process today. Low permeability layers can be considered persistent secondary sources of contamination because they release pollutants by molecular diffusion after primary source of contamination is reduced, causing long plum tails (Back-Diffusion). In this study, the Groundwater Circulation Well (GCW) system was investigated as an alternative remediation technology to the low efficient traditional pumping technologies to restore contaminated low permeability layers of aquifers. The GCW system creates vertical groundwater circulation cells by drawing groundwater through a screen of a multi-screen well and discharging it through another screen. The suitability of this technology to remediate contaminated low permeability zones was investigated by laboratory test and numerical simulations. The collected data were used to calibrate a model created to simulate the Back-Diffusion process and to evaluate the effect of different pumping technologies on the depletion time of that process. Results show that the efficiency of the GCW is dependent on the position and on the geometry of the low permeability zones, however the GCW system appears more suitable to restore contaminated low permeability layers of aquifers than the traditional pumping technology.
Collapse
Affiliation(s)
- Fabio Tatti
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via GB Vico 46, Varese I-21100, Italy
| | - Giuseppe Mancini
- Department of Electrıc, Electronıc and Computer Engıneerıng, University of Catania, Viale Andrea Doria 6, Catania 95126, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| | - Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
| |
Collapse
|