1
|
Du Y, Tang T, Song D, Wang R, Liu H, Du X, Dang Z, Lu G. Prediction of chlorination degradation rate of emerging contaminants based on machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125976. [PMID: 40049272 DOI: 10.1016/j.envpol.2025.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Assessing the degradation of emerging contaminants in water through chlorination is crucial for regulatory monitoring of these contaminants. In this study, we developed a machine learning model to predict the apparent second-order reaction rate constants for organic pollutants undergoing chlorination. The model was trained using second-order reaction rate constants for 587 organic pollutants, with 314 data points obtained from actual experiments, the other data points 273 came from previous studies. We evaluated ten machine learning algorithms with Modred molecular descriptors and MACCS molecular fingerprints, optimizing the hyperparameters through Bayesian optimization to enhance the predictive capability of the model. The optimized model GPR algorithm combined with molecular fingerprint model achieved R2train = 0.866 and R2test = 0.801. Subsequently, the model was fed with chemical features of four organic pollutants, and the predicted results were compared with experimentally obtained values, the deviations between predicted and experimental values were found to be 2.12%, 0.37%, 0.15%, and 14.8%, respectively, further validating the accuracy of the predictive model. SHAP analysis showed that the amino-methyl group CN(C)C had the highest feature value, demonstrating the interpretability of the model in predicting chlorine-degraded pollutants The model established in this study is more representative of real chlorination environments, providing preliminary guidance for chlorination plants on the degradation of numerous emerging contaminants lacking treatment standards and facilitating the refinement of strategies for the prevention and control of emerging contaminants.
Collapse
Affiliation(s)
- Yufan Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Dehao Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning, 530000, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zhang S, Ji Y, Manoli K, Li Y, Chen Q, Lee Y, Yu X, Feng M. Halogenated bisphenol F compounds: Chlorination-mediated formation and photochemical fate in sunlit surface water. WATER RESEARCH 2025; 272:122966. [PMID: 39700836 DOI: 10.1016/j.watres.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Halogenated bisphenol compounds are prevalent in urban water systems and may pose greater environmental risks than their bisphenol precursors. This study explored the formation of halogenated bisphenol F (BPF) in water chlorination and their subsequent transformation behaviors in receiving waters. The kinetics and pathways of BPF halogenation with chlorine, bromine, and iodine were firstly investigated. BPF chlorination followed second-order kinetics, with pH-dependent second-order rate constants (kapp) ranging from 1.0 M-1s-1 at pH 5.0 to 50.4 M-1s-1 at pH 9.0. The kapp of BPF with bromine and iodine were 4 - 5 orders of magnitude higher than those of chlorine. The degradation potential of halogenated BPF products in sunlit surface waters was also evaluated, focusing on both direct and indirect photolysis. Indirect photolysis, involving reactions with excited triplet state of CDOM (3CDOM*), •OH and 1O2, emerged as the primary degradation pathway for BPF, while both direct photolysis and indirect photolysis with 3CDOM* predominated for mono- and dihalogenated BPF products. Compared with BPF, the photodegradation of halogenated products was significantly enhanced. Photolysis experiments in wastewater-receiving wetland water demonstrated effective degradation of halogenated BPF products, highlighting the pivotal role of sunlight in their environmental fate. Overall, this study advances understanding of the formation and fate of halogenated BPF products and provides valuable insights for managing the environmental impacts of these emerging contaminants.
Collapse
Affiliation(s)
- Shengqi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Yong Li
- Guangzhou Hexin Instrument Co. Ltd., Guangzhou 510530, China
| | - Qian Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Shi S, Ye Z, Jiang J, Yan J, Yu X, Feng M. First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136172. [PMID: 39413520 DOI: 10.1016/j.jhazmat.2024.136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The worldwide detection of emerging transformation products of organic micropollutants has raised accumulating concerns owing to their unknown environmental fate and undesired toxicity. This work first explored the reaction kinetics and mechanisms of the prevalent N-acetylated sulfonamides (N4-AcSAs, the typical sulfonamide metabolites) from wastewater disinfection to solar-irradiated receiving waters. The transformation scenarios included chlorination/bromination, photodegradation, and solar/chlorine treatment. The halogenations of two N4-AcSAs (N4-acetylated sulfadiazine, N4-AcSDZ; N4-acetylated sulfamethoxazole, N4-AcSMX) were pH-dependent at pH 5.0-8.0, and the reactions between the neutral forms of oxidants and anionic N4-AcSAs dominated the process. Furthermore, solar-based photolysis significantly eliminated N4-AcSAs in small water bodies with low dissolved organic carbon levels, while the indirect photolysis mediated by hydroxyl radicals and carbonate radicals contributed the most. The presence of chlorine residues in solar-irradiated wastewater effluents promoted the decay of N4-AcSAs, in which the generated hydroxyl radicals and ozone played a major role. Product analysis suggested the main transformation patterns of N4-AcSAs during the above scenarios included electrophilic attack, bond cleavage, SO2 extrusion, hydroxylation, and rearrangement. Multiple secondary products maintained higher persistence, mobility, and toxicity to aquatic organisms than N4-AcSAs. Overall, the natural and engineered transformations of such micropollutants underlined the necessity of including their degradation products in future chemical management and risk assessment.
Collapse
Affiliation(s)
- Shuiqin Shi
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Jiayan Jiang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Junmei Yan
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
4
|
Ouyang J, Lin M, Wei F, Ling C, Lu T, Liu Y, Qi B, Hu J, He J, Zhuang G. Estimation of suspected estrogenic transformation products generated during preservative butylparaben chlorination using a simplified effect-based analysis approach. WATER RESEARCH 2024; 267:122414. [PMID: 39303581 DOI: 10.1016/j.watres.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17β-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.
Collapse
Affiliation(s)
- Jie Ouyang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Min Lin
- Hangzhou Jasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 310018, PR China
| | - Fang Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Chen Ling
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, Zhejiang 310018, PR China
| | - Tingyu Lu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Yao Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Beimeng Qi
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Hu
- Eco-In-dustrial Innovation Institute ZJUT, Quzhou 324400, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
5
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
6
|
Yoon Y, Lee Y, Cho M. Acute toxicity assessment and QSAR modeling of zebrafish embryos exposed to methyl paraben and its halogenated byproducts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122844. [PMID: 39405839 DOI: 10.1016/j.jenvman.2024.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Halogenated methyl parabens are formed readily during water chlorination, with or without bromide ion presence. However, research gaps persist in in vivo toxicological assessments of vertebrates exposed to halo-MePs. To address this gap, this study evaluated acute toxicities at 24-96 h-post-fertilization in zebrafish embryos exposed to methyl paraben and its mono- or di-halogenated derivatives, using various apical endpoints. Significant enhanced toxic effects were confirmed for halo-MePs compared to MeP on embryo coagulation (3-19 fold), heartbeat rate decrement (11-80 fold), deformity rate increment (9-68 fold), and hatching failure (4-33 fold), with parentheses indicating the determined toxic potency ratios. Moreover, halo-MePs showed a significantly higher increase in biochemical levels of reactive oxygen species, catalase, superoxide dismutase, and malondialdehyde, while acetylcholinesterase activity was inhibited compared to NT and MeP. The experimental toxic potencies (log(1/EC50 or LC50)) were compared with the predicted ones (log(1/EC50 or LC50, baseline)) using the baseline toxicity Quantitative Structure-Activity Relationship previously established for zebrafish embryos. Halo-MePs were specific (or reactive) toxicants based on their toxic ratios of more than 10 for apical endpoints including heartbeat rate, deformity rate, and hatching rate, while MeP acted as a baseline toxicant. Overall, this study presents the comprehensive toxicological assessment of halo-MePs in zebrafish embryos, contributing to an essential in vivo toxicity database for halogenated phenolic contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Younggun Yoon
- GwangJu Institute, 55, Jingoksandanjungang-ro, Gwangsan-gu, Gwangju, 62465, Republic of Korea; Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, Republic of Korea; Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Min Cho
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
7
|
Lee S, Choi Y, Lee Y. Effect of bromide on the degradation kinetics of antibiotic resistance genes during water chlorination. CHEMOSPHERE 2024; 366:143483. [PMID: 39369750 DOI: 10.1016/j.chemosphere.2024.143483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Degradation of antibiotic resistance genes (ARGs) in water chlorination can be influenced by bromide (Br-), a common component in water matrices; however, detailed kinetic information on this process is limited. This study investigated the degradation kinetics tetA and blaTEM-1 genes, contained within the plasmid pWH1266, when exposed to bromine, chlorine, and chlorine with varying concentrations of Br- across a pH range of 7.0-8.5. The degradation of four ARG amplicons, measured using quantitative polymerase chain reaction, was observed to pursue second-order kinetics with bromine, exhibiting k of 4.0 × 102 - 1.6 × 103 M-1 s-1 at pH 7.0 and 2.6 × 102 - 9.6 × 102 M-1 s-1 at pH 8.5. These k values increased linearly with the length of the ARG sequences (209-1136 bps), yielding sequence-independent k of 1.2 and 7.4 × 10-1 (M AT + GC)-1 s-1 at pH 7.0 and 8.5, respectively. The degradation rate of ARGs during chlorination increased with rising Br- concentration due to the bromine formation through the reaction between chlorine with Br-, which subsequently degrades ARGs more rapidly than chlorine. This behavior was successfully simulated using a kinetic model derived from the reaction kinetics of bromine and chlorine reactions with ARGs. The existence of dissolved organic matter extracts only marginally decreased the enhanced degradation of ARGs with Br-, while ammonia significantly inhibited this process during chlorination, both with and without Br-, due to the low reactivity of NH2Cl and NH2Br toward ARGs. These findings highlight the importance of Br- in ARG degradation during water chlorination and the need for further studies in diverse water matrices.
Collapse
Affiliation(s)
- Seunggi Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yegyun Choi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunho Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
9
|
Zhao J, Shang C, Yin R. Developing a hybrid model for predicting the reaction kinetics between chlorine and micropollutants in water. WATER RESEARCH 2023; 247:120794. [PMID: 37918199 DOI: 10.1016/j.watres.2023.120794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Understanding the reactivities of chlorine towards micropollutants is crucial for assessing the fate of micropollutants in water chlorination. In this study, we integrated machine learning with kinetic modeling to predict the reaction kinetics between micropollutants and chlorine in deionized water and real surface water. We first established a framework to predict the apparent second-order rate constants for micropollutants with chlorine by combining Morgan molecular fingerprints with machine learning algorithms. The framework was tuned using Bayesian optimization and showed high prediction accuracy. It was validated through experiments and used to predict the unreported apparent second-order rate constants for 103 emerging micropollutants with chlorine. The framework also improved the understanding of the structure-dependence of micropollutants' reactivity with chlorine. We incorporated the predicted apparent second-order rate constants into the Kintecus software to establish a hybrid model to profile the time-dependent changes of micropollutant concentrations by chlorination. The hybrid model was validated by experiments conducted in real surface water in the presence of natural organic matter. The hybrid model could predict how much micropollutants were degraded by chlorination with varied chlorine contact times and/or initial chlorine dosages. This study advances fundamental understanding of the reaction kinetics between chlorine and emerging micropollutants, and also offers a valuable tool to assess the fate of micropollutants during chlorination of drinking water.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Psoras AW, McCoy SW, Reber KP, McCurry DL, Sivey JD. Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18801-18810. [PMID: 37096875 DOI: 10.1021/acs.est.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C-Br bonds into C-Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br-) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
Collapse
Affiliation(s)
- Andrew W Psoras
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
| | - Seth W McCoy
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - John D Sivey
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
11
|
European Chemicals Agency (ECHA) and European Food Safety Authority (EFSA), Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
12
|
Penrose MT, Cobb GP. Influences of Wastewater Treatment on the Occurrence of Parabens, p-Hydroxybenzoic Acid and Their Chlorinated and Hydroxylated Transformation Products in the Brazos River (Texas, USA). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:105-118. [PMID: 37558810 DOI: 10.1007/s00244-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Parabens are ubiquitous, being found in surface waters around the world. Although little is known about the release of paraben transformation products and fate of transformation products in surface water. This study evaluates both parabens and paraben transformation products in the Brazos River upstream and downstream of a wastewater facility located in Waco, Texas. Concentrations of thirteen compounds were reported in this study, five parent parabens and eight paraben disinfection by-products. Analyte concentrations were spatially evaluated to determine if release of wastewater effluent affects their concentrations in the river. Two Brazos River tributaries were also sampled to determine if they released parabens and related compounds to the Brazos. Sampling occurred weekly for one year with at least 40 samples collected at each site. Analyses were completed for both yearly and seasonal data. Sites downstream of wastewater treatment outfalls had lower concentrations of methyl paraben during the yearly analysis and across multiple seasons in the seasonal analysis with average yearly annual methyl paraben concentrations decreasing from 0.83 ng/L at site 3 to 0.09 ng/L at site 4. Para-hydroxybenzoic acid was the compound present in greatest concentration at most sites across most seasons, with the highest average annual concentration of 10.30 ng/L at site 2. Spatial changes in para-hydroxybenzoic acid varied by season, with seasonal trends only identifiable after normalization by flow. Dichlorinated paraben concentrations increased in the river at sites downstream of wastewater treatment with a yearly average dichlorinated methyl paraben concentration of 0.490 ng/L at site 3 to 1.53 at site 4, just downstream of the major wastewater treatment plant. Concentration increases indicate that wastewater effluent contains sufficiently high dichlorinated paraben concentrations to effect concentrations downstream of effluent discharges. Dichlorinated species also persisted in the environment, with no significant decreases at sites further downstream during any season with an annual average dichlorinated methyl paraben concentration of 1.23 ng/L at site 6. Methyl paraben concentrations decreased at the site furthest downstream to a concentration of 0.081 ng/L, while dichlorinated methyl paraben concentrations remained stable with a concentration of 1.10 ng/L at the site furthest downstream. Due to the dichlorinated species being released in higher concentrations in effluent than parents and being more resistant to degradation, the dichlorinated parabens are more likely to be environmentally relevant than are parent parabens.
Collapse
Affiliation(s)
- Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
13
|
Penrose MT, Cobb GP. Evaluating seasonal differences in paraben transformation at two different wastewater treatment plants in Texas and comparing parent compound transformation to byproduct formation. WATER RESEARCH 2023; 235:119798. [PMID: 36958223 DOI: 10.1016/j.watres.2023.119798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Parabens are commonly used preservatives that are weakly estrogenic. Wastewater effluent is the greatest contributor to the spread of parabens into rivers and other surface water. While previous studies indicate parabens are well removed in wastewater treatment by way of transformation, not much is known about the paraben transformation products. This study evaluates paraben transformation and release at two different wastewater treatment plants in Texas. Paraben concentrations were quantified for influent and effluent by season and by year at both treatment plants. Both seasonal and annual transformation rates were compared between the two wastewater treatment plants. Compounds were compared to evaluate differences in transformation rates and to determine if decreases in parent product concentrations are correlated to changes in transformation product concentrations. The study took place over one year and evaluated each season. Spring had higher influent concentrations and transformation rates at treatment plant 1, while summer had higher influent concentrations and transformation rates at treatment plant 2. PHBA was present in greatest amounts in influent and effluent at both sites with average yearly influent concentrations at 223.9 pM at plant 1 and 211.4 pM at plant 2. Transformation rates of parent parabens were greater at plant 1 with concentration of all three shorter chained parabens decreasing by over 50% after treatment. Formation of dichlorinated transformation products were greater at plant 1 with concentrations of Cl2MeP increasing by 1200% after treatment and Cl2EtP increasing by 940%. While shorter chained parabens generally had a greater transformation rate, no correlations were found between decreases in methyl and ethyl parabens and the formation of their respective dichlorinated transformation products.
Collapse
Affiliation(s)
- Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, United States
| |
Collapse
|
14
|
Dos Santos Gonçalves Nascimento GC, Dusman E, da Silva Gonzalez R, Nicola JV, de Souza Moura MA, de Oliveira KM, Oliveira AKG, Bressani PA, Santo DE, Filipi ÁCK, Gomes EMV, Pokrywiecki JC, de Souza DC, Peron AP. Toxicity of methylparaben and its chlorinated derivatives to Allium cepa L. and Eisenia fetida Sav. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57850-57861. [PMID: 36971943 DOI: 10.1007/s11356-023-26539-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Methylparaben, chloro-methylparaben, and dichloro-methylparaben were evaluated in Allium cepa at 5, 10, 50, and 100 μg/L and in Eisenia fetida at 10 and 100 μg/L. In A. cepa roots, 100 μg/L methylparaben and 50 and 100 μg/L chlorinated methylparabens reduced cell proliferation, caused cellular changes, and reduced cell viability in meristems, which caused a reduction in root growth. Furthermore, they caused drastic inhibition of catalase, ascorbate peroxidase, and superoxide dismutase; activated guaiacol peroxidase and promoted lipid peroxidation in meristematic root cells. In earthworms, after 14 days exposure to the three compounds, there were no deaths, and catalase, ascorbate peroxidase, and superoxide dismutase were not inhibited. However, guaiacol peroxidase activity and lipid peroxidation were observed in animals exposed to dichloro-methylparaben. Soils with dichloro-methylparaben also caused the escape of earthworms. It is inferred that the recurrent contamination of soils with these methylparabens, with emphasis on chlorinated derivatives, can negatively impact different species that depend directly or indirectly on soil to survive.
Collapse
Affiliation(s)
| | - Elisângela Dusman
- Graduate Program in Environmental Engineering, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - João Victor Nicola
- Environmental Engineering Program, Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brazil
| | | | - Karine Mares de Oliveira
- Environmental Engineering Program, Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brazil
| | | | - Patricia Aline Bressani
- Graduate Program in Environmental Engineering, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Diego Espirito Santo
- Environmental Engineering Program, Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brazil
| | - Ádila Cristina Krukoski Filipi
- Graduate Program in Environmental Engineering, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Eduardo Michel Vieira Gomes
- Academic Department of Physics, Statistics and Mathematics, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Juan Carlos Pokrywiecki
- Academic Department of Engineering (DAENG), Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Débora Cristina de Souza
- Academic Department of Biodiversity and Nature Conservation, Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Universidade Tecnológica Federal do Paraná, Francisco Beltrão, Paraná, Brazil.
- Academic Department of Biodiversity and Nature Conservation, Universidade Tecnológica Federal do Paraná, Campo Mourão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Universidade Tecnológica Federal do Paraná, Campo Mourão, Via Rosalina Maria dos Santos, 1233, Paraná, 87.301-899, Brazil.
| |
Collapse
|
15
|
Zhang S, Yin Q, Zhang S, Manoli K, Zhang L, Yu X, Feng M. Chlorination of methotrexate in water revisited: Deciphering the kinetics, novel reaction mechanisms, and unexpected microbial risks. WATER RESEARCH 2022; 225:119181. [PMID: 36198210 DOI: 10.1016/j.watres.2022.119181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Chlorination of a typical anticancer drug with annually ascending use and global prevalence (methotrexate, MTX) in water has been studied. In addition to the analysis of kinetics in different water/wastewater matrices, high-resolution product identification and in-depth secondary risk evaluation, which were eagerly urged in the literature, were performed. It was found that the oxidation of MTX by free available chlorine (FAC) followed first-order kinetics with respect to FAC and first-order kinetics with respect to MTX. The pH-dependent rate constants (kapp) ranged from 170.00 M-1 s-1 (pH 5.0) to 2.68 M-1 s-1 (pH 9.0). The moiety-specific kinetic analysis suggested that 6 model substructures of MTX exhibited similar reactivity to the parent compound at pH 7.0. The presence of Br- greatly promoted MTX chlorination at pH 5.0-9.0, which may be ascribed to the formation of bromine with higher reactivity than FAC. Comparatively, coexisting I- or humic acid inhibited the degradation of MTX by FAC. Notably, chlorination effectively abated MTX in different real water matrices. The liquid chromatography-high resolution mass spectrometry analysis of multiple matrix-mediated chlorinated samples indicated the generation of nine transformation products (TPs) of MTX, among which seven were identified during FAC oxidation for the first time. In addition to the reported electrophilic chlorination of MTX (the major and dominant reaction pathway), the initial attacks on the amide and tertiary amine moieties with C-N bond cleavage constitute novel reaction mechanisms. No genotoxicity was observed for MTX or chlorinated solutions thereof, whereas some TPs were estimated to show multi-endpoint aquatic toxicity and higher biodegradation recalcitrance than MTX. The chlorinated mixtures of MTX with or without Br- showed a significant ability to increase the conjugative transfer frequency of plasmid-carried antibiotic resistance genes within bacteria. Overall, this work thoroughly examines the reaction kinetics together with the matrix effects, transformation mechanisms, and secondary environmental risks of MTX chlorination.
Collapse
Affiliation(s)
- Shengqi Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Yin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kyriakos Manoli
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
16
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Ball AL, Solan ME, Franco ME, Lavado R. Comparative cytotoxicity induced by parabens and their halogenated byproducts in human and fish cell lines. Drug Chem Toxicol 2022:1-9. [PMID: 35854652 DOI: 10.1080/01480545.2022.2100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parabens are a group of para-hydroxybenzoic acid (p-HBA) esters widely used in pharmaceutical industries. Their safety is well documented in mammalian models, but little is known about their toxicity in non-mammal species. In addition, chlorinated and brominated parabens resulting from wastewater treatment have been identified in effluents. In the present study, we explored the cytotoxic effects (EC50) of five parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BuP), and benzylparaben (BeP); the primary metabolite, 4-hydroxybenzoic acid (4-HBA), and three of the wastewater chlorinated/brominated byproducts on fish and human cell lines. In general, higher cytotoxicity was observed with increased paraben chain length. The tested compounds induced toxicity in the order of 4-HBA < MP < EP < PP < BuP < BeP. The halogenated byproducts led to higher toxicity with the addition of second chlorine. The longer chain-parabens (BuP and BeP) caused a concentration-dependent decrease in cell viability in fish cell lines. Intriguingly, the main paraben metabolite, 4-HBA, proved to be more toxic to fish hepatocytes than human hepatocytes by 100-fold. Our study demonstrated that the cytotoxicity of some of these compounds appears to be tissue-dependent. These observations provide valuable information for early cellular responses in human and non-mammalian models upon exposure to paraben congeners.
Collapse
Affiliation(s)
- Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
19
|
Lee W, Marcotullio S, Yeom H, Son H, Kim TH, Lee Y. Reaction kinetics and degradation efficiency of halogenated methylparabens during ozonation and UV/H 2O 2 treatment of drinking water and wastewater effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127878. [PMID: 34872780 DOI: 10.1016/j.jhazmat.2021.127878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the reaction kinetics and degradation efficiency of methylparaben and its halogenated products (Cl-, Br-, Cl,Cl-, Br,Cl-, and Br,Br-methylparabens) during ozonation and UV254/H2O2 treatment. Second-order rate constants for reactions of the parabens with ozone and •OH were [Formula: see text] = 107 - 108 M-1 s-1 and [Formula: see text] = (2.3 - 4.3)× 109 M-1 s-1 at pH 7. Species-specific [Formula: see text] values of the protonated and deprotonated parabens were closely related to phenol ring substituent effects via quantitative structure-activity relationships with other substituted phenols. The UV photolysis rate of the parabens [kUV = (2.4 - 7.2)× 10-4 cm2 mJ-1] depended on the halogenation state of the paraben and solution pH, from which species-specific quantum yields were also determined. In simulated treatments of drinking water and wastewater effluent, the parabens were efficiently eliminated during ozonation, requiring a specific ozone dose of > 0.26 gO3/gDOC for > 97% degradation. During UV/H2O2 treatment with 10 mg L-1 H2O2, the degradation levels were > 90% at a UV fluence of 2000 mJ cm-2, except for Cl,Cl-methylparaben. Kinetic models based on the obtained reaction kinetic parameters could successfully predict the degradation levels of the parabens. Overall, ozonation and UV/H2O2 were effective in controlling parabens and their halogenated products during advanced water treatment.
Collapse
Affiliation(s)
- Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Sandro Marcotullio
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yeom
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, 50804, Republic of Korea
| | - Tae-Hun Kim
- Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
20
|
Penrose MT, Cobb GP. Identifying potential paraben transformation products and evaluating changes in toxicity as a result of transformation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10705. [PMID: 35415920 PMCID: PMC9322577 DOI: 10.1002/wer.10705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Parabens are a class of compounds often used as preservatives in personal care products, pharmaceuticals, and food. They have received attention recently due to findings that demonstrate estrogenic impacts and other adverse effects of parabens. Release into wastewater effluent is considered a major contributor to the spread of parabens into surface water. Current regulations in areas such as Japan, Europe, and Southeast Asia limit the concentrations of parabens that can be used in formulations but do not address concentrations discharged into waterbodies. Recent studies suggest that parent parabens are effectively eliminated by transformation during the wastewater treatment processes. Common tertiary treatments include ultrafiltration, chlorination, UV disinfection and ozonation. Ultrafiltration is used to remove solids before a disinfection step. Of the disinfection steps, ozonation is often the most effective at removing parabens. Not much is known about the toxicities of paraben transformation products. Of the transformation products, chlorinated parabens and PHBA are the most studied. Previous studies have shown that chlorinated parabens have greatly reduced estrogen agonistic activity when compared with the activity of parents. However, more recent studies have found that halogenated parabens actually have estrogen antagonistic activity. Further research involving chlorinated parabens could include other toxic endpoints. No known studies have evaluated adverse effects of oxygenated parabens. Parabens can interact with chlorine residues in the environment and form chlorinated products, this will occur at a faster rate during chlorination. Ozonation will oxidize parabens and UV disinfection can both oxidize and halogenate parabens. All studies determining potential transformation products have been done in laboratory settings or specific conditions. Further research is needed to determine if these transformations occur in situ. PRACTITIONER POINTS: Common chemical processes utilized by wastewater treatment facilities are effective at transforming parabens. Paraben transformation products are released in greater concentration in effluent than parent paraben compounds. Halogenated transformation products have been identified as estrogen receptor antagonists.
Collapse
Affiliation(s)
| | - George P. Cobb
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
21
|
Gong Z, Wang G, Shao S, Wang M, Lu K, Gao S. Co-degradation of coexisting pollutants methylparaben (mediators) and amlodipine in enzyme-mediator systems: Insight into the mediating mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127112. [PMID: 34523479 DOI: 10.1016/j.jhazmat.2021.127112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Catalyzed oxidative reactions mediated by enzymes have been proposed as an effective remediation strategy to remove micropollutants. However, enzyme-catalyzed oxidation processes are usually limited to the substrates of phenols and amine compounds. The addition of synthetic redox mediators could extend the types of enzyme-catalyzed substrates. However, the actual applications were hindered by the high cost and potential toxicity of mediators. Here, we discovered a potential HRP-mediator system by exploring the removal of co-existing pollutants amlodipine (AML) and methylparaben (MeP). It was found that MeP served as a redox mediator could efficiently mediate the removal of AML by HRP/H2O2 system. Surface electrostatic potential analysis of AML molecule suggested that MeP radicals (MePOX) could abstract hydrogen from the N-H site on dihydropyridine moiety of AML and then be reduced to MeP. By exploring the mediating effects of substances with MeP-like structure, Hirshfeld charge was used to evaluate the mediating efficiency of mediators. For mediating the degradation of AML, when the Hirshfeld charge of mediator radical was around - 0.3000, the mediating efficiency was the highest. This study improved the HRP-mediated system and provided an efficient and green method for the degradation of co-existing pollutants AML and MeP.
Collapse
Affiliation(s)
- Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Gaobo Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, PR China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
22
|
Bolujoko NB, Unuabonah EI, Alfred MO, Ogunlaja A, Ogunlaja OO, Omorogie MO, Olukanni OD. Toxicity and removal of parabens from water: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148092. [PMID: 34147811 DOI: 10.1016/j.scitotenv.2021.148092] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
Parabens are biocides used as preservatives in food, cosmetics and pharmaceuticals. They possess antibacterial and antifungal activity due to their ability to disrupt cell membrane and intracellular proteins, and cause changes in enzymatic activity of microbial cells. Water, one of our most valuable natural resource, has become a huge reservoir for parabens. Halogenated parabens from chlorination/ozonation of water contaminated with parabens have shown to be even more persistent in water than other types of parabens. Unfortunately, there is dearth of data on their (halogenated parabens) presence and fate in groundwater which serves as a major source of drinking water for a huge population in developing countries. An attempt to neglect the presence of parabens in water will expose man to it through ingestion of contaminated food and water. Although there are reviews on the occurrence, fate and behaviour of parabens in the environment, they largely omit toxicity and removal aspects. This review therefore, presents recent reports on the acute and chronic toxicity of parabens, their estrogenic agonistic and antagonistic activity and also their relationship with antimicrobial resistance. This article further X-rays several techniques that have been employed for the removal of parabens in water and their drawbacks including adsorption, biodegradation, membrane technology and advanced oxidation processes (AOPs). The heterogeneous photocatalytic process (one of the AOPs) appears to be more favoured for removal of parabens due to its ability to mineralize parabens in water. However, more work is needed to improve this ability of heterogeneous photocatalysts. Perspectives that will be relevant for future scientific studies and which will drive policy shift towards the presence of parabens in our drinking waters are also offered. It is hoped that this review will elicit some spontaneous actions from water professionals, scientists and policy makers alike that will provide more data, effective technologies, and adaptive policies that will address the growing threat of the presence of parabens in our environment with respect to human health.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Moses O Alfred
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
23
|
Gong Z, Wang G, Shi H, Shao S, Wang M, Lu K, Gao S. Mn(II)-Mn(III)-Mn(IV) redox cycling inhibits the removal of methylparaben and acetaminophen mediated by horseradish peroxidase: New insights into the mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147788. [PMID: 34029809 DOI: 10.1016/j.scitotenv.2021.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Catalyzed oxidative coupling reactions mediated by enzyme have been proposed as an effective remediation strategy to remove micropollutants, however, little is known about how the Mn(II) redox cycling affects the horseradish peroxidase (HRP)-mediated reactions in wastewater treatment. Here, we explored the removal of two pharmaceuticals and personal care products (PPCPs), methylparaben (MeP) and acetaminophen (AAP), in HRP-mediated reaction system with dissolved Mn (II). It was found that the conversion rate of AAP was about 284 times higher than that of MeP, and Mn (II) significantly inhibited HRP-catalyzed MeP removal but had little influence on that of AAP. X-ray photoelectron spectroscopy (XPS) and theoretical calculations demonstrated that HRP converted Mn(II) into Mn(III), and then generated MnO2 colloid, which inhibited the removal of the substrates. Moreover, the results of theoretical calculations also showed that the binding energy between HRP and Mn was 27.68 kcal/mol, which was higher than that of MeP (25.24 kcal/mol) and lower than that of AAP (30.19 kcal/mol). Therefore, when MeP and Mn (II) coexisted in the reaction system, HRP preferentially reacted with Mn(II), which explained the different impacts of Mn (II) on the removal of MeP and AAP. Additionally, Mn (II) significantly altered the product distribution by decreasing the amount of polymerization products. Overall, our work here revealed the roles of Mn (II) in the removal of MeP and AAP mediated by HRP, having strong implications for an accurate assessment of the influence of Mn(II) redox cycling on the removal of PPCPs in wastewater treatment.
Collapse
Affiliation(s)
- Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Gaobo Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, PR China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
24
|
Abdallah P, Dossier-Berne F, Karpel Vel Leitner N, Deborde M. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31256-31267. [PMID: 33599931 DOI: 10.1007/s11356-020-11503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The impacts of chlorination on methylparaben (MP) removal, as well as of bromide and ammonia on the MP elimination kinetics, were studied. Bromide and ammonia react with chlorine and are promptly transformed into bromine and chloramines, respectively. Rate constants of chlorine, bromine, and monochloramine with MP were determined under different pH conditions. At pH 8.5, the apparent second-order rate constants of MP reactions with chlorine and bromine were found to be 3.37(±0.50) × 101 and 2.37 (±0.11) × 106 M-1.s-1 for kChlorine/MP and kBromine/MP, respectively, yet there was low reactivity with monochloramine ([Formula: see text] = 0.045 M-1.s-1). Regarding chlorination and bromination, in order to gain further insight into the observed pH-dependence of the reaction, the elementary reactions were considered and the corresponding second-order rate constants were calculated. The experimental and modeled values were quite consistent under these conditions. Then, chlorination experiments with different bromide and/or ammonia concentrations were performed to assess the impact of inorganic water content on MP elimination and a kinetic model was designed to assess MP degradation. Under these conditions, MP degradation was found to be enhanced in the presence of bromide whereas it was inhibited in the presence of ammonia, and the overall impact was pH dependent.
Collapse
Affiliation(s)
- Pamela Abdallah
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Florence Dossier-Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Nathalie Karpel Vel Leitner
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France
| | - Marie Deborde
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP UMR 7285), Equipe Eau Biomarqueurs Contaminants Organiques Milieux (E.BICOM), Université de Poitiers, 1 rue Marcel Doré, Bâtiment B1, TSA, 41105 86073, Poitiers Cedex, France.
- UFR Médecine et de Pharmacie, Université de Poitiers, 6 rue de la Milétrie, Bâtiment D1, TSA 51115, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
25
|
Pan Z, Zhu Y, Wei M, Zhang Y, Yu K. Interactions of fluoroquinolone antibiotics with sodium hypochlorite in bromide-containing synthetic water: Reaction kinetics and transformation pathways. J Environ Sci (China) 2021; 102:170-184. [PMID: 33637242 DOI: 10.1016/j.jes.2020.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Seven popular fluoroquinolone antibiotics (FQs) in synthetic marine aquaculture water were subject to sodium hypochlorite (NaClO) disinfection scenario to investigate their reaction kinetics and transformation during chlorination. Reactivity of each FQ to NaClO was following the order of ofloxacin (OFL) > enrofloxacin (ENR) > lomefloxacin (LOM) > ciprofloxacin (CIP) ~ norfloxacin (NOR) >> pipemedic acid (PIP), while flumequine did not exhibit reactivity. The coexisting chlorine ions and sulfate ions in the water slightly facilitated the oxidation of FQs by NaClO, while humic acid was inhibitable to their degradation. The bromide ions promoted degradation of CIP and LOM, but restrained oxidation of OFL and ENR. By analysis of liquid chromatography with tandem mass spectrometry (LC-MS/MS), eight kinds of emerging brominated disinfection byproducts (Br-DBPs) caused by FQS were primarily identified in the chlorinated synthetic marine culture water. Through density functional theory calculation, the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) characteristic as well as the charge distribution of the FQs were obtained to clarify transformation mechanisms. Their formation involved decarboxylation, ring-opening/closure, dealkylation and halogenation. Chlorine substitution occurred on the ortho-position of FQs's N4 and bromine substitution occurred on C8 position. The piperazine ring containing tertiary amine was comparatively stable, while this moiety with a secondary amine structure would break down during chlorination. Additionally, logKow and logBAF of transformation products were calculated by EPI-SuiteTM to analyze their bioaccumulation. The values indicated that Br-DBPs are easier to accumulate in the aquatic organism relative to their chloro-analogues and parent compounds.
Collapse
Affiliation(s)
- Zihan Pan
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yunjie Zhu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Min Wei
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
26
|
Li J, Jiang J, Pang SY, Yang Y, Sun S, Wang L, Wang P. Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts. WATER RESEARCH 2020; 185:116234. [PMID: 32736280 DOI: 10.1016/j.watres.2020.116234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
X-ray contrast media (ICM), as the most widely used intravascular pharmaceuticals, have been frequently detected in various environmental compartments. ICM have attracted increasingly scientific interest owing to their role as an iodine contributor, resulting in the high risk of forming toxic iodinated byproducts (I-BPs) during water treatment. In this review, we present the state-of-the-art findings relating to the removal efficiency as well as oxidation intermediates of ICM by conventional and advanced oxidation processes. Moreover, formation of specific small-molecular I-BPs (e.g., iodoacetic acid and iodoform) during these processes is also summarized. Conventional oxidants and disinfectants including chlorine (HOCl) and chloramine (NH2Cl) have low reactivities towards ICM with HOCl being more reactive. Iodinated/deiodinated intermediates are generated from reactions of HOCl/NH2Cl with ICM, and they can be further transformed into small-molecular I-BPs. Types of disinfectants and ICM as well as solution conditions (e.g., presence of bromide (Br-) and natural organic matters (NOM)) display significant impact on formation of I-BPs during chlor(am)ination of ICM. Uncatalyzed advanced oxidation process (AOPs) involving ozone (O3) and ferrate (Fe(VI)) exhibit slow to mild reactivities towards ICM, usually leading to their incomplete removal under typical water treatment conditions. In contrast, UV photolysis and catalyzed AOPs including hydroxyl radical (HO•) and/or sulfate radical (SO4.-) based AOPs (e.g., UV/hydrogen peroxide, UV/persulfate, UV/peroxymonosulfate (PMS), and CuO/PMS) and reactive chlorine species (RCS) involved AOPs (e.g., UV/HOCl and UV/NH2Cl) can effectively eliminate ICM under various conditions. Components of water matrix (e.g., chloride (Cl-), Br-, bicarbonate (HCO3-), and NOM) have great impact on oxidation efficiency of ICM by catalyzed AOPs. Generally, similar intermediates are formed from ICM oxidation by UV photolysis and AOPs, mainly resulting from a series reactions of the side chain and/or C-I groups (e.g. cleavage, dealkylation, oxidation, and rearrange). Further oxidation or disinfection of these intermediates leads to formation of small-molecular I-BPs. Pre-oxidation of ICM-containing waters by AOPs tends to increase formation of I-BPs during post-disinfection process, while this trend also depends on the oxidation processes applied and solution conditions. This review summarizes the latest research findings relating to ICM transformation and (by)products formation during disinfection and AOPs in water treatment, which has great implications for the practical applications of these technologies.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China.
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun130118, China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan250022, China
| | - Lihong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Panxin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
27
|
Choi S, Sim W, Jang D, Yoon Y, Ryu J, Oh J, Woo JS, Kim YM, Lee Y. Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122585. [PMID: 32298861 DOI: 10.1016/j.jhazmat.2020.122585] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The influents and effluents of coastal flow-through aquacultures in Korea were monitored for four selected antibiotics (amoxicillin-AMX, florfenicol-FLO, oxolinic acid-OXO, and oxytetracycline-OTC). A number of 177 samples were obtained from 16 aquaculture facilities for a monitoring period of two years. OTC was detected in 93 samples with a median concentration of 116 ng/L. OXO, FLO, and AMX were also detected in 36, 34, and 22 samples with median concentrations of 90, 44, and 63 ng/L, respectively. After antibiotics were applied to fish tanks, the aquaculture effluents were found to contain antibiotics up to several hundred μg/L, indicating that some control measures are required. Bench-scale experiments showed that chlorine and ozone fully eliminated AMX and OTC but not FLO at ≤2 mg/L of oxidant dosage. Reactive halogen species formed in the marine water matrix enhanced the antibiotic degradation. UV254 most effectively eliminated FLO, achieving 60-70 % elimination at 1000 mJ/cm2 of UV fluence. Sequential use of chlorine followed by UV254 demonstrated significant elimination of all four selected antibiotics. The obtained kinetic information for the reactions of these oxidants and UV with the antibiotics and marine aquaculture water constituents could be useful for designing and optimizing the aquaculture water treatment processes.
Collapse
Affiliation(s)
- Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woohyung Sim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dong Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jungmoon Ryu
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeongbum Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeong-Seok Woo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
28
|
Gouukon Y, Yasuda MT, Yasukawa H, Terasaki M. Occurrence and AhR activity of brominated parabens in the Kitakami River, North Japan. CHEMOSPHERE 2020; 249:126152. [PMID: 32062214 DOI: 10.1016/j.chemosphere.2020.126152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 05/06/2023]
Abstract
Parabens are used as preservatives in pharmaceuticals and personal care products (PPCPs). Parabens react with aqueous chlorine, which is used in disinfection processes, leading to the formation of halogenated parabens. In the presence of Br-, parabens and HOBr (formed via oxidation of Br-) can react to form brominated parabens. Brominated parabens may result in pollution of river water through effluent discharge from sewage treatment plants. The present study involved measuring brominated paraben concentrations in the Kitakami River, northern Japan, which flows through urban and agricultural areas. Aryl hydrocarbon receptor (AhR) agonist activity was also assessed using a yeast (YCM3) reporter gene and HepG2 ethoxyresorufin O-deethylase (EROD) assays. Dibrominated methylparaben (Br2MP), ethylparaben (Br2EP), propylparaben (Br2PP), butylparaben (Br2BP), and benzylparaben (Br2BnP), and monobrominated benzylparaben (Br1BnP) were detected in 25-100% of river samples during the sampling period from 2017 to 2018 at median concentrations of 8.1-28 ng/L; the highest concentrations were measured during the low flow season (November) in urban areas (P < 0.01). In the yeast assay, 12 compounds exhibited AhR activity (activity relative to β-naphthoflavone; 4.4 × 10-4-7.1 × 10-1). All monobrominated parabens exhibited higher activity than their parent parabens, however, further bromination reduced or eliminated their activity. In the EROD assay, five compounds caused significant induction of CYP1A-dependent activity at 100 μM (P < 0.05). Monobrominated i-butylparaben (Br1iBP) and s-butylparaben (Br1sBP), Br1BnP, and Br2BP exhibited activity in both yeast and EROD assays. We found novel aspects of brominated parabens originating from PPCPs.
Collapse
Affiliation(s)
| | - Michiko T Yasuda
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Japan
| | - Hiro Yasukawa
- Graduate School of Arts and Sciences, Iwate University, Japan
| | | |
Collapse
|
29
|
Bernal V, Giraldo L, Moreno-Piraján JC, Balsamo M, Erto A. Mechanisms of Methylparaben Adsorption onto Activated Carbons: Removal Tests Supported by a Calorimetric Study of the Adsorbent⁻Adsorbate Interactions. Molecules 2019; 24:molecules24030413. [PMID: 30678133 PMCID: PMC6384570 DOI: 10.3390/molecules24030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 01/25/2023] Open
Abstract
: In this study, the mechanisms of methylparaben adsorption onto activated carbon (AC) are elucidated starting from equilibrium and thermodynamic data. Adsorption tests are carried out on three ACs with different surface chemistry, in different pH and ionic strength aqueous solutions. Experimental results show that the methylparaben adsorption capacity is slightly affected by pH changes, while it is significantly reduced in the presence of high ionic strength. In particular, methylparaben adsorption is directly dependent on the micropore volume of the ACs and the π- stacking interactions, the latter representing the main interaction mechanism of methylparaben adsorption from liquid phase. The equilibrium adsorption data are complemented with novel calorimetric data that allow calculation of the enthalpy change associated with the interactions between solvent-adsorbent, adsorbent-adsorbate and the contribution of the ester functional group (in the methylparaben structure) to the adsorbate⁻adsorbent interactions, in different pH and ionic strength conditions. It was determined that the interaction enthalpy of methylparaben-AC in water increases (absolute value) slightly with the basicity of the activated carbons, due to the formation of interactions with π- electrons and basic functional groups of ACs. The contribution of the ester group to the adsorbate-adsorbent interactions occurs only in the presence of phenol groups on AC by the formation of Brønsted⁻Lowry acid⁻base interactions.
Collapse
Affiliation(s)
- Valentina Bernal
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | | | - Marco Balsamo
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| | - Alessandro Erto
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| |
Collapse
|
30
|
Wan D, Chen Y, Su J, Liu L, Zuo Y. Ultraviolet absorption redshift induced direct photodegradation of halogenated parabens under simulated sunlight. WATER RESEARCH 2018; 142:46-54. [PMID: 29859391 DOI: 10.1016/j.watres.2018.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
As disinfection by-products of parabens, halogenated parabens are frequently detected in aquatic environments and exhibit higher persistence and toxicity than parabens themselves. An interesting phenomenon was found that UV absorption redshift (∼45 nm) occurs after halogenation of parabens at circumneutral pH, leading to overlap with the spectrum of terrestrial sunlight. This work presents the first evidence on the direct photodegradation of seven chlorinated and brominated parabens under simulated sunlight. These halogenated parabens underwent rapid direct photodegradation, distinguished from the negligible degradation of the parent compounds. The photodegradation rate depended on their forms and substituents. The deprotonation of halogenated parabens facilitated the direct photodegradation. Brominated parabens exhibited higher degradation efficiency than chlorinated parabens, and mono-halogenated parabens had higher degradation than di-halogenated parabens. The pseudo-first-order rate constants (kobs) for brominated parabens (0.075-0.120 min-1) were approximately 7-fold higher than those of chlorinated parabens (0.011-0.017 min-1). A quantitative structure-activity relationship (QSAR) model suggested that the photodegradation was linearly correlated with the C-X bond energies, electronic and steric effects of halogen substituents. The photodegradation products were identified using QTOF-MS analyses and a degradation pathway was proposed. The yeast two-hybrid estrogenicity assay revealed that the estrogenic activities of the photoproducts were negligible. These findings are important for the removal of halogenated parabens and predictions of their fate and potential impacts in surface waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jing Su
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, USA
| |
Collapse
|