1
|
Pinheiro M, Lopes C, Alves N, Almeida E, Morais H, Ribeiro M, Barros S, Raimundo J, Caetano M, Neuparth T, Santos MM. Microplastics in the deep: Suspended particles affect the model species Mytilus galloprovincialis under hyperbaric conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126195. [PMID: 40185189 DOI: 10.1016/j.envpol.2025.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Microplastics (MPs) are small plastic particles that result from the degradation of bigger fragments or introduced into the environment as primary particles. Their reduced size makes them available for ingestion by marine organisms, particularly in subtidal and deep-sea environments, which represent the largest sinks for MPs in the ocean. However, there is a lack of data regarding the effects of MPs in subtidal and deep-sea ecosystems. Thus, the present study aimed to assess the effects of MPs under hyperbaric conditions. Juvenile mussels, Mytilus galloprovincialis, were exposed to three concentrations of polyethylene MPs: 0.1, 1 and 10 mg/L, in a mixture of sizes (38-45, 75-90 and 180-212 μm), at different pressures: 1, 4 and 50 Bar, for 96 h. After exposure, the filtration rate, biochemical markers of oxidative stress and transcriptomic profile were analyzed to assess the effects of MPs. Results indicate that MPs affected functional endpoints, with a significant decrease in the filtration rate of mussels exposed to MPs at 1 mg/L and higher. Similarly, all tested oxidative stress biomarkers were affected in a treatment, concentration and pressure-dependent manner. RNA-seq analysis performed in organisms exposed to 1 mg/L of MPs at 4 Bar identified several affected signaling pathways (430 differentially expressed genes) including cellular senescence, the MAPK, RAS PI3K-Akt signaling pathways, apoptosis, among others. Overall, the results here presented corroborate the hypothesis that MPs affect exposed organisms under short-term hyperbaric conditions. These findings highlight the need to study MPs effects in subtidal and deep-sea taxa and address, in future studies, combined effects with other stressors such as contaminants that might be sorbed to the surface of the particles. These findings also indicate that improving hazard assessment of MPs under hyperbaric conditions is paramount to support risk assessment and the implementation of mitigation strategies.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Clara Lopes
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Nélson Alves
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Eunice Almeida
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Hugo Morais
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Marta Ribeiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Susana Barros
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Alam L, Pradhoshini KP, Flint RA, Sumaila UR. Deep-sea mining and its risks for social-ecological systems: Insights from simulation-based analyses. PLoS One 2025; 20:e0320888. [PMID: 40153411 PMCID: PMC11952235 DOI: 10.1371/journal.pone.0320888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
The pros and cons of deep-sea mining (DSM) is currently hotly debated. Here, we assess the environmental, economic, and social risks of DSM by comparing scenarios with and without DSM involvement. The "Without" scenario relies solely on land-based mining and circular economy solutions, while the "With" scenario incorporates DSM alongside circular strategies, highlighting the dangers of heavy DSM dependence. Through literature review and expert interviews, our study identifies key risk indicators across environmental, economic, and social dimensions, forming a comprehensive assessment framework. Through the application of qualitative data and fuzzy cognitive mapping, the analysis reveals that environmental factors are the most influential (centrality: 1.46), followed by social (1.32) and economic (1.0) factors. In the "With DSM" scenario, all indicators show increased risks, with environmental factors, particularly "coastal state vulnerability," experiencing a 13% rise. Social risks, including "violation of law," "participatory rights," "lack of effective control," and "degraded reputation," increase by 8-11%, while economic risks, such as "contractual violations," "lack of special provision," "knowledge gap on economic assistance fund" and disputes among "multiple stakeholders," see an 11% uptick. Our results suggest that the risks DSM poses to deep-sea marine ecosystems are likely too significant to justify its pursuit and advocates for circular economy solutions as viable alternatives to mitigate environmental, social, and economic risks. We recommend that policies should promote circular practices through resource recovery incentives.
Collapse
Affiliation(s)
- Lubna Alam
- Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
- Institute for Environment and Development (LESTARI), The National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | | | - U. Rashid Sumaila
- Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, BC, Canada
- Department of Agricultural Economics and Rural Development, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Vivoda V. Uncharted depths: Navigating the energy security potential of deep-sea mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122343. [PMID: 39226805 DOI: 10.1016/j.jenvman.2024.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
In the context of a global shift towards low-carbon energy systems, this paper provides an in-depth analysis of deep-sea mining's (DSM) potential role in enhancing global energy security. Addressing the growing demand for critical minerals essential for clean energy technologies, electric vehicles (EVs), and energy storage systems, the paper examines how DSM can diversify the global mineral supply and reduce reliance on geopolitically sensitive sources. It explores DSM's capacity to recalibrate energy prices, influence the competitive landscape of clean energy technologies, and shift geopolitical dynamics. The paper delves into the multi-faceted impacts of DSM on energy security, including geopolitical shifts, supply chain diversification, and environmental trade-offs. By providing a holistic view that links mineral supply security to sustainable energy transitions, this study extends beyond prior research focused mainly on the technical and environmental aspects of DSM. The findings illustrate DSM's intersection with international politics, its effect on energy pricing strategies, and the balance between resource exploitation and environmental stewardship. Strategic policy recommendations are offered to optimize DSM's benefits while minimizing its ecological impacts, aligning the emerging DSM industry with global sustainability goals. In addition to identifying challenges, the paper proposes actionable solutions, contributing a unique perspective to the discourse on DSM and energy security.
Collapse
Affiliation(s)
- Vlado Vivoda
- Centre for Social Responsibility in Mining, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Guerra A, Azevedo A, Amorim F, Soares J, Neuparth T, Santos MM, Martins I, Colaço A. Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. MARINE POLLUTION BULLETIN 2024; 199:115974. [PMID: 38176164 DOI: 10.1016/j.marpolbul.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Deep-sea hydrothermal vents host unique ecosystems but face risks of incidents with Hazardous and Noxious Substances (HNS) along busy shipping lanes such as the transatlantic route. We developed an Ecopath with Ecosim (EwE) model of the Menez Gwen (MG) vent field (MG-EwE) (Mid-Atlantic Ridge) to simulate ecosystem effects of potential accidental spills of four different HNS, using a semi-Lagrangian Dispersion Model (sLDM) coupled with the Regional Ocean Modelling System (ROMS) calibrated for the study area. Food web modelling revealed a simplified trophic structure with low energy efficiency. The MG ecosystem was vulnerable to disruptions caused by all tested HNS, yet it revealed some long-term resilience. Understanding these impacts is vital for enhancing Spill Prevention, Control, and Countermeasure plans (SPCC) in remote marine areas and developing tools to assess stressors effects on these invaluable habitats.
Collapse
Affiliation(s)
- A Guerra
- IMAR Institute of Marine Research, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal; CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Azevedo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - F Amorim
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - J Soares
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - M M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - I Martins
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| |
Collapse
|
5
|
Marassi R, Pinheiro M, Caetano M, Raimundo J, Oliveira R, Martins I, Coimbra J, Castro LFC, Neuparth T, Santos MM. Deep-sea mining: using hyperbaric conditions to study the impact of sediment plumes in the subtidal clam Spisula solida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105675-105684. [PMID: 37715912 DOI: 10.1007/s11356-023-29560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
With the growing interest to exploit mineral resources in the deep-sea, there is the need to establish guidelines and frameworks to support hazard and risk assessment schemes. The present study used a subtidal species of filter-feeding bivalve, the clam Spisula solida, as a proxy to better understand the impacts of sediment plumes in marine organisms under hyperbaric conditions. Four concentrations of suspended sediments (0 g/L, 1 g/L, 2 g/L, and 4 g/L) were used in a mixture with different grain sizes at 4 Bar for 96 h. Functional (filtration rate-FR) and biochemical endpoints (catalase-CAT, glutathione s-transferase-GST, and lipid peroxidation-LPO) were analyzed in the gonads, digestive gland, and gills of S. solida after a 96-h exposure at 4 Bar (the natural limit of the species vertical distribution). The FR showed a decreasing trend with the increasing sediment concentrations (significant effects at 2 and 4 g/L). Additionally, significant changes were observed for some of the tested oxidative stress biomarkers, which were concentration and tissue-dependent, i.e., CAT activity was significantly elevated in gills (1 g/L treatment), and GST was decreased in digestive gland (1 g/L treatment). Overall, the results show that suspended sediments, at 2 and 4 g/L, have negative functional impacts in the bivalve S. solida providing additional insights to improve hazard assessment of deep-sea mining. These findings represent a step forward to ensure the mitigation of the potential negative effects of deep-sea resource exploitation.
Collapse
Affiliation(s)
- Rithielli Marassi
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Marlene Pinheiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Miguel Caetano
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- IPMA-Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Joana Raimundo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- IPMA-Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Rui Oliveira
- IPMA-Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Irene Martins
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - João Coimbra
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Luis Filipe Costa Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
7
|
Martins I, Guerra A, Azevedo A, Harasse O, Colaço A, Xavier J, Caetano M, Carreiro-Silva M, Martins I, Neuparth T, Raimundo J, Soares J, Santos MM. A modelling framework to assess multiple metals impacts on marine food webs: Relevance for assessing the ecological implications of deep-sea mining based on a systematic review. MARINE POLLUTION BULLETIN 2023; 191:114902. [PMID: 37058834 DOI: 10.1016/j.marpolbul.2023.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Industrial deep-sea mining will release plumes containing metals that may disperse over long distances; however, there is no general understanding of metal effects on marine ecosystems. Thus, we conducted a systematic review in search of models of metal effects on aquatic biota with the future perspective to support Environmental Risk Assessment (ERA) of deep-sea mining. According to results, the use of models to study metal effects is strongly biased towards freshwater species (83% freshwater versus 14% marine); Cu, Hg, Al, Ni, Pb, Cd and Zn are the best-studied metals, and most studies target few species rather than entire food webs. We argue that these limitations restrain ERA on marine ecosystems. To overcome this gap of knowledge, we suggest future research directions and propose a modelling framework to predict the effects of metals on marine food webs, which in our view is relevant for ERA of deep-sea mining.
Collapse
Affiliation(s)
- Irene Martins
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - Alexandra Guerra
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Ana Azevedo
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Ombéline Harasse
- SeaTech Engineering School, University of Toulon, Avenue de l'Université, 83130 La Garde, France
| | - Ana Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Joana Xavier
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5006 Bergen, Norway
| | - Miguel Caetano
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães, 6, 1495-165 Lisbon, Portugal
| | - Marina Carreiro-Silva
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Inês Martins
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Joana Raimundo
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães, 6, 1495-165 Lisbon, Portugal
| | - Joana Soares
- AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Reichelt-Brushett A, Hewitt J, Kaiser S, Kim RE, Wood R. Deep seabed mining and communities: A transdisciplinary approach to ecological risk assessment in the South Pacific. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:664-673. [PMID: 34396697 DOI: 10.1002/ieam.4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea mineral extraction is a fledgling industry whose guiding principles, legislation, protocols, and regulations are still evolving. Responsible management of the industry is difficult when it is not clearly understood what biological and environmental diversity or ecosystem services may be at risk. But the industry's infancy provides an opportunity to address this challenge by stakeholder-led development and implementation of a multidisciplinary risk assessment framework. This article aims to present the findings of a workshop held in New Zealand that hosted stakeholders from a broad range of interests and regions in the South Pacific associated with the deep-sea mineral activity. The outputs provide stakeholder-informed ecological risk assessment approaches for deep-sea mining activities, identifying tools and techniques to improve the relevance of risk assessment of deep seabed mining projects to communities in the South Pacific. Discussions highlighted the importance of trust or respect among stakeholders, valuing the "life force" of the ocean, the importance of scientific data, and the complications associated with defining acceptable change. This research highlighted the need for a holistic transdisciplinary approach that connects science, management, industry, and community, an approach most likely to provide a "social license" to operate. There is also a need to revise traditional risk assessment methods to make them more relevant to stakeholders. The development of ecotoxicological tools and approaches is an example of how existing practices could be improved to better support deep-sea mineral management. A case study is provided that highlights the current challenges within the legislative framework of New Zealand. Integr Environ Assess Manag 2022;18:664-673. © 2021 SETAC.
Collapse
Affiliation(s)
- Amanda Reichelt-Brushett
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Judi Hewitt
- National Institute of Water and Atmosphere (NIWA), Auckland, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Stefanie Kaiser
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| | - Rakhyun E Kim
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Ray Wood
- Chatham Rock Phosphate, Wellington, New Zealand
| |
Collapse
|
9
|
Pinheiro M, Oliveira A, Barros S, Alves N, Raimundo J, Caetano M, Coimbra J, Neuparth T, Santos MM. Functional, biochemical and molecular impact of sediment plumes from deep-sea mining on Mytilus galloprovincialis under hyperbaric conditions. ENVIRONMENTAL RESEARCH 2021; 195:110753. [PMID: 33485911 DOI: 10.1016/j.envres.2021.110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The deep-sea is the biggest ecosystem in the world and despite the extreme conditions that characterize it, is highly biodiverse and complex. Deep-sea mining has been foreseen as a potential and concerning new stressor, and among the deep-sea mining associated stressors, sediment plumes, likely to be released into the water column as a side effect of mining, can reach habitats within a radius of more than a hundred kilometers. The present study examined the effects of suspended sediments of different grain sizes (63-125 μm, 125-250 μm and 250-500 μm) in the model species Mytilus galloprovincialis, at 4 bar, as a proxy to address the potential effects of sediment plumes, in the water column, with different grain sizes under high pressure conditions. Functional (filtration rate - FR), biochemical (catalase - CAT, glutathione s-transferase - GST, lipid peroxidation - LPO) and molecular (gene expression of [actin (ACTN), glutathione S-transferase alpha (GSTA), superoxide dismutase 2 (SOD2), catalase (CAT), heat shock protein 60 (HSP60), cytochrome c oxidase (COI) and DNA mismatch repair protein (MSH6)]) endpoints were studied in juvenile organisms. The FR decreased significantly for all tested grain size ranges, with a more severe effect for the particles with a diameter between 63 and 125 μm. In addition to the FR, significant changes were also observed for all tested biomarkers. Gene expression was significantly downregulated for CAT and ACTN. Overall, this study demonstrated that the smaller sized particles are the ones leading to more severe effects. Given their high dispersion potential and longer suspension periods under mining operation scenarios, particular attention should be given to the release of sediment plumes that may affect deep-sea environments and the water column. It is, therefore, vital to create standards and guidelines for sustainable mining practices.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Adriana Oliveira
- FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Miguel Caetano
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - João Coimbra
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
10
|
Luisetti T, Ferrini S, Grilli G, Jickells TD, Kennedy H, Kröger S, Lorenzoni I, Milligan B, van der Molen J, Parker R, Pryce T, Turner RK, Tyllianakis E. Climate action requires new accounting guidance and governance frameworks to manage carbon in shelf seas. Nat Commun 2020; 11:4599. [PMID: 32934227 PMCID: PMC7492245 DOI: 10.1038/s41467-020-18242-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Accounting guidelines exist for the recording of carbon flows in terrestrial and coastal ecosystems. Shelf sea sediments, while considered an important carbon store, have yet to receive comparable scrutiny. Here, we explore whether effective management of carbon stocks accumulating in shelf seas could contribute towards a nation's greenhouse gas emissions reduction targets. We review the complexities of carbon transport and fate in shelf seas, and the geopolitical challenges of carbon accounting in climate governance because of the transboundary nature of carbon flows in the marine environment. New international accounting guidance and governance frameworks are needed to prompt climate action.
Collapse
Affiliation(s)
- Tiziana Luisetti
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK.
| | - Silvia Ferrini
- CSERGE, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Gaetano Grilli
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
- CSERGE, School of Environmental Sciences, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Timothy D Jickells
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hilary Kennedy
- Bangor University, School of Ocean Sciences, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Silke Kröger
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Irene Lorenzoni
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ben Milligan
- University of New South Wales, Faculty of Law, The Law Building, UNSW, Sydney, NSW, 2052, Australia
| | - Johan van der Molen
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, Netherlands
| | - Ruth Parker
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - Tim Pryce
- Carbon Trust, 4th Floor, Dorset House, 27-45 Stamford Street, London, SE1 9NT, UK
| | - R Kerry Turner
- CSERGE, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Emmanouil Tyllianakis
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
- Sustainability Research Institute, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
11
|
Pinheiro M, Caetano M, Neuparth T, Barros S, Soares J, Raimundo J, Vale C, Coimbra J, Castro LFC, Santos MM. Ecotoxicology of deep-sea environments: Functional and biochemical effects of suspended sediments in the model species Mytilus galloprovincialis under hyperbaric conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:218-225. [PMID: 30903895 DOI: 10.1016/j.scitotenv.2019.03.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The deep-sea is the biggest ecosystem in the world and is characterized by extreme conditions such as high pressure, low temperatures and absence or limited light. Despite the scarce studies due to inaccessibility, these ecosystems are considered highly biodiverse. The deep-sea is subjected to anthropogenic stressors with deep-sea mining being a likely new form of disruption. Understanding how it affects the surrounding environments is paramount to develop guidelines to protect sensitive habitats and allow for responsible exploitation of resources. One of the potential stressors associated with deep-sea mining are the sediment laden plumes that can be generated during the mining process. The present study examined, for the first time, the effects of suspended sediments (0, 1, 2 and 4 g/L) in the model mussel species, Mytilus galloprovincialis, under hyperbaric conditions (1, 4 and 50 Bar). Functional endpoints, i.e. feeding assays, together with biochemical biomarkers of oxidative stress [catalase (CAT), lipid peroxidation (LPO), glutathione-s-transferase (GST) and superoxide dismutase (SOD)] were studied in juvenile mussels. The filtration rate (FR) of M. galloprovincialis decreased with the increment in the sediment concentrations, for all tested pressure conditions (1, 4 and 50 Bar). Significant alterations were also observed for all tested biomarkers, being sediment and pressure-dependent. Interestingly, pressure had an effect in GST activity, that increased in the 4 and 50 Bar experiments in comparison with the results at 1 Bar. Remarkably, filtration rates were significantly affected by pressure. These findings will support the filling of the knowledge gaps related with the hazard assessment of deep-sea mining associated stressors.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal
| | - Carlos Vale
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - João Coimbra
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
12
|
Lopes CL, Bastos L, Caetano M, Martins I, Santos MM, Iglesias I. Development of physical modelling tools in support of risk scenarios: A new framework focused on deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2294-2306. [PMID: 30292122 DOI: 10.1016/j.scitotenv.2018.09.351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Deep-sea mining has gained international interest to provide materials for the worldwide industry. European oceans and, particularly, the Portuguese Exclusive Economic Zone present a recognized number of areas with polymetallic sulphides rich in metals used in high technology developments. A large part of these resources are in the vicinity of sensitive ecosystems, where the mineral extraction can potentially damage deep-ocean life services. In this context, technological research must be intensified, towards the implementation of environmental friendly solutions that mitigate the associated impacts. To reproduce deep-sea dynamics and evaluate the effects of the mining activities, reliable numerical modelling tools should be developed. The present work highlights the usefulness of a new framework for risk and impact assessment based on oceanographic numerical models to support the adoption of good management practices for deep-sea sustainable exploitation. This tool integrates the oceanic circulation model ROMS-Agrif with the semi-Lagrangian model ICHTHYOP, allowing the representation of deep-sea dynamics and particles trajectories considering the sediments physical properties. Numerical simulations for the North Mid-Atlantic Ridge region, revealed the ability of ROMS-Agrif to simulate real deep-sea dynamics through validation with in situ data. Results showed a strong diversity in the particle residence time, with a dependency on their density and size but also on local ocean conditions and bottom topography. The highest distances are obtained for the smaller and less dense particles, although they tend to be confined by bathymetric constrains and deposited in deepest regions. This work highlights the potential of this modelling tool to forecast laden plume trajectories, allowing the definition of risk assessment scenarios for deep-sea mining activities and the implementation of sustainable exploitation plans. Furthermore, the coupling of this numerical solution with models of biota inhabiting deep-sea vent fields into ecosystem models is discussed and outlined as cost-effective tools for the management of these remote ecosystems.
Collapse
Affiliation(s)
- Carina L Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Marine and Environmental Sciences Centre (MARE), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal.
| | - Luísa Bastos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Geosciences Environment and Spatial Planning, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Miguel Caetano
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal.
| | - Irene Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U.Porto), Department of Biology, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Isabel Iglesias
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|