1
|
Nong X, Tang R, Chen L, Wei J. Contribution identification of climate change and hydro-project operation for dammed-river water level responses: A sixty-year observation study of Hanjiang River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124712. [PMID: 40073480 DOI: 10.1016/j.jenvman.2025.124712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Understanding the patterns of hydrological responses and identifying the driving factors under the combined influences of hydro-engineering and climate change is crucial for optimizing the utilization of surface water resources. This study focuses on the middle and lower reaches of the Hanjiang River (MLHR), using long-term monthly monitoring hydro-climatic data (1964-2022) from 10 national hydrometeorological stations. Integrated statistical approaches, including the Mann-Kendall (M-K) test, Standard Normal Homogeneity Test (SNHT), Worsley Likelihood Ratio Test (WLRT), and Empirical Orthogonal Function (EOF) analysis, were applied to systematically analyze the spatiotemporal characteristics of water levels and the quantitative contributions of various factors in the MLHR. The results demonstrate that, since the 1960s, significant downward trends in water levels have been observed at most of monitoring stations in the MLHR, and mutation points occurring at all stations except only one station. Fluctuations in water levels due to climatic factors such as precipitation and temperature are short-term and show relatively low correlations. The average water levels increased with mutation points emerging midstream of the Hanjiang River, primarily due to the influence of reservoir operations, while the water level at the lower reaches of the Hanjiang River exhibited a sustained decrease under similar influences. This study verified that water level variation in the MLHR is primarily attributed to hydro-engineering operations rather than climatic factors. By comprehensively evaluating the long-term trends in water level changes and quantitatively assessing the combined contributions of the operation of cascade reservoirs and climate change, this research provides valuable scientific evidence and practical guidance for managing river water resources.
Collapse
Affiliation(s)
- Xizhi Nong
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rujia Tang
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Lihua Chen
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China.
| | - Jiahua Wei
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
3
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Burkholder JM, Kinder CA, Dickey DA, Reed RE, Arellano C, James JL, Mackenzie LM, Allen EH, Lindor NL, Mathis JG, Thomas ZT. Classic indicators and diel dissolved oxygen versus trend analysis in assessing eutrophication of potable-water reservoirs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2541. [PMID: 35072953 DOI: 10.1002/eap.2541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Potable source-water reservoirs are the main water supplies in many urbanizing regions, yet their long-term responses to cultural eutrophication are poorly documented in comparison with natural lakes, creating major management uncertainties. Here, long-term discrete data (June 2006-June 2018) for classical eutrophication water quality indicators, continuous depth-profile data for dissolved oxygen (DO), and an enhanced hybrid statistical trend analysis model were used to evaluate the eutrophication status of a potable source-water reservoir. Based on classical indicators (nitrogen, N and phosphorus, P concentrations and ratios; phytoplankton biomass as chlorophyll a, chl a; and trophic state indices), the reservoir was eutrophic to hypereutrophic and stoichiometrically imbalanced. Anoxia/hypoxia occurred for 7-8 months annually systemwide, even throughout the water column for days to weeks in some years; and elevated total ammonia (up to ~900 μg tNH3 L-1 ) in surface waters from late summer/fall through late winter/early spring suggested substantial internal legacy nutrient loading. These surprising DO and tNH3 phenomena may characterize many reservoirs in urbanizing areas, and the associated cascade of negative impacts may increasingly affect them under global warming. Total organic carbon (TOC), seasonally influenced by phytoplankton biomass, commonly exceeded 6 mg L-1 , which is problematic for potable-water treatment, and significantly trended up over time. Wet-year inflow dilution influenced an apparent decreasing trend in nutrients within the hypereutrophic upper reservoir, which receives most tributary inputs. Nevertheless, significant reservoirwide trends (increasing total phosphorus [TP], phytoplankton chl a, TOC) and mid- and/or lower region trends (increasing total nitrogen [TN], tNH3 , decreasing TN:TP ratios) suggest that water quality degradation from eutrophication has worsened over time. These findings support broadly applicable recommendations to strengthen protection of potable source-water reservoirs in urbanizing watersheds: (1) protective numeric water quality criteria are needed for TOC as well as TN, TP, and chl a; (2) continuous diel data capture more realistic DO conditions than traditional sampling, and can provide important insights for water treatment managers; and (3) assessment of reservoir eutrophication status to track management progress over time should emphasize classic indicators equally as statistical trends, which are highly sensitive to short-term meteorological forcing.
Collapse
Affiliation(s)
- JoAnn M Burkholder
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Carol A Kinder
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - David A Dickey
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert E Reed
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Consuelo Arellano
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer L James
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda M Mackenzie
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Elle H Allen
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Nicole L Lindor
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Joshua G Mathis
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary T Thomas
- Center for Applied Aquatic Ecology, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Division of Water Resources, North Carolina Department of Water Quality, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Long-Term Interannual and Seasonal Links between the Nutrient Regime, Sestonic Chlorophyll and Dominant Bluegreen Algae under the Varying Intensity of Monsoon Precipitation in a Drinking Water Reservoir. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062871. [PMID: 33799714 PMCID: PMC7998934 DOI: 10.3390/ijerph18062871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Long-term variations in reservoir water chemistry could provide essential data in making sustainable water quality management decisions. Here, we analyzed the spatiotemporal variabilities of nutrients, sestonic chlorophyll-a (CHL-a), nutrient enrichment, dominant algal species, and overall chemical water health of the third-largest drinking water reservoir in South Korea during 2000-2020. Our results distinctly explained the strong influence of monsoon rainfall on spatial and annual water chemistry variations. We observed a consistent increase in the chemical oxygen demand alluding to organic matter pollutants, while a steady declining trend in the sestonic CHL-a. The long-term total phosphorus (TP) level showed a steady reduction from the riverine zone to the lacustrine area. However, a higher total coliform bacteria (TCB) was observed at the water intake tower sites. TP displayed a strong link to algal CHL-a and ambient nitrogen phosphorus ratios, suggesting a robust phosphorus-limitation state. The severe phosphorus-limitation was also corroborated by the findings of trophic state index deviation. The high and low flow dynamics exhibited the strong influence of intensive rainfall carrying many nutrients and sediments and flushing out the sestonic CHL-a. Successive eutrophic conditions prevailed along with dominating blue-green algae species (Microcystis and Anabaena). We observed a strong positive correlation (r = 0.62) between water temperature and CHL-a and between total suspended solids and TP (r = 0.65). The multi-metric water pollution index characterized the overall water quality as 'good' at all the study sites. In conclusion, the long-term spatiotemporal variabilities of the ecological functions based on the nutrient-CHL-a empirical models are regulated mainly by the intensive monsoon precipitation. The drinking water could become hazardous under the recurrent eutrophication events and chemical degradations due to uncontrolled and untreated inflow of sewage and wastewater treatment plant effluents. Therefore, we strongly advocate stringent criteria to mitigate phosphorus and organic pollutant influx for sustainable management of Daecheong Reservoir.
Collapse
|
6
|
Vašek M, Souza AT, Říha M, Kubečka J, Znachor P, Hejzlar J. Stable isotope evidence from archived fish scales indicates carbon cycle changes over the four-decade history of the Římov Reservoir (Czechia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142550. [PMID: 33049533 DOI: 10.1016/j.scitotenv.2020.142550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Using archived fish scale samples together with long-term monitoring data, this study investigates the potential of fish scales to record historical changes in the aquatic environment. We analysed stable carbon (δ13C) and nitrogen (δ15N) isotopes in the scales of two planktivorous cyprinid species collected from the meso-eutrophic Římov Reservoir, Czechia, over its entire four-decade history (1979-2016). The δ13C of the fish scales varied greatly throughout the reservoir history. The lowest δ13C values were observed immediately after the reservoir was filled in 1979, indicating that fish production at that time was likely partially supported by 13C-depleted CO2 released from the inundated soil. During the 1980s, due to the high levels of phytoplankton production stimulated by high phosphorus inputs from the catchment, the δ13C values substantially increased. However, since 1990, the δ13C values have generally decreased, reflecting a gradual reduction in reservoir primary production caused by the decreasing input of phosphorus and increasing input of dissolved organic carbon from the catchment. The δ13C of fish scales was also used to reconstruct the CO2 concentration of the surface water. The reconstructed CO2 varied significantly during the four-decade history, but it was always below the air-equilibrium concentration, suggesting that the surface water of the reservoir has consistently absorbed atmospheric carbon. The fish-scale δ15N values remained relatively stable, while slightly increasing within three years after impoundment, likely because the nitrogen supply was high throughout the studied period. Our study contributes to the growing body of literature demonstrating that stable isotope analysis of archived biological samples is a promising approach for understanding historical trends in the biogeochemistry of aquatic environments. In particular, our results highlight the potential of δ13C in archived fish scales in reconstructing carbon cycle changes and evaluating human impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Mojmír Vašek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic; Soil and Water Research Infrastructure, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| | - Jan Kubečka
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| | - Josef Hejzlar
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 37005, Czech Republic.
| |
Collapse
|
7
|
Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment. mSphere 2020; 5:5/4/e00354-20. [PMID: 32611696 PMCID: PMC7333569 DOI: 10.1128/msphere.00354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
Collapse
|
8
|
Znachor P, Nedoma J, Hejzlar J, Seďa J, Komárková J, Kolář V, Mrkvička T, Boukal DS. Changing environmental conditions underpin long-term patterns of phytoplankton in a freshwater reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135626. [PMID: 31784170 DOI: 10.1016/j.scitotenv.2019.135626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Environmental changes can exert strong pressure on freshwater biota and lead to unwanted alterations of local communities and deterioration of ecosystem services. Disentangling the links between environmental and community changes is, therefore, essential to understand and predict the impact of human activities on freshwater ecosystems. This is particularly relevant for man-made freshwater reservoirs that represent a nexus between anthropogenic, environmental, and biotic effects. Reservoir food webs depend strongly on phytoplankton dynamics, which are affected by abiotic conditions, nutrient availability and grazing pressure by zooplankton. We studied the effects of relevant environmental drivers (hydrochemistry, hydrodynamics and zooplankton) on the composition, diversity and community stability of main morpho-functional phytoplankton groups over 32 years in the Římov Reservoir (Czech Republic). Environmental conditions in the reservoir are characterised by three distinct periods (1983-89, 1990-99, and 2000-14) defined by shifts and breakpoints in temporal trends in reservoir hydrochemistry and hydraulic conditions, and we examined if and how phytoplankton responded to these abrupt changes. We found significant differences in phytoplankton composition among the three periods. Phytoplankton underwent a substantial compositional shift towards a dominance of pennate diatoms. Time-lag analysis of dissimilarity in phytoplankton composition revealed higher and stochastic annual variations until 1999, followed by a lower variability and divergence in phytoplankton composition in subsequent years. Changes in overall phytoplankton assemblage and most abundant morpho-functional phytoplankton groups were driven mainly by hydrochemical (total nitrogen) and hydrodynamic variables (inflow rate, surface level and mixing depth) and less by zooplankton dynamics. These results suggest that phytoplankton are driven primarily by nutrient input and water regime, both of which can be appropriately managed to support valuable ecosystem services provided by phytoplankton in freshwater reservoirs.
Collapse
Affiliation(s)
- Petr Znachor
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic; University of South Bohemia, Faculty of Science, Department of Ecosystem Biology & Soil and Water Research Infrastructure, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Jiří Nedoma
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic
| | - Josef Hejzlar
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic
| | - Jaromír Seďa
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic
| | - Jaroslava Komárková
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic
| | - Vojtěch Kolář
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology & Soil and Water Research Infrastructure, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Mrkvička
- Biology Centre of Czech Academy of Sciences, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice 37005, Czech Republic; Faculty of Economy, University of South Bohemia, Studentská 13, České Budějovice 37005, Czech Republic
| | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology & Soil and Water Research Infrastructure, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
9
|
Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep 2019; 9:18766. [PMID: 31822744 PMCID: PMC6904477 DOI: 10.1038/s41598-019-55210-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023] Open
Abstract
The anoxygenic phototrophic bacteria (APB) are an active component of aquatic microbial communities. While DNA-based studies have delivered a detailed picture of APB diversity, they cannot provide any information on the activity of individual species. Therefore, we focused on the expression of a photosynthetic gene by APB communities in two freshwater lakes (Cep lake and the Římov Reservoir) in the Czech Republic. First, we analyzed expression levels of pufM during the diel cycle using RT-qPCR. The transcription underwent a strong diel cycle and was inhibited during the day in both lakes. Then, we compared DNA- (total) and RNA-based (active) community composition by sequencing pufM amplicon libraries. We observed large differences in expression activity among different APB phylogroups. While the total APB community in the Římov Reservoir was dominated by Betaproteobacteria, Alphaproteobacteria prevailed in the active library. A different situation was encountered in the oligotrophic lake Cep where Betaproteobacteria (order Burkholderiales) dominated both the DNA and RNA libraries. Interestingly, in Cep lake we found smaller amounts of highly active uncultured phototrophic Chloroflexi, as well as phototrophic Gemmatimonadetes. Despite the large diversity of APB communities, light repression of pufM expression seems to be a common feature of all aerobic APB present in the studied lakes.
Collapse
|
10
|
Estimating Environmental Preferences of Freshwater Pelagic Fish Using Hydroacoustics and Satellite Remote Sensing. WATER 2019. [DOI: 10.3390/w11112226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, a remote sensing-based method of mapping and predicting fish spatial distribution in inland waters is developed. A combination of Earth Observation data, in-situ measurements, and hydroacoustics is used to relate fish biomass distribution and water-quality parameters along the longitudinal transect of the Římov Reservoir (Czech Republic) using statistical and machine learning techniques. Parameter variations and biomass distribution are estimated and validated, and apparent trends are explored and discussed, together with potential limitations and weaknesses. Water-quality parameters exhibit longitudinal gradients along the reservoir, while calculations reveal a distinct fish assemblage pattern observed as a patchy overall biomass distribution. Although the proposed methodology has a great potential for sustainable water management, careful planning is needed to ensure the simultaneous acquisition of remote sensing and in-situ data to maximize calibration accuracy.
Collapse
|
11
|
Andrei AŞ, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. THE ISME JOURNAL 2019; 13:1056-1071. [PMID: 30610231 PMCID: PMC6461901 DOI: 10.1038/s41396-018-0332-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022]
Abstract
Freshwater environments teem with microbes that do not have counterparts in culture collections or genetic data available in genomic repositories. Currently, our apprehension of evolutionary ecology of freshwater bacteria is hampered by the difficulty to establish organism models for the most representative clades. To circumvent the bottlenecks inherent to the cultivation-based techniques, we applied ecogenomics approaches in order to unravel the evolutionary history and the processes that drive genome architecture in hallmark freshwater lineages from the phylum Planctomycetes. The evolutionary history inferences showed that sediment/soil Planctomycetes transitioned to aquatic environments, where they gave rise to new freshwater-specific clades. The most abundant lineage was found to have the most specialised lifestyle (increased regulatory genetic circuits, metabolism tuned for mineralization of proteinaceous sinking aggregates, psychrotrophic behaviour) within the analysed clades and to harbour the smallest freshwater Planctomycetes genomes, highlighting a genomic architecture shaped by niche-directed evolution (through loss of functions and pathways not needed in the newly acquired freshwater niche).
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic.
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Petr Znachor
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|