1
|
Li B, Wu X, Dong X, Man H, Liu C, Zou S, He J, Zang S. Soil water uptake from different depths of three tree species indicated by hydrogen and oxygen stable isotopes in the permafrost region of Northeast China. FRONTIERS IN PLANT SCIENCE 2024; 15:1444811. [PMID: 39430892 PMCID: PMC11486696 DOI: 10.3389/fpls.2024.1444811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Global warming has caused the gradual degradation of permafrost, which may affect the vegetation water uptake from different depths. However, the water utilization strategies of different vegetation species during the thawing stages of permafrost regions need further study. To elucidate these differences, we selected the permafrost region in Northeast China as study area. We analyzed the water uptake from different depths of Larix gmelinii, a deciduous coniferous tree, Pinus sylvestris var. mongolica, an evergreen tree, and Betula platyphylla, a deciduous broadleaf tree, using stable isotopes of xylem water, soil water, and precipitation from June to October 2019. The results showed that L. gmelinii primarily used shallow soil water (0-40 cm) with the highest proportion at 64.1%, B. platyphylla generally used middle soil water (40-110 cm) with the highest proportion at 55.7%, and P. sylvestris mainly used middle (40-110cm) and deep soil water (110-150 cm) with the highest proportion at 40.4% and 56.9%. The water sources from different depths exhibited more frequent changes in P. sylvestris, indicating a higher water uptake capacity from different soil depths. L. gmelinii mainly uptakes water from shallow soils, suggesting that the water uptake of this species is sensitive to permafrost degradation. This study revealed the water uptake strategies from different depths of three tree species in a permafrost region, and the results suggested that water uptake capacity of different tree species should be considered in the prediction of vegetation changes in permafrost regions under a warming climate.
Collapse
Affiliation(s)
- Biao Li
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Xiaodong Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingfeng Dong
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Haoran Man
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Chao Liu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Siyuan Zou
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Jianxiang He
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| |
Collapse
|
2
|
Dong Z, Xu Y, Liu S, Li G, Ye M, Ma X, Li S. Water uptake patterns and rooting depths of Tamarix ramosissima in the coppice dunes of the Gurbantünggüt Desert, China: a stable isotope analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1057-1066. [PMID: 39012225 DOI: 10.1111/plb.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Tamarix ramosissima has an important role in stabilizing sand dunes in desert ecosystems. Understanding the water use strategies of T. ramosissima is essential to understand its adaptations on coppice dunes. We utilized the stable isotopes δ2H and δ18O in soil water, groundwater, and xylem water to identify monthly differences in water sources. Additionally. we explored rooting depth using 2H2O as an artificial tracer. In May, T. ramosissima derived 75% of its water from shallow and middle soil layers. In July, it absorbed 90% water from middle and deep soil layers. In August and September, it acquired approximately 80% of its water from deep soil layers. The labelling using 2H as an artificial tracer indicated that the root system of T. ramosissima could reach depths >500 cm in the coppice dunes. 2H absorption was observed at depths of 100, 200, 300 and 400 cm. Soil water is the dominant water source for T. ramosissima in the coppice dunes because groundwater is at depths >30 m. The flexible water-use strategies of T. ramosissima enable it to effectively utilize different available water sources to adapt to the arid environment. These findings improve our understanding of water uptake patterns and drought adaptation strategies of T. ramosissima in the coppice dunes of desert ecosystems.
Collapse
Affiliation(s)
- Z Dong
- College of Life Science, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi, China
| | - Y Xu
- College of Life Science, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi, China
| | - S Liu
- College of Life Science, Xinjiang Normal University, Urumqi, China
| | - G Li
- College of Life Science, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Urumqi, China
| | - M Ye
- College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi, China
| | - X Ma
- College of Life Science, Xinjiang Normal University, Urumqi, China
| | - S Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
3
|
Dehghan Rahimabadi P, Azarnivand H, Faghihi V, Malekian A, Yadollahzadeh B. Analyses of water dependency of Haloxylon ammodendron in arid regions of Iran using stable isotope technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:942. [PMID: 39287704 DOI: 10.1007/s10661-024-13093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The complex relationships within desert ecosystems and their environmental conditions are reflected in patterns of plant water use. Thus, understanding the sources of water used by plants in these areas is crucial for effective resource management. In this study, we investigated the water use pattern of Haloxylon ammodendron in Semnan province, in the central plateau of Iran, using the stable isotope analysis. We employed a simple, homemade cryogenic vacuum distillation (CVD) system to directly extract water from soil samples and different plant components for subsequent analysis by mass spectrometer. The contribution of each possible water source to the plant xylem water was estimated using the IsoSource mixing model. The pattern of δ 18O values in the xylem water of H. ammodendron indicated its reliance on groundwater as a primary water resource during the wet season. Additionally, the correlation of sand particles with both δ2H and δ18O was found to be 0.32. Moreover, the δ 18O values of H. ammodendron xylem water were mainly similar to those of groundwater, suggesting the species' dominant use of groundwater. The findings of this study provide valuable insights for strategically planting H. ammodendron to mitigate impacts on groundwater resources and ensure long-term sustainability in arid and semi-arid regions.
Collapse
Affiliation(s)
| | | | - Vahideh Faghihi
- Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Arash Malekian
- Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | |
Collapse
|
4
|
Xu Y, Zhao H, Zhou B, Dong Z, Li G, Li S. Variations in water use strategies of Tamarix ramosissima at coppice dunes along a precipitation gradient in desert regions of northwest China. FRONTIERS IN PLANT SCIENCE 2024; 15:1408943. [PMID: 39148624 PMCID: PMC11325590 DOI: 10.3389/fpls.2024.1408943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Introduction The precipitation pattern has changed significantly in arid desert areas, yet it is not clear how the water use strategies of Tamarix ramosissima Ledeb. on coppice dunes along a natural precipitation gradient are affected. Methods In this study, the hydrogen and oxygen isotope compositions of xylem water, soil water, precipitation, and groundwater were measured by stable isotope techniques in Huocheng, Mosuowan, and Tazhong. Additionally, the water use strategies of natural precipitation gradient were investigated in conjunction with the MixSIAR model. Results The results indicated that the water sources of T. ramosissima exhibited significant variation from semi-arid to hyper-arid areas. In semi-arid areas, T. ramosissima mainly absorbed shallow, shallow-middle, and middle soil water; however, T. ramosissima shifted its primary water sources to middle and deep soil water in arid areas. In hyper-arid areas, it mainly utilized deep soil water and groundwater. In contrast, the water source contribution rate of T. ramosissima exhibited relative uniformity across each layer in an arid area. Notably, in hyper-arid areas, the proportion of groundwater by T. ramosissima was significantly high, reaching 60.2%. This is due to the relatively shallow groundwater supplementing the deep soil water content in the area. In conclusion, the proportion of shallow soil water decreased by 14.7% for T. ramosissima from semi-arid to hyper-arid areas, illustrating the occurrence of a gradual shift in potential water sources utilized by T. ramosissima from shallow to deep soil water and groundwater. Discussion Therefore, T. ramosissima on coppice dunes shows flexible water use strategies in relation to precipitation and groundwater, reflecting its strong environmental adaptability. The findings hold significant implications for the conservation of water resources and vegetation restoration in arid areas.
Collapse
Affiliation(s)
- Yanqin Xu
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Hui Zhao
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Binqian Zhou
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Zhengwu Dong
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Guangying Li
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Shengyu Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
5
|
Meng D, Ma J, Min X, Zang Y, Sun W. Nocturnal stomatal behaviour and its impact on water use strategies of desert herbs in the Gurbantunggut Desert, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172749. [PMID: 38670360 DOI: 10.1016/j.scitotenv.2024.172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Nocturnal stomatal behaviour has the potential to exert a profound influence on plant-water relations, especially water use efficiency. However, we know very less about plant functional type differences in nocturnal stomatal conductance and their roles in plant stress adaptation, especially drought adaptation. To address this critical knowledge gap, we assessed diel leaf gas exchanges in eight ephemeral and perennial herbs growing on the southern edge of the Gurbantunggut Desert, Northwest China. For both ephemeral and perennial herbs, the nocturnal stomatal conductance (gs) exceeded 30 % of daytime gs, except for an ephemeral herb (Malcolmia scorpioides). The nocturnal gs in the studied perennial herbs were significantly higher than it in the ephemeral herbs. The results suggest that circadian-driven stomatal priming plays a pivotal role in accelerating the attainment of steady-state gs during the morning for perennial herbs, thereby enhancing their capacity for carbon capture. Moreover, the nocturnal stomatal behaviour of the ephemeral herbs favored water retention in the morning, consequently enhanced intrinsic water use efficiency and long-term water use efficiency. In summary, plant functional type differences in the magnitude of nocturnal stomatal opening were related to differences in water acquisition and utilization and highlighted diverse water use strategies in the desert plants.
Collapse
Affiliation(s)
- Dekun Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- School of Geographical Sciences, Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, China.
| | - Xiaojun Min
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongxin Zang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| |
Collapse
|
6
|
Gui J, Li Z, Du F, Liu X, Xue J. Vegetation restoration strategies based on plant water use patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171611. [PMID: 38462013 DOI: 10.1016/j.scitotenv.2024.171611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The study on the water source of plants in alpine mountainous is of great significance to optimize the allocation and management of water resources, and can also provide important reference for ecological restoration and protection. However, the controls of water sources for different plants in alpine mountainous region remain poorly understood. Based on the advantages of stable isotope tracer and Bayesian (MixSIAR) model, the water source of plants in Qilian Mountains was quantitatively analyzed. The results showed that the water sources of plants in Qilian Mountain mainly included two parts: direct source and indirect source. The direct source is soil water, which provides most of the water that plants need. The highest contribution of soil water to shrubs was 80 %, followed by trees (73 %) and herbs (72 %). It is worth mentioning that trees mainly use deeper soil water (below 60 cm), shrubs mainly use surface and intermediate soil water (0-60 cm), and herbs mainly use surface soil water (0-40 cm). What is more noteworthy is that indirect sources, such as precipitation, glacier and snow meltwater, and groundwater, are also water sources that cannot be ignored for plant growth in study area. Shrubs and Herbs use more soil water in the range of 40-60 cm, which leads to the possibility of water competition between these two planting types. Therefore, attention should be paid to this phenomenon in the process of vegetation restoration and water resources management. Especially when planting or restoring artificial plants, it is necessary to consider the water use strategy of the two plants to avoid unnecessary water competition and water waste. This is of great significance for ecological stability and sustainable utilization of water resources in the study region.
Collapse
Affiliation(s)
- Juan Gui
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongxing Li
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China.
| | - Fa Du
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyin Liu
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian Xue
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Chen Z, Wang G, Pan Y, Shen Y, Yang X. Determination of the water-use patterns for two xerophyte shrubs by hydrogen isotope offset correction. TREE PHYSIOLOGY 2024; 44:tpad124. [PMID: 37769327 DOI: 10.1093/treephys/tpad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
The stable hydrogen and oxygen isotope technique is typically used to explore plant water uptake; however, the accuracy of the technique has been challenged by hydrogen isotope offsets between plant xylem water and its potential source water. In this study, the soil hydrogen and oxygen isotope waterline was used to correct the hydrogen isotope offsets for Salix psammophila and Caragana korshinskii, two typical shrub species on the Chinese Loess Plateau. Five different types of isotopic data [(i) δ18O, (ii) δ2H, (iii) combination δ18O with δ2H, (iv) corrected δ2H and (v) combination δ18O with corrected δ2H] were separately used to determine the water-use patterns of the two shrubs. The δ2H offset values of S. psammophila and C. korshinskii did not show significant temporal variation among the sampling months (May, July and September) but showed notable differences between the two shrubs (-0.4 ± 0.5‰ in S. psammophila vs -4.3 ± 0.9‰ in C. korshinskii). The obtained water absorption proportion (WAP) of S. psammophila in the different soil layers (0-20, 20-60 and 60-200 cm) did not differ significantly among the five different input data types. However, compared with the input data types (iii) and (v), the data types (i), (ii) and (iv) overestimated the WAP of C. korshinskii in the 0-20 cm soil layer and underestimated that in the 60-200 cm layer. The data type (iii) overestimated the WAP of C. korshinskii in 0-20 cm soil layer (25.9 ± 0.8%) in July in comparison with the WAP calculated based on data type (v) (19.1 ± 1.1%). The combination of δ18O and corrected δ2H, i.e., data type (v), was identified as the best data type to determine the water use patterns of C. korshinskii due to the strong correlation between the calculated WAP and soil water content and soil sand content. In general, S. psammophila mainly used (57.9-62.1%) shallow soil water (0-60 cm), whereas C. korshinskii mainly absorbed (52.7-63.5%) deep soil water (60-200 cm). We confirm that the hydrogen isotope offsets can cause significant errors in determining plant water uptake of C. korshinskii, and provide valuable insights for accurately quantifying plant water uptake in the presence of hydrogen isotope offsets between xylem and source water. This study is significant for facilitating the application of the stable hydrogen and oxygen isotope technique worldwide, and for revealing the response mechanism of shrub key ecohydrological and physiological processes to the drought environment in similar climate regions.
Collapse
Affiliation(s)
- Zhixue Chen
- College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
| | - Guohui Wang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, No. 489 Helan West Road, Yinchuan, Ningxia, China
| | - Yanhui Pan
- Key Laboratory of Western China's Environmental Systems, Ministry of Education, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu, China
| | - Yuying Shen
- College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
| | - Xianlong Yang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, No. 768 Jiayuguanxi Road, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Tiemuerbieke B, Ma JY, Sun W. Differential eco-physiological performance to declining groundwater depth in Central Asian C 3 and C 4 shrubs in the Gurbantunggut Desert. FRONTIERS IN PLANT SCIENCE 2024; 14:1244555. [PMID: 38312360 PMCID: PMC10835802 DOI: 10.3389/fpls.2023.1244555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Resources in water-limited ecosystems are highly variable and unpredictable, and the maintenance of functional diversity among coexisting species is a crucial ecological strategy through which plants mitigate environmental stress. The comparison of differential eco-physiological responses among co-occurring plants in harsh environments could help provide deep insights into the coexistence mechanisms of competing species. Two coexisting desert shrubs with different photosynthetic pathways (Haloxylon ammodendron and Tamarix ramosissima) were selected in the Gurbantunggut Desert located in northwest China. This study detected variations in the water sources, photosynthetic parameters, stem water status, and non-structural carbohydrates of the two shrubs at three sites with different groundwater table depths during the growing seasons of 2015 and 2016 to identify distinct eco-physiological performances in coexisting plants with different functional types under fluctuating water conditions. The water sources of H. ammodendron shifted from soil water to groundwater, while T. ramosissima extracted water mainly from deep soil layers at both sites. Significant reductions in carbon assimilation and stomatal conductance in H. ammodendron with deeper groundwater table depth were detected during most drought periods, but no significant decreases in transpiration rate were detected with declining groundwater table depth. For T. ramosissima, all of these gas exchange parameters decreased with the progression of summer drought, and their relative reduction rates were larger compared with those of H. ammodendron. The stem water status of H. ammodendron deteriorated, and the relative reduction rates of water potential increased with deeper groundwater, whereas those of T. ramosissima did not differ with greater groundwater depth. These findings indicated that prolonged drought would intensify the impact of declining groundwater depth on the eco-physiology of both shrubs, but the extent to which the shrubs would respond differed. The two shrubs were segregated along the water-carbon balance continuum: the C3 shrub T. ramosissima maximized its carbon fixation at an enormous cost of water, while greater carbon fixation was achieved with far greater water economy for H. ammodendron. These results demonstrated that the two shrubs prioritized carbon gain and water loss differently when faced with limited water sources. These mechanisms might mitigate competitive stress and enable their coexistence.
Collapse
Affiliation(s)
- Bahejiayinaer Tiemuerbieke
- Xinjiang Key Laboratory of Oasis Ecology, College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, China
| | - Jian-Ying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
9
|
Liu S, Xu G, Chen T, Wu X, Li Y. Quantifying the effects of precipitation exclusion and groundwater drawdown on functional traits of Haloxylon ammodendron - How does this xeric shrub survive the drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166945. [PMID: 37699482 DOI: 10.1016/j.scitotenv.2023.166945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The increasing frequency of drought and decline in groundwater levels are causing ecophysiological changes in woody plants, particularly in desert ecosystems in arid regions. However, the combined effects of meteorological and hydrological droughts on perennial desert plants, especially phreatophytes, remain poorly understood. To address this knowledge gap, we conducted a 5-year precipitation exclusion experiment at two sites with contrasting groundwater depths in the Gurbantunggut Desert located in northwest China. Our study aimed to investigate the impacts of precipitation exclusion and groundwater depth decline on multiple traits of H. ammodendron. We found that long-term precipitation exclusion enhanced midday leaf water potential, stomatal conductance, chlorophyll content, root nonstructural carbohydrates concentration, leaf starch concentration, but decreased water use efficiency. Groundwater drawdown decreased predawn and midday leaf water potentials, maximum net photosynthetic rate, stomatal conductance, Huber value, stem water δ18O, but enhanced water use efficiency and branch nonstructural carbohydrates concentration. A combination of precipitation exclusion and groundwater depth decline reduced Huber value, but did not show exacerbated effects. The findings demonstrate that hydrological drought induced by groundwater depth decline poses a greater threat to the survival of H. ammodendron than future changes in precipitation.
Collapse
Affiliation(s)
- Shensi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuqiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yan Li
- Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Mu X, Zheng X, Huang G, Tang L, Li Y. Responses of Ephemeral Plants to Precipitation Changes and Their Effects on Community in Central Asia Cold Desert. PLANTS (BASEL, SWITZERLAND) 2023; 12:2841. [PMID: 37570995 PMCID: PMC10421208 DOI: 10.3390/plants12152841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
In the context of global climate change, changes in precipitation patterns will have profound effects on desert plants, particularly on shallow-rooted plants, such as ephemeral plants. Therefore, we conducted an experiment on artificial control of precipitation for four dominant ephemeral plants, Erodium oxyrhinchum, Alyssum linifolium, Malcolmia scorpioides, and Hyalea pulchella, in the southern edge of Gurbantunggut Desert. We measured the importance value and some growth parameters of the four species under increased or decreased precipitation and constructed trait correlation networks for each of the four species. We also compared the response of increased or decreased precipitation to vegetation coverage. The results show that drought significantly reduced the survival rate, seed production and weight, and aboveground biomass accumulation of ephemeral plants. The four ephemeral plants showed different tolerance and response strategies to precipitation changes. E. oxyrhinchum and M. scorpioides can avoid drought by accelerating life history, and E. oxyrhinchum, A. linifolium, and H. pulchella can alleviate the negative effects of drought by adjusting leaf traits. However, the response of different species to the wet treatment was not consistent. Based on the results of the trait correlation network, we consider A. linifolium belongs to the ruderal plant, E. oxyrhinchum and M. scorpioides belong to the competitive plants, and H. pulchella belongs to the stress-tolerant plant. The outstanding trait coordination ability of E. oxyrhinchum makes it show absolute dominance in the community. This indicate that ephemeral plants can adapt to precipitation changes to a certain extent, and that distinct competitive advantages in growth or reproduction enabled species coexistence in the same ecological niche. Nevertheless, drought significantly reduces their community cover and the ecological value of ephemeral plants. These findings established the basis to predict vegetation dynamics in arid areas under precipitation changes.
Collapse
Affiliation(s)
- Xiaohan Mu
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (X.M.)
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (X.M.)
| | - Gang Huang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (X.M.)
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (X.M.)
| |
Collapse
|
11
|
Qin J, Si J, Jia B, Zhao C, Zhou D, He X, Wang C, Zhu X. Water use strategies of Ferula bungeana on mega-dunes in the Badain Jaran Desert. FRONTIERS IN PLANT SCIENCE 2022; 13:957421. [PMID: 36561438 PMCID: PMC9763701 DOI: 10.3389/fpls.2022.957421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
In desert ecosystems, ephemeral plants have developed specialized water use strategies in response to long-term natural water stress. To examine the water use strategies of desert ephemeral plants under natural extreme drought conditions, we investigated the water absorption sources, water potential, hydraulic conductivity, and water use efficiency of Ferula bungeana at different elevations on the slopes of mega-dunes in the Badain Jaran Desert, Inner Mongolia, during a period of extreme drought. We found that the water utilized by F. bungeana was mostly absorbed from the 0-60 cm soil layers (80.47 ± 4.28%). With progression of the growing season, the source of water changed from the 0-30 cm soil layer to the 30-60 cm layer. The water potentials of the leaves, stems, and roots of F. bungeana were found to be characterized by clear diurnal and monthly variation, which were restricted by water availability and the hydraulic conductivity of different parts of the plant. The root hydraulic conductivity of F. bungeana was found to be considerably greater than that of the canopy, both of which showed significant diurnal and monthly variation. The water use efficiency of F. bungeana under extreme drought conditions was relatively high, particularly during the early and late stages of the growing season. Variations in water availability led to the regulation of water uptake and an adjustment of internal water conduction, which modified plant water use efficiency. These observations tend to indicate that the water use strategies of F. bungeana are mainly associated with the growth stage of plants, whereas the distribution pattern of plants on mega-dunes appeared to have comparatively little influence. Our findings on the water use of ephemeral plants highlight the adaptive mechanisms of these plants in desert habitats and provide a theoretical basis for selecting plants suitable for the restoration and reconstruction of desert ecosystems.
Collapse
Affiliation(s)
- Jie Qin
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Si
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Bing Jia
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zhao
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dongmeng Zhou
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui He
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinglin Zhu
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
A New Method of Estimating Groundwater Evapotranspiration at Sub-Daily Scale Using Water Table Fluctuations. WATER 2022. [DOI: 10.3390/w14060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Riparian ecosystems fundamentally depend on groundwater, and accurate estimations of groundwater evapotranspiration (ETG) are important for understanding ecosystem functionality and managing regional water resources. Over the past several decades, various methods have been proposed to estimate groundwater evapotranspiration based on water table fluctuations. However, the majority of methods cannot resolve sub-daily variations in ETG. In this study, we proposed a new hydraulic theory-based ETG estimation method at a sub-daily time scale. To evaluate its performance, we employed a variety of measurements (i.e., water table levels, latent heat flux and soil water contents) at a riparian forest (T. ramosissima) in Northwest China from 25 July to 10 October in 2017. The results indicated that the proposed method can successfully estimate ETG at both sub-daily (R2 = 0.75) and daily (R2 = 0.88) time scales, but the variations in the specific yield under different water table conditions should be carefully taken into account. In addition, we investigated the seasonal variations in water uptake source of the riparian plant, and found that it had strong plasticity in water usage during the study period. That is, it consumed approximately equal amounts of soil water and groundwater when soil moisture was available, and tended to consume more groundwater for survival as the soil moisture was depleted. To verify the seasonal patterns of the water uptake of the riparian forest, systematic isotope-based studies are needed in future study.
Collapse
|
13
|
Liu R, Feng X, Li C, Ma J, Wang Y, Li Y. The Importance of Stem Photosynthesis for Two Desert Shrubs Across Different Groundwater Depths. FRONTIERS IN PLANT SCIENCE 2022; 13:804786. [PMID: 35371182 PMCID: PMC8965657 DOI: 10.3389/fpls.2022.804786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 06/01/2023]
Abstract
Water availability could alter multiple ecophysiological processes such as water use strategy, photosynthesis, and respiration, thereby modifying plant water use and carbon gain. However, a lack of field observations hinders our understanding of how water availability affects stem photosynthesis at both organ and plant levels of desert shrubs. In this study, we measured gas exchange and oxygen stable isotopes to quantify water sources, stem recycling photosynthesis, and whole-plant carbon balance in two coexisting Haloxylon species (Haloxylon ammodendron and Haloxylon persicum) at different groundwater depths in the Gurbantonggut Desert. The overall aim of the study was to analyze and quantify the important role of stem recycling photosynthesis for desert shrubs (Haloxylon species) under different groundwater depths. The results showed that (1) regardless of changes in groundwater depth, H. ammodendron consistently used groundwater and H. persicum used deep soil water as their main water source, with greater than 75% of xylem water being derived from groundwater and deep soil water for the two species, respectively; (2) stem recycling photosynthesis refixed 72-81% of the stem dark respiration, and its contribution to whole-plant carbon assimilation was 10-21% for the two species; and (3) deepened groundwater increased stem water use efficiency and its contribution to whole-plant carbon assimilation in H. persicum but not in H. ammodendron. Our study provided observational evidence that deepened groundwater depth induced H. persicum to increase stem recycling photosynthetic capacity and a greater contribution to whole-plant carbon assimilation, but this did not occur on H. ammodendron. Our study indicates that stem recycling photosynthesis may play an important role in the survival of desert shrubs in drought conditions.
Collapse
Affiliation(s)
- Ran Liu
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Xiaolong Feng
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congjuan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jie Ma
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Yugang Wang
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Yan Li
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| |
Collapse
|
14
|
Ma Q, Wang X, Chen F, Wei L, Zhang D, Jin H. Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: Storage, rate and potential. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Song Y, Liu T, Han X, Lu Y, Xu X, Wang L, Liao Z, Dong Z, Jiao R, Liang W, Liu H. Adaptive traits of three dominant desert-steppe species under grazing-related degradation: Morphology, structure, and function. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Contrasting Water Use Strategies of Tamarix ramosissima in Different Habitats in the Northwest of Loess Plateau, China. WATER 2020. [DOI: 10.3390/w12102791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.
Collapse
|
17
|
Zang YX, Min XJ, de Dios VR, Ma JY, Sun W. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137251. [PMID: 32092808 DOI: 10.1016/j.scitotenv.2020.137251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions are major drivers of ecosystem function and dynamics and their frequency is increasing under climate change. Climatic conditions interact with local microtopography, which might either buffer or exacerbate the degree of climatic stress. Here we sought to understand how extremely dry growing seasons affected the composition and productivity of desert ephemeral communities growing in sand dunes from the Gurbantunggut desert in Central Asia, and to which extent did microtopography modulate the response. We set up a rainfall manipulation study on four sand dune microtopographies and, during two consecutive years, we measured soil moisture, nutrients and texture, ephemeral layer composition, plant phenology, biomass accumulation and biomass allocation patterns for the dominant species. We observed significant biomass reductions during the extreme drought but plant community richness and composition were not affected, indicating that the composition of the ephemeral layer in this desert ecosystem may resist under extreme conditions. Additionally, extreme drought increased biomass allocation to reproductive organs of the dominant species. There were also significant microtopographic effects as the sensitivity of biomass to drought in western aspects was larger than in eastern aspects. Our results indicate that previously overlooked microtopographical differences may mediate the impact of climate change on plant communities.
Collapse
Affiliation(s)
- Yong-Xin Zang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Min
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Lleida, Spain
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China.
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China.
| |
Collapse
|
18
|
Min XJ, Zang YX, Sun W, Ma JY. Contrasting water sources and water-use efficiency in coexisting desert plants in two saline-sodic soils in northwest China. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1150-1158. [PMID: 31273898 DOI: 10.1111/plb.13028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 05/15/2023]
Abstract
Soil degradation resulting from various types of salinity is a major environmental problem, especially in arid and semiarid regions. Exploring the water-related physiological traits of halophytes is useful for understanding the mechanisms of salt tolerance. This knowledge could be used to rehabilitate degraded arid lands. To investigate whether different types of salinity influence the water sources and water-use efficiency of desert plants (Karelinia caspia, Tamarix hohenackeri, Nitraria sibirica, Phragmites australis, Alhagi sparsifolia, Suaeda microphylla, Kalidium foliatum) in natural environments, we measured leaf gas exchange, leaf carbon and xylem oxygen isotope composition and soil oxygen isotope composition at neutral saline-sodic site (NSS) and alkaline saline-sodic site (ASS) in northwest China. The studied plants had different xylem water oxygen isotope compositions (δ18 O) and foliar carbon isotope compositions (δ13 C), indicating that desert plants coexist through differentiation in water use patterns. Compared to that at the NSS site, the stem water in K. caspia, A. sparsifolia and S. microphylla was depleted in 18 O at the ASS site, which indicates that plants can switch to obtain water from deeper soil layers when suffering environmental stress from both salinity and alkalinisation. Alhagi sparsifolia had higher δ13 C at the ASS site than at the NSS site, while K. caspia and S. microphylla had lower δ13 C, which may have resulted from interspecific differences in plant alkali and salt tolerance ability. Our results suggest that under severe salinity and alkalinity, plants may exploit deeper soil water to avoid ion toxicity resulting from high concentrations of soluble salts in the superficial soil layer. In managed lands, it is vital to select and cultivate different salt-tolerant or alkali-tolerant plant species in light of local conditions.
Collapse
Affiliation(s)
- X-J Min
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang Desert Ecological Research Station, Chinese Academy of Sciences, Fukang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y-X Zang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang Desert Ecological Research Station, Chinese Academy of Sciences, Fukang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - W Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - J-Y Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang Desert Ecological Research Station, Chinese Academy of Sciences, Fukang, China
| |
Collapse
|
19
|
Deepening Rooting Depths Improve Plant Water and Carbon Status of a Xeric Tree during Summer Drought. FORESTS 2019. [DOI: 10.3390/f10070592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploring the effects of drought on trees of different sizes is an important research topic because the size-dependent mortality pattern of the major dominant species significantly affects the structure and function of plant communities. Here we studied the physiological performance and non-structural carbohydrates (NSCs) dynamics of a small xeric tree species, Haloxylon ammodendron (C.A.Mey.) of different tree size with varying rooting depth, during summer drought. We measured predawn (Ψpd) and midday (Ψm) leaf water potential, osmotic potential at saturated turgor (π100), and turgor lost point (Ψtlp), stomatal conductance (gs) at noon, maximum photochemical efficiency of photosystem II (Fv/Fm) in the morning, and NSCs concentration, from June–September. Our results demonstrated that the summer drought reduces the overall performance of physiological traits of the small young trees more than the larger adult trees. Ψpd, gs and Fv/Fm dropped larger in the small-diameter groups than the larger diameter groups. Substantial osmotic adjustments were observed in small size individuals (with lower π100 and Ψtlp) to cope with summer drought. Furthermore, mean concentration of NSCs for the leaf and shoot were higher in September than in July in every basal stem diameter classes suggested the leaf and shoot acted as reserve for NSC. However the root NSCs concentrations within each basal stem diameter class exhibited less increase in September than in the July. At the same time, the small young tress had lower root NSCs concentrations than the larger adult tree in both July and September. The contrasting root NSC concentrations across the basal stem diameter classes indicated that the roots of smaller trees may be more vulnerable to carbon starvation under non-lethal summer drought. The significant positive relationship between rooting depth and physiological traits & root NSCs concentration emphasize the importance of rooting depth in determining the seasonal variation of water status, gas exchange and NSCs.
Collapse
|
20
|
Effect of Drought and Topographic Position on Depth of Soil Water Extraction of Pinus sylvestris L. var. mongolica Litv. Trees in a Semiarid Sandy Region, Northeast China. FORESTS 2019. [DOI: 10.3390/f10050370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drought and topographic position are the most important factors influencing tree growth and survival in semiarid sandy regions of Northeast China. However, little is known about how trees respond to drought in combination with topographic position by modifying the depth of soil water extraction. Therefore, we identified water sources for 33-year-old Mongolian pine (Pinus sylvestris L. var. mongolica Litv.) trees growing at the top and bottom of sand dunes by comparing stable isotopes δ2H and δ18O in twig xylem water, soil water at various depths and groundwater during dry and wet periods. Needle carbon isotope composition (δ13C) was simultaneously measured to assess water use efficiency. Results showed that when soil moisture was low during the dry period, trees at the top used 40–300 cm soil water while trees at the bottom utilized both 40–300 cm soil water and possibly groundwater. Nevertheless, when soil moisture at 0–100 cm depth was higher during the wet period, it was the dominant water sources for trees at both the top and bottom. Moreover, needle δ13C in the dry period were significantly higher than those in the wet period. These findings suggested that trees at both the top and bottom adjust water uptake towards deeper water sources and improve their water use efficiency under drought condition. Additionally, during the dry period, trees at the top used shallower water sources compared with trees at the bottom, in combination with significantly higher needle δ13C, indicating that trees at the bottom applied a relatively more prodigal use of water by taking up deeper water (possibly groundwater) during drought conditions. Therefore, Mongolian pine trees at the top were more susceptible to suffer dieback under extreme dry years because of shallower soil water uptake and increased water restrictions. Nevertheless, a sharp decline in the groundwater level under extreme dry years had a strong negative impact on the growth and survival of Mongolian pine trees at the bottom due to their utilization of deeper water sources (possibly groundwater).
Collapse
|
21
|
Dew Yield and Its Influencing Factors at the Western Edge of Gurbantunggut Desert, China. WATER 2019. [DOI: 10.3390/w11040733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dew is a significant water resource in arid desert areas. However, information regarding dew is scarce because it is difficult to measure due to the harsh environment of locations such as Gurbantunggut Desert, China. In this study, a non-destructive field experiment was conducted from 2015 to 2018 at a desert test station located in the western edge of the Gurbantunggut Desert, using a calibrated leaf wetness sensor (LWS) to measure dew yield. The results are as follows: (1) Dew formed after sunset with the atmospheric temperature gradually dropping and evaporated after sunrise with the temperature increasing in the second morning. (2) Dew was featured as ‘high frequency and low yield’. The average daily dew yield during dew days was 0.10 mm with a daily maximum of 0.62 mm, while dew days accounted for 44% of the total monitoring days, with a monthly maximum of 25 days. Compared with rainfall, dew days were two times as frequent as rainy days, while the average annual dewfall (12.21 mm) was about 1/11th of the average annual rainfall (134.6 mm), which indicates the dew contribution to regional water balance is about 9%. (3) March–April and October–November are the main periods of dew occurrence in this region because accumulated snow begins to melt slowly in March–April, providing sufficient vapor for dew formation, and the air temperature difference between day and night in October–November is the highest in the year, meaning that the temperature drops rapidly at night, making it easier to reach the dewpoint for vapor condensation. (4) Daily dew yield (D) was positively correlated to relative humidity (RH) and the difference between soil temperature at 10 cm below the ground and surface soil temperature (Tss), and negatively correlated to wind speed (V), air temperature (Ta), surface soil temperature (Ts), cloud cover (N), dewpoint temperature (Td) and the difference between air temperature and dewpoint temperature (Tad). It should be noted that the measured values of all factors above were the average value of the overnight period. The multivariate regression equation, D = −0.705 + 0.011 ×RH− 0.006 ×N− 0.01 × V, can estimate the daily dew yield with the thresholds of the parameters, i.e., RH > 70%, N < 7 (oktas) and V < 6 m/s.
Collapse
|
22
|
Ma Y, Song X. Applying stable isotopes to determine seasonal variability in evapotranspiration partitioning of winter wheat for optimizing agricultural management practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:633-642. [PMID: 30447601 DOI: 10.1016/j.scitotenv.2018.11.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/03/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The partitioning of evapotranspiration (ET) into soil evaporation (E) and crop transpiration (T) is fundamental for accurately monitoring agro-hydrological processes, assessing crop productivity, and optimizing water management practices. In this study, the isotope tracing technique was used to partition ET of winter wheat under different irrigation (100, 160 and 240 mm) and fertilization (105, 210 and 315 kg N ha-1) treatments during the 2014 and 2015 growing seasons in Beijing, China. The correlations between seasonal ET partitioning and the leaf area index (LAI), grain yield, and water use efficiency (WUE, ratio of crop yield and ET) were investigated and agricultural management practices were optimized. The fraction of T in ET (FT) between the greening and harvest seasons was 0.82 on average and did not vary significantly among the treatments (p > 0.05). However, the values of FT during the individual growth periods ranged from 0.51 to 0.98, and they were remarkably distinct for all treatments. The seasonal variability in FT could be effectively explained via a power-law function of the LAI (FT = 0.61 LAI0.21, R2 = 0.66, p < 0.01). There was no significant relationship between FT and the grain yield or WUE (p > 0.05). The total T during the jointing-heading and heading-filling periods (Tjf) had significantly quadratic relationships with the crop yield and WUE (p < 0.01). Both the crop yield and the WUE had high values under the Tjf range of 117.5-155.8 mm. Furthermore, the WUE was higher under larger ratio of E in ET (FE) during the greening-jointing period and lower FE during the filling-harvest period. Two irrigations during the greening-jointing (20 mm) and heading-filling (80 mm) stages and one fertilization (105 kg ha-1 N) during the greening-jointing stage were determined as appropriate irrigation and fertilization schedules.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xianfang Song
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|