1
|
Zhu S, Xu H, Khan MS, Xia M, Wang F, Chen Y. Enhanced removal of Ni 2+ and Co 2+ from wastewater using a novel 2-hydroxyphosphonoacetic acid modified Mg/Fe-LDH composite adsorbent. WATER RESEARCH 2025; 272:122997. [PMID: 39706061 DOI: 10.1016/j.watres.2024.122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
While technological advancements in treating electroplating wastewater continue, removing high concentrations of Ni2+ and Co2+ remains a challenge. Surface functionalization of clay has emerged as a pivotal approach for effectively removing heavy metals, rivaling intercalation modification in its effectiveness. This study investigated the adsorption performance and mechanisms of a phosphonate-modified layered double hydroxide material, employing batch experiments and simulation calculations to elucidate the impact of surface modification on adsorption behavior. Briefly, various characterization techniques confirmed that the layered double hydroxide synthesized through co-precipitation exhibited a sheet-like morphology, with phosphonate groups anchoring onto the clay surface following functionalization. Under optimal conditions (pH=6.0, t = 60 min, and C0=300 mg/L), the material demonstrated high uptake capacities for Ni2+ (198.01 mg/g) and Co2+ (180.18 mg/g), surpassing most previously reported adsorbents. The adsorption kinetics for Ni2+ and Co2+ on the modified material followed a pseudo-second-order model, and the isotherms conformed to the Langmuir equation, indicating a monolayer chemical adsorption process. Moreover, after five adsorption-desorption cycles, the adsorbent demonstrated exceptional reusability and stability, and its potential for practical application preliminarily assessed using electroplating wastewater containing Ni2+. To further clarify the adsorption mechanism, a molecular dynamics simulation employing the CLAYFF-CVFF force field was conducted to examine the electrostatic interaction of modifiers at the clay surface. Wavefunction analyses derived from quantum chemical calculations provided insights into interactions, identified molecular reactive sites, and elucidated orbital interactions within chelation complexes. This research presents a feasible approach for developing high-performance materials for wastewater remediation in practical applications.
Collapse
Affiliation(s)
- Sidi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Haihua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - M Shahnawaz Khan
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Yexiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
2
|
Wang Y, Zhang J, Yan Q, Guo J, Liu G, Hu H, Zhao Y. Spatial distribution, sediment‒water partitioning, risk assessment and source apportionment of heavy metals in the Golmud River-Dabson Salt Lake ecosystem. ENVIRONMENTAL RESEARCH 2025; 268:120792. [PMID: 39793872 DOI: 10.1016/j.envres.2025.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The occurrence of heavy metals is important for understanding their behavior in the sediments of river-salt lake ecosystems due to dramatically changes in salinity and flow velocity at the confluence area. Sediments and surface water samples were collected from the Golmud River-Dabson Salt Lake ecosystem, northwest China, to investigate the spatial distribution, sediment-water partitioning, risk assessment and source apportionment of heavy metals. Higher concentrations of heavy metals were observed in surface water from Dabson Salt Lake than in other regions. Additionally, a lower partition coefficient (Kd) for heavy metals was observed in Dabson Salt Lake, indicating their pronounced release from the sediments into the surface water. Elevated levels of heavy metals were detected at the confluence area between the Golmud River and southeast Dabson Salt Lake because of industrial activities. The assessment indices indicated that almost all heavy metals in the sediments of the Golmud River and Dabson Lake posed no pollution or low potential ecological risk. Notably, Pb in some samples from the Freshwater Zone reached heavy pollution levels. The results of APCS-MLR revealed that except Pb, other heavy metals were grouped into the first principal component, which originated primarily from rock parent materials. The second principal components (industrial source), explaining 46.97% of the variance, only included Pb. The natural, industrial and unidentified sources explained 76.56%, 14.95% and 8.49%, respectively, of the heavy metal sources. These findings can significantly contribute to the management of heavy metal pollution and enhance our understanding of heavy metal behavior in river-salt lake ecosystems.
Collapse
Affiliation(s)
- Yuhao Wang
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Juan Zhang
- Qinghai Salt Lack Industry Co., Ltd, Golmud, Qinghai, 816099, China
| | - Qunxiong Yan
- Qinghai Salt Lack Industry Co., Ltd, Golmud, Qinghai, 816099, China
| | - Jiaqi Guo
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Guannan Liu
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Han Hu
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Yuanyi Zhao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
3
|
Wang J, Huang J, Meng J, Pan G, Li Y, Li Z, Ok YS. Green synthesized nanoscale zero-valent iron impregnated tea residue biochar efficiently captures metal(loid)s for sustainable water remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123585. [PMID: 39647304 DOI: 10.1016/j.jenvman.2024.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Pristine or modified nanoscale zero-valent iron (nZVI) synthesized though conventional chemical reduction have been widely recommended for remediating metal(loid)-contaminated water. However, their eco-friendliness is often challenged with the concomitant bio-toxicity and secondary environmental risks. Alternatively, this study utilized waste tea leaves extract and remaining residue as the reducing agent and pyrolytic matrix to innovatively fabricate a green synthesized nZVI impregnated tea residue biochar (G-nZVI/TB). Since the performances, mechanisms, and potential applications of G-nZVI/TB for simultaneous removal of metal cation and metalloid anion remain unclear, typical synthetic aqueous solutions and real wastewaters were systematically tested. The adsorption isotherms showed that the calculated maximum adsorption capacities of G-nZVI/TB for various meta(loid)s were 1.4-10.7 fold higher than those of TB. Although Cd(II) competed with Pb(II) for adsorption on G-nZVI/TB, they synergistically promoted As(III) sequestration. The SEM and FTIR spectra demonstrated that G-nZVI nanoparticles were uniformly dispersed onto TB framework, whereas newly grafted groups like Fe-O, C=O, and C-N accelerated metal(loid)s bonding. The results of batch experiments, XRD, and XPS comprehensively elucidated that metal(loid)s were predominantly separated from polynary systems via electrostatic adsorption, ion exchange, co-precipitation, cation-π interaction, oxidation-complexation, and B-type ternary complexation. In synthetic industrial wastewater and real paddy field drainage with divergent environmental conditions, 0.5 g L-1 optimized G-nZVI/TB efficiently captured over 92.4% metal(loid)s at their concentrations ranging from 0.04 to 3 mg L-1, indicating its excellent selective adsorption effectiveness and extensive compatibility for practical application in reusing multi-metal(loid)s contaminated wastewater. Overall, these findings provide new insights into developing green nano-functional materials for sustainable water purification.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Junhao Huang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Genxing Pan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Institute of Resource, Ecosystem and Environment of Agriculture, and Department of Soil Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhangtao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea
| |
Collapse
|
4
|
Su H, Qiu W, Hu T, Peng K, Liu W, Chen G, Zhao Y, Xu Z, Wang H, Wen P. Biobased amphoteric aerogel with core-shell structure for the hierarchically efficient adsorption of anionic and cationic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136235. [PMID: 39454339 DOI: 10.1016/j.jhazmat.2024.136235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Efficient and simultaneous removal of anionic and cationic dyes from wastewater using low-cost and environmentally-friendly adsorbent is highly required. Herein, the carboxylated cellulose (carboxyl content: 2.97 mmol/g) derived from pomelo peel was extracted by a one-step H2O2/H2SO4-mediated oxidation method. Subsequently, a novel pomelo-peel cellulose/chitosan/sodium alginate (PCS) amphoteric aerogel with a specific core-shell structure was synthesized by multiple physical cross-linking strategies. The shell layer and core layer of the optimized P3CS0.75 aerogel can selectively adsorb cationic dyes and anionic dyes, in which, the theoretical maximum adsorption capacities were 888.27 mg/g and 1816.87 mg/g towards methylene blue (MB) and Congo red (CR), respectively. Especially, the aerogel's core/shell layer exhibited hierarchical adsorption behavior without overlapping sites even in the binary dye systems. The adsorption performance of obtained amphoteric aerogel remained effective in a wide pH range and under different practical water systems. Moreover, the removal efficiencies for MB and CR were slightly reduced from 90.76 % and 99.66 % to 88.08 % and 91.39 %, respectively, after 5 adsorption-desorption cycles, and the aerogel's structural integrity was also maintained due to its good compressive strength (487.16 KPa). In addition, the adsorption mechanism of PCS aerogel was investigated using adsorption kinetics, isotherm, thermodynamics, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It was proved that the adsorption process was endothermic spontaneous-monolayer adsorption driven by electrostatic attraction and hydrogen bonding. Therefore, the prepared biobased aerogel was expected to be a prospective material for removing mixed dyes from wastewater.
Collapse
Affiliation(s)
- Haize Su
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Qiu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Tenggen Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Kaibin Peng
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Liu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Guilian Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yali Zhao
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Zhenlin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Lingnan Modern Agricultural Science and Technology Guangdong Province Laboratory Heyuan Sub-center, Heyuan 517000, China.
| |
Collapse
|
5
|
Zheng C, Wu Q, Sun K, Xu B, Sun Y, Zheng H. Insight into the impact of environmental factors on heavy metal adsorption by sodium alginate hydrogel: Inspiration on applicable scenarios. ENVIRONMENTAL RESEARCH 2024; 262:119878. [PMID: 39222734 DOI: 10.1016/j.envres.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH). The result showed that high concentration of organics (above 10 mg L-1) had a negative influence on heavy metal removal (decreased by 9.45 % at least), while inorganic ion, turbidity and antibiotics at relatively low concentrations exhibited a negligible even promoting effect (increased by 9.8 % with the presence of 5 mg L-1 Nor). Based on above results and corresponding mechanism analyses, the possible applicable and unsuitable scenarios of SAH can be predicted. SAH could be a great candidate for treating heavy metal-polluted water such as river and lake water, while it is not a good option for electroplating or livestock wastewater which contains high concentration of organic matters. Besides, the operating conditions including pH (5.0 for Cu(II), 6.0 for Ni(II)), contact time (24 h), temperature (298 K) et al. were also determined. Overall, this work provides theoretical guidance and operational strategies for promoting the practical application of SA adsorbent in water treatment.
Collapse
Affiliation(s)
- Chaofan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kuiyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Huaili Zheng
- Chongqing Engineering Research Center of Water Treatment Coagulant, Chongqing, 400045, China
| |
Collapse
|
6
|
Lee B, Min EK, Kim G, Hong G, Seo J, Choi JS, Park JW, Kim KT. Biodistribution of synthesized polyethylene terephthalate fibers in adult zebrafish, their sex hormone disruption effect, and mitigation using natural organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117108. [PMID: 39332197 DOI: 10.1016/j.ecoenv.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Although polyethylene terephthalate (PET) fibers are a representative form of plastic pollutants, studies on their toxicity are currently limited compared to other plastic types. Moreover, the effect of natural organic matter (NOM) on their toxicity has not been investigated. In this study, female and male adult zebrafish were exposed to synthesized PET fibers at concentrations of 0.1, 1, 10, and 100 mg/L in the presence and absence of 10 mg/L of NOM for 10 d. Bioaccumulation of PET fibers in zebrafish intestine, liver, and gills was identified and expression levels of reactive oxygen species (ROS) generation, sex hormones, and oxidative stress and sex hormone-related genes were measured. In addition, the developmental stages of gonadal cells were examined through histological analysis. We found that PET fibers bioaccumulated in the intestine and liver of zebrafish. ROS generation significantly increased at 100 mg/L of PET fibers, the expression of oxidative stress-related genes decreased in female and increased in male zebrafish. Exposure to 100 mg/L of PET fibers did not affect 17-beta estradiol, but significantly decreased the testosterone levels in male zebrafish. Sex hormone-related genes significantly decreased in both female and male zebrafish, except for androgen receptor in female zebrafish. However, these changes were exacerbated by the removal of NOM, suggesting a protective effect of NOM against PET fibers toxicity. We demonstrated that the accumulated PET fibers may lead to oxidative stress and sex hormone alteration, and disrupt the development of gonadal cells. Additionally, the NOM coating did not alter bioaccumulation considerably, but mitigated the adverse effects at the hormone level in PET fiber-exposed zebrafish. Thus, this study provides a basis for further research on the toxicity assessment of PET fibers and interactions between NOM and PET fiber-related toxicity.
Collapse
Affiliation(s)
- Byoungcheun Lee
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Geunbae Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Gilsang Hong
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jungkwan Seo
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - June-Woo Park
- Gyeongnam Branch Institute, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
7
|
Yin C, Zhang Y, Tao Y, Zhu X. Competitive adsorption behavior and adsorption mechanism of limestone and activated carbon in polymetallic acid mine water treatment. Sci Rep 2024; 14:23561. [PMID: 39384806 PMCID: PMC11464747 DOI: 10.1038/s41598-024-74240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Acid mine water (AMD) can cause significant environmental hazards due to its high concentration of metal ions, so the development of effective treatment methods is essential to mitigate its impact. In this study, adsorption experiments were conducted using limestone (LS) and activated carbon (AC) to explore the adsorption efficiency for different concentrations of metal ions. Adsorption was evaluated by static and competitive batch tests. The adsorbent mechanism was investigated using analytical techniques such as SEM, FTIR and XRD. The efficacy of LS and AC for competitive adsorption of Fe, Mn, Zn and Cu ions from AMD was evaluated. The study analyzed the effect of environmental conditions such as initial concentration and ionic strength on the adsorption efficiency. The results showed that LS showed high adsorption capacity for Fe and Cu, but was less effective in competitive adsorption of Mn. AC showed superior adsorption performance for Fe and Cu under competitive conditions due to its high surface area and functional groups. Both adsorbents showed selective efficacy influenced by the physicochemical properties of metal ions. This study helps to guide the optimization of adsorbents in AMD treatment and highlights the importance of selecting suitable materials based on specific metal ion properties.
Collapse
Affiliation(s)
- Chang Yin
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongbo Zhang
- Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yongjiang Tao
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xueping Zhu
- Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
8
|
Jiang X, Liu Z, Yan B, Zhao L, Chen T, Yang X. Effects of active silicon amendment on Pb(II)/Cd(II) adsorption: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135614. [PMID: 39186844 DOI: 10.1016/j.jhazmat.2024.135614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.
Collapse
Affiliation(s)
- Xueqin Jiang
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingzhi Zhao
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Ji Y, Zheng N, An Q, Wang S, Sun S, Li X, Chen C, Sun S, Jiang Y. Enhanced immobilization of cadmium and lead in contaminated soil using calcium alginate-modified HAP biochar: Improvements in soil health and microbial diversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124445. [PMID: 38936794 DOI: 10.1016/j.envpol.2024.124445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
A novel adsorbent, calcium alginate-modified HAP (Hydroxyapatite)-wood ear mushroom sticks biochar (CA-HAPMB), was synthesized to enhance the immobilization of Cd and Pb in soil. Over 150 days, applying CA-HAPMB at concentrations of 0%-3% in contaminated soils from Chenzhou City in Hunan Province (CZ) and Shenyang City in Liaoning Province (SY) resulted in decreased effective concentrations of Cd and Pb. Specifically, in CZ soil, Cd and Pb decreased by 30.9%-69.3% and 31.9%-78.6%, respectively, while in SY soil, they decreased by 27.5%-53.7% and 26.4%-62.3%, respectively. Characterization results, obtained after separating CA-HAPMB from the soil, indicate that complexation, co-precipitation, and ion exchange play crucial roles in the efficient immobilization of Cd and Pb by CA-HAPMB. Additionally, adjusting the amount of CA-HAPMB added allows modulation of soil pH, leading to increased soil organic matter and nutrient content. Following treatment with CA-HAPMB for immobilizing Cd and Pb, soil bacteria abundance and diversity increased, further promoting heavy-metal immobilization.
Collapse
Affiliation(s)
- Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Shuhai Sun
- Changchun Institute of Technology, China
| | - Yifu Jiang
- School of Criminal Investigation, People's Public Security University of China, China
| |
Collapse
|
10
|
Eun H, Lee S, Lee J, Jeong MS, Iqbal S, Yun JI. Kinetic and competitive effects of sorption on multi-element migration through crushed granite and biotite gneiss in Ca-HCO 3-SO 4 type groundwater. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107501. [PMID: 39032341 DOI: 10.1016/j.jenvrad.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Crystalline rock is used as the host rock for the disposal of high-level radioactive waste. Two cationic elements (Cs(I) and Ni(II)) and three anionic elements (Se(IV/VI), Mo(VI), and U(VI)) were selected to comprehensively evaluate the sorption behaviors of these radionuclides on crystalline granite and biotite gneiss. The anionic elements showed weak sorption (log Kd (L·kg-1) < 1) and little competition effect, while the cationic elements (log Kd (L·kg-1) = 2-3) showed clear competition (18-98% in Kd values) even at low concentrations. Analysis by pseudo-second-order kinetics showed that Cs(I) sorbed at similar rates on both rocks (20% faster on biotite gneiss), but Ni(II) sorbed 190% faster on biotite gneiss than on granite. That is why the retardation factors for Cs(I) and Ni(II) were reversed in the biotite gneiss column compared to their distribution coefficients. Therefore, the sorption kinetics cannot be neglected in groundwater systems with high flow rates. In the desorption column test, the retardation followed the order of the distribution coefficient. The desorption column test revealed that the distribution coefficient determines the strength of sorption on crystalline rocks.
Collapse
Affiliation(s)
- Hyeonjin Eun
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungwoo Lee
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinyoung Lee
- Eco-technology Research Team, Hyundai Engineering & Construction, 75 Yulgok-ro, Jongno-gu, Seoul, 03058, Republic of Korea
| | - Mi-Seon Jeong
- Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Sajid Iqbal
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Il Yun
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Ren P, Wang L, Ma T, Zhao Y, Guo B, Luo C, Li S, Ji P. A thorough investigation into the adsorption behavior of sophorolipid-modified fly ash towards compound pollution of lead and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174679. [PMID: 38992370 DOI: 10.1016/j.scitotenv.2024.174679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal ions and antibiotics were simultaneously detected in authentic water systems. This research, for the first time, employed synthesized sophorolipid-modified fly ash(SFA) to eliminate tetracycline(TC) and lead(Pb2+) from wastewater. Various characterization techniques, including SEM-EDS, FTIR, XPS, BET, and Zeta, were employed to investigate the properties of the SFA. The results showed that the sophorolipid modification significantly improved the fly ash's adsorption capacities for the target pollutants. The static adsorption experiments elucidated the adsorption behaviors of SFA towards TC and Pb2+ in single and binary systems, highlighting the effects of different Environmental factors on the adsorption behavior in both types of systems. In single systems, SFA exhibited a maximum adsorption capacity of 128.96 mg/g for Pb2+ and 55.57 mg/g for TC. The adsorption of Pb2+ and TC followed pseudo-second-order kinetics and Freundlich isotherm models. The adsorption reactions are endothermic and occur spontaneously. SFA demonstrates varying adsorption mechanisms for two different types of pollutants. In the case of Pb2+, the primary mechanisms include ion exchange, electrostatic interaction, cation-π interaction, and complexation, while TC primarily engages in hydrogen bonding, π-π interaction, and complexation. The interaction between Pb2+ and TC has been shown to improve adsorption efficiency at low concentrations. Additionally, adsorption-desorption experiments confirm the reliable cycling performance of modified fly ash, highlighting its potential as a cost-effective and efficient adsorbent for antibiotics and heavy metals.
Collapse
Affiliation(s)
- Pengyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhai Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Su H, Deng T, Qiu W, Hu T, Zheng X, Peng K, Zhang Y, Zhao Y, Xu Z, Lei H, Wang H, Wen P. One stone, two birds: An eco-friendly aerogel based on waste pomelo peel cellulose for the efficient adsorption of dyes and heavy metal ions. Int J Biol Macromol 2024; 273:132875. [PMID: 38852718 DOI: 10.1016/j.ijbiomac.2024.132875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
To achieve the objective of "waste control by waste", in this study, a green aerogel adsorbent comprised of pomelo-peel cellulose and sodium alginate (PCC/SA) was prepared through dual-network crosslinking. The resulting 3D hierarchical porous structured PCC/SA aerogel exhibited good structural stability, and kept the morphological integrity during 10 days in a wide pH range (2-10), suggesting its potential for recycling in diverse complex environments. Besides, the superior adsorption capacities for methylene blue (MB) and Cu(II) were observed, with the qm values and adsorption equilibrium times were recorded to be 1299.59 mg/g (300 min) and 287.55 mg/g (120 min), correspondingly. Furthermore, the favorable reusability of the PCC/SA aerogel was also demonstrated, with the removal efficiency for MB remaining almost unchanged (about 94 %) after 10 adsorption-desorption cycles, while there was a slight reduction for Cu(II) from 85.28 % to 72.47 %. XPS and FTIR analysis revealed that electrostatic attraction, hydrogen bonding, cation exchange and coordination were the major adsorption mechanisms. Importantly, the PCC/SA aerogel can be naturally degraded in soil within 10 weeks. Therefore, the as-prepared aerogel bead derived from pomelo peel shows great promise as an adsorbent for wastewater treatment containing dye and heavy metal ions.
Collapse
Affiliation(s)
- Haize Su
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Tianren Deng
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Qiu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Tenggen Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Xiaoling Zheng
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Kaibin Peng
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yingyuan Zhang
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Yali Zhao
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Zhenlin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Dong Y, Jiang M, Zhao J, Zhang F, Ma S, Zhang Y. Adsorption and desorption behavior of Zn 2+ in a flow-through electrosorption reactor. iScience 2024; 27:109514. [PMID: 38595794 PMCID: PMC11001621 DOI: 10.1016/j.isci.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
As heavy metal industrial wastewater increases in volume and complexity, we need more efficient, cheaper, and renewable technologies to curb its environmental impact. Compared to advection electrosorption, through-flow electrosorption is a hotspot technique that makes more efficient use of the adsorption capacity of activated carbon fiber mats. A cascade flow-through electrosorption assembly based on activated carbon fiber was used to obtain the best adsorption of Zn2+ in water at a voltage of 2 V, pH value of 8, plate spacing of 3 mm, and temperature of 15°C. The process is more closely fitted to the secondary adsorption kinetic equation and the Langmuir equation. The adsorption capacity of the module decreases at a progressively slower rate with the number of cycles and will eventually retain 75% of its peak value with significant regenerability. The study of this module can provide technical support for treating heavy metal wastewater.
Collapse
Affiliation(s)
- Yusen Dong
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Manci Jiang
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Jing Zhao
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Fei Zhang
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Shaohua Ma
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Yang Zhang
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| |
Collapse
|
14
|
Nascimento TLS, Oliveira KFS, Junior JOD, Pimenta AS, Melo DMA, Melo MAF, Braga RM. Biosorption of nickel and cadmium using Pachira aquatica Aubl. peel biochar. Sci Rep 2024; 14:5086. [PMID: 38429371 PMCID: PMC10907595 DOI: 10.1038/s41598-024-54442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
This study aimed to assess the value of Pachira aquatica Aubl. fruit peels by exploring their applicability in the biosorption process for the removal of Ni(II) and Cd(II) metal ions. The Pachira aquatica Aubl. fruit peel biochar (PAB) was extensively characterized through various techniques, including proximate analysis, helium pycnometer, XRD, SEM, point of zero charge determination, zeta potential measurement, and Boehm titration. Subsequently, kinetic, isotherm, and thermodynamic batch biosorption studies were conducted, followed by column biosorption tests. The characteristics of PAB, including low moisture content, a neutral point of zero charge, porosity, an irregular and heterogeneous structure, a negatively charged surface, and the presence of functional groups, indicate its remarkable capacity for efficiently binding with heavy metals. Biosorption equilibrium time was achieved at 300 min for both ions, fitting well with a pseudo second-order kinetic model and Langmuir isotherm model. These data suggest that the biosorption process occurred chemically in monolayer. The column C presented an exhaust volume of 1200 mL for Ni(II) and 1080 for Cd(II) and removal of 98% and 99% of removal for Ni(II) and Cd(II), respectively. In summary, PAB demonstrates substantial potential as a biosorbent for effectively removing heavy metals, making a valuable contribution to the valorization of this co-product and the mitigation of environmental pollution.
Collapse
Affiliation(s)
- Talita L S Nascimento
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | - Karine F S Oliveira
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
- Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | - Joemil O D Junior
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | - Alexandre S Pimenta
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte - UFRN, Macaíba, RN, 59280-000, Brazil
| | - Dulce M A Melo
- Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
- Postgraduate Program in Chemical, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | - Marcus A F Melo
- Chemical Engineering Department, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | - Renata M Braga
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil.
- Escola Agrícola de Jundiaí- UFRN, RN 160, Km 03, Distrito de Jundiaí, Macaíba, RN, 59280-000, Brazil.
| |
Collapse
|
15
|
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn 3O 4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. TOXICS 2024; 12:72. [PMID: 38251027 PMCID: PMC10820775 DOI: 10.3390/toxics12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.
Collapse
Affiliation(s)
- Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Tian Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| |
Collapse
|
16
|
Cui X, Zhong Z, Xie X, Jiang P. Sorptive removal of cadmium using the attapulgite modified by the combination of calcination and iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120820-120831. [PMID: 37943435 DOI: 10.1007/s11356-023-30323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
Sorptive removal of cadmium (Cd) from the aqueous solutions using the easily available natural materials is an attractive method. However, the adsorption efficiencies of these materials, such as clays, are typically low. Besides, they are generally in relatively low stability and renewability, which restrict their application. Thus, modification of these materials to enhance their performance on Cd removal has gained growing attentions. Herein, the integration of calcination and ferric chloride (FeCl3) was used to modify a typical clay, i.e., attapulgite, to increase the adsorption sites, and thus to develop a robust adsorbent for Cd. Under the optimum conditions for attapulgite modification (i.e., the mass ratio of FeCl3 to attapulgite was 1:2, calcination temperature was 350 °C, and calcination time was 1.5 h) and Cd adsorption (i.e., initial pH of 6.0, adsorption temperature of 25 °C, and adsorbent dosage of 1.0 g/L), the maximum adsorption capacity of the modified attapulgite toward Cd was 149.9 mg/g. Mechanisms of surface complexation and electrostatic attraction were involved in the efficient removal of Cd. The adsorption of Cd increased with pH due to the increased electrostatic attraction. Metal cations inhibited the Cd adsorption through competing with the adsorption sites. The changes of Gibbs-free energy during the adsorption of Cd were lower than zero and decreased with temperature, suggesting the process was spontaneous and endothermic. The removal efficiency of Cd after 5 times of recycle maintained at 82% of that of the raw modified attapulgite demonstrated the stability of the adsorbent. These results suggested that the modified attapulgite is robust for Cd removal and is promising for land application.
Collapse
Affiliation(s)
- Xiaochuan Cui
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenyu Zhong
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Xiande Xie
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Pinghong Jiang
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| |
Collapse
|
17
|
Ma S, Wei S, Li S, Wei W, Huang Y. Facile activation of natural calcium-rich sepiolite with oxalic acid for selective Pb(II) removal: Highly-efficient performance, mechanisms and site energy distribution. CHEMOSPHERE 2023; 342:140201. [PMID: 37722536 DOI: 10.1016/j.chemosphere.2023.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The design and development of adsorbents with high efficiency, selectivity, and economy for Pb(II) are essential to environmental governance and ecological safety. Herein, an oxalic acid (OA) activated natural sepiolite (nSEP) composite for highly efficient Pb(II) removal was prepared by a facile impregnation strategy. The OA activated nSEP nanocomposite (OA-nSEP) was characterized by various instrumental techniques and its adsorption performance towards Pb(II) was further evaluated through a series of static and dynamic experiments under various environmental conditions. Results revealed that OA reacted with the calcium impurities in nSEP to form calcium oxalate, causing mesoporous structure and larger specific surface area of OA-nSEP. The obtained OA-nSEP possessed super high Pb(II) adsorption capacities (858.4-1252 mg/g), which were much higher than that of most modified clays or conventional materials. The average adsorption site energy and the standard deviation of the site energy distribution were analyzed to investigate the strength of Pb(II) binding onto OA-nSEP and the adsorption site heterogeneity. Mechanism studies confirmed that oxalate groups exerted a primary role in the adsorption process. X-ray diffraction and X-ray photoelectron spectrometry (XPS) unveiled that the coordination of oxalate with Pb(II) and precipitation of lead oxalate was responsible for the high efficiency and selectivity. Distinguishing feature of high adsorption capacity, specific selective adsorption, abundant availability, and splendid reusability make the OA-nSEP a promising candidate for eliminating Pb(II) in practical scenarios.
Collapse
Affiliation(s)
- Shoucheng Ma
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Song Wei
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Siyuan Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
18
|
Wu L, Khodadoust AP, Punia S. Removal of chromium from water using manganese (II, III) oxides coated sand: adsorption and transformation of Cr(VI) and Cr(III). ENVIRONMENTAL TECHNOLOGY 2023; 44:2113-2133. [PMID: 35042451 DOI: 10.1080/09593330.2021.2024272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 05/30/2023]
Abstract
A manganese coated sand (MCS) sorbent containing manganese (II,III) oxides was developed for adsorption and transformation of chromium [Cr(VI) and Cr(III)] with potential application in flow-through permeable media adsorption filters. Characterization of the MCS sorbent using XRD and XPS showed that the oxides of manganese (II) and manganese (III) were present on the MCS sorbent surface. Adsorption of both Cr(VI) and Cr(III) onto the MCS sorbent occurred over a broad pH range from 3 to 10. Surface charge analysis of the MCS sorbent determined a pHPZC of 7.8, which may facilitate the uptake of both oxy-anionic Cr(VI) species and cationic Cr(III) species. Favorable adsorption of Cr(VI) and Cr(III) onto the MCS sorbent occurred according to the Langmuir and the Freundlich adsorption equations, with a higher adsorption capacity for Cr(III) than Cr(VI). Adsorption parameters from the Langmuir, the Freundlich and the Temkin adsorption equations showed a stronger binding of Cr(VI) than Cr(III). Adsorption of Cr(III) decreased with increasing calcium concentration while adsorption of Cr(VI) decreased with increasing concentration of common anions found in natural water in the following order: phosphate > sulfate> bicarbonate. Transformation of chromium occurred on the surface of the MCS sorbent due to the partial reduction of Cr(VI) and the partial oxidation of Cr(III), which may be attributed to the role of surface manganese (II,III) oxides as either reducing or oxidizing agents. The MCS sorbent is a recyclable and sustainable adsorbent for removal of chromium from water with an environmental impact comparable to ion-exchange technology.
Collapse
Affiliation(s)
- Lisha Wu
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Amid P Khodadoust
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Snover Punia
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
20
|
Yang Y, Wang L, Zhao H, Yan F, Li S, Guo B, Luo C, Huang X, Ji P. Utilization of KOH-modified fly ash for elimination from aqueous solutions of potentially toxic metal ions. ENVIRONMENTAL RESEARCH 2023; 223:115396. [PMID: 36736756 DOI: 10.1016/j.envres.2023.115396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Long-term accumulation of toxic heavy metals in the environment was a potential hidden danger. High energy consumption, complicated operation and low adsorption capacity were the disadvantages of most current adsorbents. This study used one-step modification of fly ash (FA) by low-temperature melting method with KOH as the activator to generate modified fly ash (KFA) with high adsorption capacity to remove heavy metals from aqueous solutions. Various characterization results revealed a destruction that occurred on the surface structure of adsorbent, 12 times increase in specific surface area, and metal ions were successfully adsorbed onto KFA surface. Furthermore, adsorption proceeded most favorably at pH of 5, the presence of ionic strength and co-existing cations significantly influenced the adsorption effects. The description of adsorption data was more suitable by pseudo-second-order kinetics and Langmuir isotherm models. And in single system at 25 °C, for Pb(II), Cu(II), and Cd (II), the qm were 337.41, 310.09 and 125.00 mg·g-1. However, in ternary system, the qm decreased for all three ions in the order Pb(II) > Cu(II) > Cd(II), which was different from the law in single system, and the Pb(II) adsorption was found to have a significant inhibited effect on adsorption of Cd(II) and Cu(II). The adsorption mechanisms including ion exchange, electrostatic attraction and complexation were revealed. And by exploring the bioaccessibility of absorbed heavy metals in four simulated digestive fluids, it was found that KFA could load heavy metal ions and enable their release in organisms and other aquatic environments, which provided the possibility for subsequent related studies. Therefore, KFA with low energy consumption and high adsorption capacity is equipped a prospective development space on removing heavy metals from wastewater.
Collapse
Affiliation(s)
- Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Shaanxi Ghanshan Cui Environmental Protection Technology Co., Ltd., Room 202-2, Zone A, China-South Korea Industrial Park, Gaoke 3rd Road, Shaanxi Province, 712000, China.
| |
Collapse
|
21
|
Anselmo S, Avola T, Kalouta K, Cataldo S, Sancataldo G, Muratore N, Foderà V, Vetri V, Pettignano A. Sustainable soy protein microsponges for efficient removal of lead (II) from aqueous environments. Int J Biol Macromol 2023; 239:124276. [PMID: 37011754 DOI: 10.1016/j.ijbiomac.2023.124276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing lead (Pb2+) ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical properties of these aggregates can be readily tuned by selecting the pH of the solution during production. In particular, the presence of β-structures typical of amyloids as well as an environment characterized by a lower dielectric constant seem to enhance metal binding affinity revealing that hydrophobicity and water accessibility of the material are key features affecting the adsorption efficiency. Presented results provide new knowledge on how raw plant proteins can be valorised for the production of new biomaterials. This may offer extraordinary opportunities towards the design and production of new tailorable biosorbents which can also be exploited for several cycles of purification with minimal reduction in performance. SYNOPSIS: Innovative, sustainable plant-protein biomaterials with tunable properties are presented as green solution for water purification from lead (II) and the structure-function relationship is discussed.
Collapse
|
22
|
Li L, Liu Y, Ippolito JA, Xing W, Zuo Q, Wang F. Fermentation affects heavy metal bioaccessibility in Chinese mantou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59013-59026. [PMID: 37000393 DOI: 10.1007/s11356-023-26727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Effect of different fermentation methods on heavy metal bioaccessibilities in wheat flour is undetermined. In this work, gastric and gastrointestinal heavy metal bioaccessibility in wheat flour products (control-wheat dough, T1-mantou made with normally fermented dough, T2-mantou made with over-fermented dough and T3-mantou made with over-fermented dough + Na2CO3) made from two wheat flour samples (NX and QD) was assessed via a modified physiologically-based extraction test. Cadmium, Zn and Mn bioaccessibility in the gastric phase (GP) was greater than in the gastrointestinal phase (GIP), yet the opposite was observed for Cu (p < 0.05). Lead bioaccessibility in the GIP of the QD sample was 1.37-4.08 times greater than that in the GP, while only the control had greater bioaccessibility in the GIP than that in the GP (p < 0.05) for the NX sample. Treatments T2 and T3 had greater Cd, Cu, Zn and Mn bioaccessibilities than the control and T1 in the GP (p < 0.05). In the GIP, however, only T3 had greater Mn bioaccessibility than the control for the NX sample. Enhanced degradation of the heavy metal-phytate following over-fermentation may have led to greater heavy metal bioaccessibility. Results should help food processors reduce human absorption of excessive heavy metals present in wheat flour foods.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China.
| | - Yanqing Liu
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - James A Ippolito
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523-1170, USA
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Qian Zuo
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
23
|
Li C, Sun H, Shi Y, Zhao Z, Zhang Z, Zhao P, Gao Q, Zhang X, Chen B, Li Y, He S. Polyethylene and poly (butyleneadipate-co-terephthalate)-based biodegradable microplastics modulate the bioavailability and speciation of Cd and As in soil: Insights into transformation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130638. [PMID: 37056010 DOI: 10.1016/j.jhazmat.2022.130638] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) that enter the soil can alter the physicochemical and biochemical properties of soil and affect speciation of heavy metals (HMs), thereby perturbing the bioavailability of HMs. However, the mechanisms underlying these effects are not understood. Therefore, we investigated the effects of MPs from poly (butyleneadipate-co-terephthalate)-based biodegradable mulch (BM) and polyethylene mulch (PM) in Cd- or As-contaminated soil on soil properties and speciation of HMs. MPs were characterised using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The addition of MPs reduced the bioavailability of HMs in soil and promoted the transformation of HMs into inert fractions. The mechanisms underlying the reduction of the bioavailability of HMs in soils could be as follows: (1) the entry of MPs into the soil changed its properties, which reduced the bioavailability of HMs; (2) FTIR and XPS analyses revealed that the hydroxyl and carboxyl groups and benzene ring present on the surface of aged MPs stabilized complexes (As(V)-O) with As(V) may have directly reduced the bioavailability of As(V) in soil; (3) aged BM exposed more amounts and types of reactive functional groups and was more effective in stabilising soil HMs than PM. Overall, this study provides new insights regarding the complexation mechanisms of soil HMs by MPs from different plastic mulch sources.
Collapse
Affiliation(s)
- Chaohang Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Huarong Sun
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yilan Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengxiong Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ping Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Qiyan Gao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xian Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
24
|
Rehman S, Yousaf S, Ye Q, Chenhui L, Bilal M, Shaikh AJ, Khan MS, Shahzad SA, Wu P. Bentonite binding with mercury(II) ion through promotion of reactive oxygen species derived from manure-based dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26107-26119. [PMID: 36352071 DOI: 10.1007/s11356-022-23948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
This study reports the mercury binding by bentonite clay influenced by cattle manure-derived dissolved organic matter (DOM). The DOM (as total organic carbon; TOC) was reacted with bentonite at 5.2 pH to monitor the subsequent uptake of Hg2+ for 5 days. The binding kinetics of Hg2+ to the resulting composite was studied (metal = 350 µM/L, pH 5.2). Bentonite-DOM bound much more Hg2+ than original bentonite and accredited to the establishment of further binding sites. On the other hand, the presence of DOM was found to decrease the Hg2+ binding on the clay surface, specifically, the percent decrease of metal with increasing DOM concentration. Post to binding of DOM with bentonite resulted in increased particle size diameter (~ 33.37- ~ 87.67 nm) by inducing the mineral modification of the pore size distribution, thus increasing the binding sites. The XPS and FTIR results confirm the pronounced physico-chemical features of bentonite-DOM more than that of bentonite. Hydroxyl and oxygen vacancies on the surface were found actively involved in Hg2+ uptake by bentonite-DOM composite. Furthermore, DOM increased the content of Hg2+ binding by ~ 10% (pseudo-second-order qe = 90.9-100.0) through boosting up Fe3+ reduction with the DOM. The quenching experiment revealed that more oxygen functionalities were generated in bentonite-DOM, where hydroxyl was found to be dominant specie for Hg2+ binding. The findings of this study can be used as theoretical reference for mineral metal interaction under inhibitory or facilitating role of DOM, risk assessment, management, and mobilization/immobilization of mercury in organic matter-containing environment.
Collapse
Affiliation(s)
- Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sayyaf Yousaf
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Quanyun Ye
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liu Chenhui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
25
|
Liu M, Wang H, Sun H, Zeng Y, Fan C, Wu W, Yan H. Preparation of magnetic metal-organic framework for adsorption of microcystin-RR. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Zhang Y, Haris M, Zhang L, Zhang C, Wei T, Li X, Niu Y, Li Y, Guo J, Li X. Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater. CHEMOSPHERE 2022; 308:136086. [PMID: 35998726 DOI: 10.1016/j.chemosphere.2022.136086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel amino-modified chitosan/tailings composite (CS-PEI-nGT) was successfully synthesized from gold tailings particle treated by ball milling (nGT), chitosan (CS) and polyethyleneimine (PEI) as raw materials, for Lead (Pb(Ⅱ)) and Cadmium (Cd(Ⅱ)) removal from aqueous solutions. The CS-PEI-nGT was characterized by using FTIR, XRD, SEM, BET, TGA and XPS techniques. The results showed that CS-PEI-nGT had maximum adsorption capacity of 192.78 mg·g-1 and 99.46 mg·g-1 for Pb(Ⅱ) and Cd(Ⅱ) respectively at pH 5. The adsorption kinetics was described well by pseudo-second-order kinetic adsorption model, and suggested that chemisorption as the rate-controlling step for adsorption of Pb(Ⅱ) and Cd(Ⅱ). The isotherm data was accurately explained by Langmuir model with higher correlation coefficient (R2) of 0.9911 and 0.9642 for Pb(Ⅱ) and Cd(Ⅱ) respectively. In addition, CS-PEI-nGT retained its selective adsorption capacity for Pb(Ⅱ) and Cd(Ⅱ), compared to other metals such as Zn(Ⅱ), Mn(Ⅱ), Mg(Ⅱ) and Al(Ⅲ). The mechanism of the adsorption was investigated and the results revealed that amino (-NH2), silicon oxide groups (Si-O) and hydroxyl (-OH) functional groups on composite surface were accountable for metals adsorption, suggesting surface complexation, electrostatic interactions and ion exchange. Our work presents a promising strategy for tailings recycling and highly efficient removal of toxic metals ions from wastewater.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuhua Niu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaojing Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
27
|
Patel K, Sutar AK, Maharana T. Synthesis of carboxylic graphene o
xide‐carboxymethyl
chitosan composite and its applications toward the remediation of
U
6
+
, Pb
2+
, Cr
6+
, and Cd
2+
ions from aqueous solutions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry National Institute of Technology Raipur India
| | | | | |
Collapse
|
28
|
Kumar A, Patra C, Rajendran HK, Narayanasamy S. Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: Synthesis, characterization and phytotoxicity studies. CHEMOSPHERE 2022; 307:135806. [PMID: 35940416 DOI: 10.1016/j.chemosphere.2022.135806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The rise in pharmaceutical pollutants due to their unregulated discharge in pharmaceutical wastewater has landed them as emerging contaminants that would gradually affect the aquatic ecosystem and human life. The current study emphasizes the adsorptive elimination of one such emerging pharmaceutical pollutant, i.e., Diclofenac (DIF), using a synthesized adsorbent vis. Activated carbon-chitosan beads (ACCB). The morphological and physicochemical properties of the prepared adsorbent, ACCB and its interaction with the DIF species were investigated. Process parameters influencing the adsorptive interactions between ACCB and DIF were optimised. DIF was efficiently adsorbed at optimised initial DIF pH of 6.0 and ACCB dosage of 1.5 mg/mL at an incubation temperature of 40 °C. Freundlich isotherm model showed the best fit (R2 = 0.98) with the experimental data to conclude that the adsorbent surface is heterogenous, promoting multilayer adsorption. As depicted from the Langmuir isotherm model, the maximum theoretical adsorption capacity was 99.29 mg/g. The seed toxicity assay confirmed the efficacy of ACCB in the adsorptive removal of DIF species from aqueous setups, making the post-treated solution fit enough for seed germination.
Collapse
Affiliation(s)
- Ajit Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Chandi Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Harish Kumar Rajendran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
29
|
Li Q, Wang L, Xu R, Yang Y, Yin H, Jin S, Jiang T. Potentiality of phosphorus-accumulating organisms biomasses in biosorption of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions: Behaviors and mechanisms. CHEMOSPHERE 2022; 303:135095. [PMID: 35618058 DOI: 10.1016/j.chemosphere.2022.135095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution is consistently a critical global issue, and bioremediation is regarded as one of the most promising approaches. In this work, the biosorption characteristics of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions using three phosphorus-accumulating organisms (PAOs) biomasses, Ochrobactrum cicero (PAB-006), Stenotrophomonas maltophilia (PAB-009), and Pseudomonas putida (PAB-0031), as biosorbents were investigated. Results indicated that the equilibrium biosorption capacities of biosorbents to heavy metal ions were sensitive to the solution pH, and increased with increasing pH values. The experimental data of Cd(II), Pb(II), Cu(II) and Zn(II) biosorption were in good agreement with the Pseudo-second-order, Redlich-Peterson and Temkin models, implying that the biosorption was a hybrid chemical reaction-biosorption process. In addition, the theoretical maximum biosorption capacities of Cd(II), Pb(II), Cu(II) and Zn(II) were calculated to be 67.84, 80.23, 50.56 and 63.07 mg/g for PAB-006, 59.99, 87.71, 39.26 and 64.00 mg/g for PAB-009 and 68.31, 85.43, 38.97 and 62.85 mg/g for PAB-031, respectively (pH = 5.0 ± 0.1, T = 25 °C), according to the parameters of the Langmuir model. Moreover, ionic strength had negligible influences or slight promoting effects, while humic acid exhibited positive effects on the removal of heavy metals. Further, PABs were stable and displayed excellent reusability. Characterization techniques of FTIR and XPS revealed that surface complexation, ion exchange, hydrogen bonding and electrostatic interaction were the main mechanisms involved in the biosorption process. In summary, the biosorbent PABs possessed high biosorption performance with excellent reusability, and which hold the great application prospect in the treatment of heavy metal contaminated water.
Collapse
Affiliation(s)
- Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Limin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Shengming Jin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| |
Collapse
|
30
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wang Y, Zheng K, Jiao Z, Zhan W, Ge S, Ning S, Fang S, Ruan X. Simultaneous Removal of Cu 2+, Cd 2+ and Pb 2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. TOXICS 2022; 10:toxics10060316. [PMID: 35736924 PMCID: PMC9231304 DOI: 10.3390/toxics10060316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 01/19/2023]
Abstract
As an eco-friendly and efficient adsorbent for removal of potential toxic metals from aqueous solution, biochar has received widespread attention. In the present study, wheat straw biochar (BC) and corresponding modified biochar (HNC) were used to remove Cu2+, Cd2+ and Pb2+ from an aqueous solution. The influence of the environment factors on metals adsorption and adsorption mechanism were discussed in detail. The results showed that the HNC had porous structures and owned ample functional groups (-OH, -COOH and C-N groups) compared with the BC. In the single system, the adsorption capacities of HNC for Cu2+, Cd2+ and Pb2+ at a pH of 5.5 were 18.36, 22.83 and 49.38 mg/g, which were 76.89%, 164.36% and 22.75% higher than that of the BC, respectively. In addition, the adsorption process of Cu2+ and Cd2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-second-order kinetics, but the adsorption of Pb2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-first-order kinetics. Adsorption isotherms indicated that the adsorption of Cu2+, Cd2+ and Pb2+ by BC and HNC was a spontaneous endothermic process. The competitive adsorption of mixed metal ions (Cu2+, Cd2+ and Pb2+) revealed that HNC was more preferential to adsorb Cu2+ compared with Cd2+ and Pb2+. Furthermore, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the main adsorption mechanisms were surface complexation and precipitation, and the adsorbed Cu2+, Cd2+ and Pb2+ on HNC mainly exist as CuO, Cd(OH)2, Pb3O4 and Pb(OH)2.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Zhiqiang Jiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Shaopeng Ning
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Shiyuan Fang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (Y.W.); (K.Z.); (Z.J.); (S.G.); (S.N.); (S.F.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
32
|
Yu H, Zheng L, Zhang T, Ren J, Meng P. Highly TEMPO-oxidized cellulose for removal of ionic and complexed cadmium from a complicated water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36575-36588. [PMID: 35064503 DOI: 10.1007/s11356-021-18222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
TEMPO-NaDCC-oxidized cellulose (TNOCS) with a large surface area and an abundance of carboxyl groups was used to remove heavy metal ions (Cd, Cu, and Pb) and their organic acid complexes [HM-OAs] (OAs, i.e., citric acid (CA) and propionic acid (PA)), and then reveal their adsorption behaviors. Taking Cd and CA as examples, the results showed that some of Cd ions were first adsorbed onto TNOCS, and then, the existence of [Cd-CA-] complexes formed a coordinated structure with preloaded Cd ions to serve as a bridge for combining TNOCS and [Cd-CA]. The maximum adsorption capacities of TNOCS for Cd and Cd-CA were 16.50 and 22.15 mg/g, respectively. Moreover, adsorption energies and molecular orbital distributions indicated that the adsorption capacity of TNOCS for [Cd-CA] was better than that for Cd alone. TNOCS can maintain greater than 90% adsorption capacity in five times regeneration experiments using EDTA, indicating that it is very efficient and stable. In addition, the electron density, deformation charge, and Mulliken charge distribution were confirmed that the electron transfer direction was from carboxyl groups to cadmium, whether it was cadmium ions or complexed cadmium.
Collapse
Affiliation(s)
- Huajian Yu
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Liuchun Zheng
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Tao Zhang
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jingjing Ren
- School of Environment, Guangzhou Higher Education Mega Center, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Peipei Meng
- College of Environment, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
33
|
Bayuo J, Rwiza M, Mtei K. Response surface optimization and modeling in heavy metal removal from wastewater-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:351. [PMID: 35396639 DOI: 10.1007/s10661-022-09994-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The existence of hazardous heavy metals in aquatic settings causes health risks to humans, prompting researchers to devise effective methods for removing these pollutants from drinking water and wastewater. To obtain optimum removal efficiencies and sorption capacities of the contaminants on the sorbent materials, it is normally necessary to optimize the purification technology to attain the optimum value of the independent process variables. This review discusses the most current advancements in using various adsorbents for heavy metal remediation, as well as the modeling and optimization of the adsorption process independent factors by response surface methodology. The remarkable efficiency of the response surface methodology for the extraction of the various heavy metal ions from aqueous systems by various types of adsorbents is confirmed in this critical review. For the first time, this review also identifies several gaps in the optimization of adsorption process factors that need to be addressed. The comprehensive analysis and conclusions in this review should also be useful to industry players, engineers, environmentalists, scientists, and other motivated researchers interested in the use of the various adsorbents and optimization methods or tools in environmental pollution cleanup.
Collapse
Affiliation(s)
- Jonas Bayuo
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania.
- Department of Science Education, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Postal Box 24, Upper East Region, Ghana.
| | - Mwemezi Rwiza
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| | - Kelvin Mtei
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| |
Collapse
|
34
|
Patel K, Sutar AK, Maharana T. Microwave-assisted preparation of carboxylic graphene oxide-chitosan composite for adsorption of uranium and heavy toxic metals in water samples. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2045320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Alekha Kumar Sutar
- Department of Chemistry, Gangadhar Mehar University, Sambalpur, India
- Department of Chemistry, Ravenshaw University, Cuttack, India
| | | |
Collapse
|
35
|
Zuo Q, Zheng H, Zhang P, Zhang Y. Functionalized Activated Carbon Fibers by Hydrogen Peroxide and Polydopamine for Efficient Trace Lead Removal from Drinking Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:253-263. [PMID: 34968061 DOI: 10.1021/acs.langmuir.1c02459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To achieve efficient and selective trace heavy metals removal from drinking water, a low-cost purification material polydopamine/activated carbon fibers (PDA/H-ACF) was successfully prepared by polymerizing dopamine on the surface of activated carbon fibers pretreated with hydrogen peroxide. The morphology, phase, surface functional groups, specific surface, and pore size distribution of the as-prepared sample were analyzed using FESEM, XPS, BET and pore size distribution test (PST), and FTIR, and orthogonal experiments were used to investigate the influences of concentration of H2O2, pretreatment time, and reflux temperature on trace lead removal. The results showed that the sample pretreated under optimized conditions could produce different pore structures, and the content of functional group -COOH obviously increased. After further modification by polydopamine, the contents of -NH-, -NH2, and -OH functional groups on the surface obviously enhanced, which were beneficial to increase adsorption site and promote trace lead removal. The effluent lead concentration decreased from initial 150 to 3.18 ppb within 5 min, meeting the requirement of NSF International Standard/American National Standard for Drinking Water Treatment Units (NSF/ANSI 53-2020) (5 ppb). The isothermal adsorption process and adsorption kinetics could be well-fitted by the Langmuir isotherm and pseudo-second-order kinetics model, indicating that the adsorption process of trace lead by PDA/H-ACF belonged to monolayer and chemical adsorption. Moreover, the as-prepared PDA/H-ACF also showed superior trace lead adsorption performance in the presence of high concentration competitive metal ions, in a wide pH range and in tap water, and therefore had good application prospect in the field of drinking water purification.
Collapse
Affiliation(s)
- Qi Zuo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong Zheng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Zhang Y, Liao M, Guo J, Xu N, Xie X, Fan Q. The co-transport of Cd(Ⅱ) with nanoscale As 2S 3 in soil-packed column: Effects of ionic strength. CHEMOSPHERE 2022; 286:131628. [PMID: 34333186 DOI: 10.1016/j.chemosphere.2021.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
To observe the co-transport of Cd(Ⅱ) with nanoscale As2S3 (nAs2S3) in a soil-packed column under different ionic strength (IS). A soil-packed column experiment with Cd(Ⅱ) and nAs2S3 was conducted. The results show that the transport of Cd(Ⅱ) was facilitated remarkably in the presence of nAs2S3, and nano-associated-Cd(Ⅱ) was the major migration type. However, the co-transport of Cd(Ⅱ) and nAs2S3 was affected by IS. The Cd(Ⅱ) concentration in the effluent to initial Cd(Ⅱ) concentration decreased from 38.75% to 29.95% and 22.28% as IS increased from 1 mM to 10 mM and 50 mM. When IS was 1 mm, 10 mm and 50 mm, the retention of nAs2S3 increased from 74.29% to 78.95% and 85.9% respectively. The agglomeration and sedimentation of nAs2S3 were the main reason for the rise of retention. Due to the increase of retention and reduction in adsorption capacity of nAs2S3 to Cd(Ⅱ), the ratio of migration in the form of nano-associated-Cd(Ⅱ) reduced from 53% (IS 1 mM) to 27.4% (IS 10 mM) and 18.2% (IS 50 mM). During the transport, the IS promoted desorption of Cd(Ⅱ) from nAs2S3 so that more soluble Cd was monitored in the effluent as IS increased. In general, these findings can provide references for controlling the risk caused by the co-transport of nAs2S3 and Cd(Ⅱ) in saline-alkali soil.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China.
| | - Jiawen Guo
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No.866, Hangzhou, 310058, China.
| | - Qiyan Fan
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No.866, Hangzhou, 310058, China
| |
Collapse
|
37
|
Wang H, Yin H, Zhang Z, Xiong Y, Li Y, Wu Y. The mineralization ability of a chloride-resistant γ-Cu 2(OH) 3Cl Fenton catalyst: effects of the cation type, salt concentration and organic pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj04406d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A chloride-resistant heterogeneous Fenton catalyst γ-Cu2(OH)3Cl is used to mineralize aromatic organics (phenol, bisphenol A, salicylic acid and aniline) in saline solutions with different salts (MgCl2, CaCl2, NaCl and KCl) and concentrations.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Hongyou Yin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zeng Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China
| | - Yang Li
- Petrochemical Research Institute, PetroChina Co. Ltd, Beijing 102206, China
| | - Yan Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
38
|
Liao W, Bao D, Li HQ, Yang P. Cu(II) and Cd(II) removal from aqueous solution with LDH@GO-NH 2 and LDH@GO-SH: kinetics and probable mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65848-65861. [PMID: 34322807 DOI: 10.1007/s11356-021-15558-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Two novel adsorbents (LDH@GO-NH2 and LDH@GO-SH) were successfully synthesized by grafting thiol- or amino-functionalized GO onto LDH and their adsorption capacities for heavy metal ions (Cu(II) and Cd(II)) were significantly enhanced. Characterization experiments illustrated that the thiol group (-SH) or amino group (-NH2) was grafted onto LDH@GO-NH2 or LDH@GO-SH. Adsorption isotherms were satisfactorily fitted by both Langmuir and Freundlich models. The maximum adsorption capacity of Cd(II) on LDH@GO-SH at 308 K was 102.77 mg/g, which was about triple that of LDH@GO-NH2. The enhancement in adsorption capacity of LDH@GO-SH was due to the cooperative effect of LDH and GO-SH. The kinetic experimental data for LDH@GO-NH2 and LDH@GO-SH were found to be in good agreement with the pseudo-second-order model. The thermodynamic parameters calculated from the temperature-dependent adsorption isotherms indicated that the adsorption was spontaneous and an endothermic process. The possible adsorption mechanisms comprising formation of precipitation, isomorphic substitution of Mg(II), and formation of complexation with amino groups or thiol groups were proposed. Desorption experiments put into evidence that LDH@GO-NH2 and LDH@GO-SH may be promising suitable candidates for the remediation of metal ions from aqueous solutions in real work in the near future.
Collapse
Affiliation(s)
- Wei Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Di Bao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hui-Qiang Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
39
|
Yan J, Li K. A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Xiong Z, Zheng H, Hu Y, Hu X, Ding W, Ma J, Li Y. Selective adsorption of Congo red and Cu(II) from complex wastewater by core-shell structured magnetic carbon@zeolitic imidazolate frameworks-8 nanocomposites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Embaby MA, Abdel Moniem SM, Fathy NA, El-Kady AA. Nanocarbon hybrid for simultaneous removal of arsenic, iron and manganese ions from aqueous solutions. Heliyon 2021; 7:e08218. [PMID: 34746471 PMCID: PMC8554271 DOI: 10.1016/j.heliyon.2021.e08218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metal contamination is a severe problem with serious ecological and human health effects due to its toxic effect and tendency to accumulate throughout the food chain. Batch experiments were conducted to investigate the simultaneous removal of arsenic, iron and manganese ions from aqueous solutions using Nanocarbon hybrid (NCH). Nanocarbon hybrid (NCH) of carbon xerogel decorated with 1wt% multi-walled carbon nanotubes was prepared by carbonization at 850 °C for 2 h. The TEM, SEM, EDX, FTIR, and N2 adsorption-desorption measurements were used to characterize the prepared NCH. NCH is enriched with surface oxygen functional groups and micropores as well as it have total surface area of 162 m2/g and total pore volume of 0.129 cm3/g. The adsorption of metal ions onto NCH, which confirmed by EDX, happened quickly, with 30%, 97%, and 41% of As, Fe, and Mn adsorbed in less than 10 min, however the equilibrium time was achieved in less than 30 min. The maximum adsorption capacities for As, Fe, and Mn ions onto NCH were 20, 48, and 21 mg/g, respectively. The experimental adsorption results of the three metal ions showed linearly fitting with Freundlich isotherms. In addition, the computed adsorption energies for Fe, Mn, and As ions were 4.08, 1.95, and 2.42 kJ/mol, indicating physical adsorption. NCH are easily regenerated and reusable sorbent owing to the adsorption–desorption studies. Conclusively, NCH is promising material for removing mixture of metal ions from aqueous media.
Collapse
Affiliation(s)
- Mohamed A Embaby
- Food Toxicology and Contaminants Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Shimaa M Abdel Moniem
- Water Pollution Research Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nady A Fathy
- Surface and Catalysis Laboratory, Physical Chemistry Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Ahmed A El-Kady
- Food Toxicology and Contaminants Department, National Research Centre, 12622 Dokki, Giza, Egypt
| |
Collapse
|
42
|
Steel Slag and Autoclaved Aerated Concrete Grains as Low-Cost Adsorbents to Remove Cd2+ and Pb2+ in Wastewater: Effects of Mixing Proportions of Grains and Liquid-to-Solid Ratio. SUSTAINABILITY 2021. [DOI: 10.3390/su131810321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the applicability of industrial by-products such as steel slag (SS) and autoclaved aerated concrete (AAC) grains (<0.105, 0.105–2, 2–4.75 mm) as low-cost adsorbents for simultaneous removal of Cd2+ and Pb2+ in wastewater. A series of batch adsorption experiments was carried out in single and binary-metal solutions of Cd2+ and Pb2+ by changing the mixing proportions of SS and AAC grains. In addition, the effect of the liquid-to-solid ratio (L/S) on the removal of Cd2+ and Pb2+ in multi-metal solution was examined. Results showed that SS grains had a high affinity with Cd2+ in the single solution, while AAC grains had an affinity with Pb2+. In the binary solution, the mixtures of SS and AAC grains removed both Cd2+ and Pb2+ well; especially, the tested adsorbents of SS+AAC [1:1] and SS+AAC [1:4] mixtures achieved approximately 100% removal of both metals. Based on the results in the multi-metal solutions, the metal removal % and selectivity sequence varied depending on the mixed proportions of SS and AAC grains and L/S values. It was found that the SS+AAC [1:1] mixture of SS and AAC grains showed 100% removals of Cd2+, Pb2+, Cu2+, Ni2+, and Zn2+ simultaneously at L/S = 10 and 60.
Collapse
|
43
|
Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:6477-6488. [PMID: 34424384 DOI: 10.1007/s00253-021-11497-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb2+ and Cd2+ by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.e., CK (no toxic metals), Pb2+ only, Cd2+ only, Pb2+/Cd2+ = 1:1(molar ratio), and Pb2+/Cd2+ = 2:1. Cadmium induced strong toxicity to the fungus, and maintained the high toxicity during incubation. However, as Pb/Cd ratio increased from 0 to 2, the removal rates of Cd2+ by A. niger were raised from 30 to 50%. The elevated activities of pyruvate dehydrogenase (PDH) and citrate synthetase (CS) enzymes confirmed that Pb addition could stimulate the growth of A. niger. For instance, citric acid concentrations and CS activities were 463.22 mg/L and 78.37 nmol/min/g, respectively, during 3-day incubation as Pb/Cd = 1. However, these two values were as low as ~ 50 with addition of only Cd. It was hence assumed that appropriate co-existence of Pb2+ enhanced microbial activity by promoting TCA cycle of the fungus. Moreover, the SEM analysis and geochemical modeling demonstrated that Pb2+ cations were more easily adsorbed and mineralized on A. niger with respect to Cd2+. Therefore, instead of intensifying metal toxicity, the addition of appropriate Pb actually weakened Cd toxicity to the fungus. This study sheds a bright future on application of A. niger to the remediation of polluted water with co-existence of Pb and Cd. KEY POINTS: • Cd2+ significantly inhibited P consumption, suggesting its high toxicity to A. niger. • Pb2+ stimulated the growth of A. niger by promoting TCA cycle in the cells. • Cd2+ removal by A. niger were improved with co-existence of Pb2+.
Collapse
|
44
|
Zhu H, Li L, Chen W, Tong Y, Wang X. Controllable synthesis of coral-like hierarchical porous magnesium hydroxide with various surface area and pore volume for lead and cadmium ion adsorption. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125922. [PMID: 34492854 DOI: 10.1016/j.jhazmat.2021.125922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
A coral-like hierarchical porous magnesium hydroxide (HPMH) with various surface area and pore volume was controllably prepared using a simple one-step hydrothermal process, for which MgO, water and citric acid were applied. The citric acid (CA), as a structure-directing molecule, is a key factor in regulating the pore structure of HPMH products. With different additive dosages, the nanostructure, surface area and pore volume of HPMH products can be controllably regulated. The MH-CA20 product (prepared in the presence of 20 wt% CA) with high BET surface area (159 m2/g) and pore volume (0.75 cm3/g) was used to investigate the adsorption properties for Pb(II) and Cd(II) ions. The experimental adsorption capabilities of the MH-CA20 for Pb(II) and Cd(II) are respectively 4535 and 3530 mgg-1, very close to the maximum adsorption capabilities calculated by Langmuir equation (4545 and 3571 mgg-1). According to the adsorption kinetics and adsorption isotherm data, the adsorption process conforms to the Pseudo-second-order and Langmuir model, indicating that heavy metal ions conduct monolayer chemical adsorption mechanism. Since the preparation of HPMH is simple, low-cost and filtrate recycling, the process can easily be scaled up and could be a good candidate for application in tackling different wastewater.
Collapse
Affiliation(s)
- Hu Zhu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Lu Li
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Wendan Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Yuejin Tong
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Xuesong Wang
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
45
|
Shin J, Lee SH, Kim S, Ochir D, Park Y, Kim J, Lee YG, Chon K. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr 2+). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40623-40632. [PMID: 32677012 DOI: 10.1007/s11356-020-10095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study examined differences in the adsorption isotherms, kinetic equations, and thermodynamics of Sr2+ by biochar from spent coffee grounds (SCG) and powdered activated carbon (PAC). The specific surface area (957.6 m2/g) and pore volume (0.676 cm3/g) of PAC were much greater than those of SCG biochar (specific surface area = 11.0 m2/g, pore volume = 0.009 cm3/g). However, SCG biochar showed a higher maximum adsorption capacity of Sr2+ (Qmax = 51.81 mg/g) compared with PAC (Qmax = 32.79 mg/g) due to its abundance of O-containing functional groups. The negligible removal efficiencies of Sr2+ by SCG biochar and PAC under acidic conditions (pH = 1.0-3.0) are evidence that the electrostatic repulsion might hinder severely the adsorption of Sr2+ by the carbonaceous adsorbents. The higher R2 values of the pseudo-second-order model (R2 ≥ 0.999) compared with the pseudo-first-order model (R2 ≥ 0.815) suggest that chemisorption governed the removal of Sr2+ using SCG biochar and PAC. Furthermore, the better description of the adsorption behavior of Sr2+ by the Langmuir isotherm model (R2 ≥ 0.994) than the Freundlich isotherm model (R2 ≥ 0.982) supports the assumption that the monolayer adsorption played critical roles in the removal of Sr2+ using SCG biochar and PAC. The thermodynamic studies revealed that adsorption of Sr2+ onto SCG biochar and PAC was endothermic and happened spontaneously. Despite the significant inhibitory effects of DOM, SCG biochar exhibited the higher removal efficiencies of Sr2+ compared with PAC. Hence, SCG biochar could be considered as an alternative to PAC for the removal of Sr2+ from aqueous solutions.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang-Ho Lee
- Korea Hydro and Nuclear Power (KHNP) Central Research Institute, 50, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, Republic of Korea
| | - Sangwon Kim
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Duuriimaa Ochir
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yongeun Park
- School of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Jihye Kim
- Water Works Research Center, K-water Institute, Daejeon, 34045, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
46
|
Mudhoo A, Sillanpää M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4393-4413. [PMID: 34341658 PMCID: PMC8320315 DOI: 10.1007/s10311-021-01289-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 05/24/2023]
Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good performances at laboratory scale, do not necessarily have suitable properties in in full-scale water purification and wastewater treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facilities. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus minimizing the ecotoxicicological impact. Academia and the water industry should better collaborate to integrate magnetic separation in full-scale water purification and wastewater treatment plants.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, Chen CY, Chen HY, Li YT, Wang JJ. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145355. [PMID: 33578146 DOI: 10.1016/j.scitotenv.2021.145355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Zeolite has a high adsorption capacity for heavy metals, but it is difficult to separate from the medium because of its small particle size. In this study, magnetic zeolite was synthesized from natural, low-grade molybdenum ore by adding nano ferroferric oxide (saturation magnetization 83.43 emu/g) directly in the hydrothermal synthesis process, which was used to adsorb cadmium from wastewater. The results of scanning electron microscopy showed that the nano ferroferric oxide was adhered to the surface of the zeolite to make it magnetic. The vibrating sample magnetometer showed that the larger the amount of nano ferroferric oxide added, the higher the saturation magnetization of the magnetic zeolite. The saturation magnetization of the magnetic zeolite with a loading proportion of 25% was 18.18 emu/g with a specific surface area of 459.8 m2/g. The adsorption experiments showed that when the pH value is greater than 4, the adsorption capacity of magnetic zeolite is high and stable, and the theoretical maximum adsorption capacity is 204.2 mg Cd/g. Na+ and Ca2+ have different inhibitory functions on the adsorption capacity. The mapping graphs showed that cadmium is captured by the magnetic zeolite after contact with cadmium, and XRD confirmed the presence of cadmium oxide in the magnetic zeolite after adsorption, XPS and EDS results indicated that ion exchange is one of the main mechanisms of cadmium adsorption by magnetic zeolites, and electrostatic adsorption may also have a contribution.
Collapse
Affiliation(s)
- Zhen-Dong Peng
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xue-Ming Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Long Zhang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Jian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Cheng-Yu Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Hua-Yi Chen
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou 510642, China
| | - Yong-Tao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou 510642, China.
| | - Jin-Jin Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Zhu D, Xu Y, Shi J, Zou X, Zhang W, Huang X, Li Z. Selective enrichment and electrochemical determination of Cu in mushroom using L-Cysteine functionalized Fe3O4@Au nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Elanchezhiyan S, Karthikeyan P, Rathinam K, Hasmath Farzana M, Park CM. Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment. Carbohydr Polym 2021; 261:117892. [DOI: 10.1016/j.carbpol.2021.117892] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
|
50
|
Cataldo S, Lo Meo P, Conte P, Di Vincenzo A, Milea D, Pettignano A. Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb 2+ ion in aqueous solution. Carbohydr Polym 2021; 267:118151. [PMID: 34119126 DOI: 10.1016/j.carbpol.2021.118151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/13/2023]
Abstract
Different cyclodextrin-calixarene nanosponges (CyCaNSs) have been characterized by means of FFC-NMR relaxometry, and used as sorbents to remove Pb2+ ions from aqueous solutions. Considering that the removal treatments may involve polluted waters with different characteristics, the adsorption experiments were performed on solutions without and with the addition of background salts, under different operational conditions. The adsorption abilities and affinities of the nanosponges towards Pb2+ ions were investigated by measuring the metal ion concentration by means of Inductively Coupled Plasma Emission Spectroscopy (ICP-OES) and Differential Pulse Anodic Stripping Voltammetry (DP-ASV). The acid-base properties of nanosponges and of metal ion as well as their interactions with the other interacting components of the systems have been considered in the evaluation of adsorption mechanism. Recycling and reuse experiments on the most efficient adsorbents were also performed. On the grounds of the results obtained, post-modified CyCaNSs appear promising materials for designing environmental remediation devices.
Collapse
Affiliation(s)
- Salvatore Cataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università di Palermo, V.le delle Scienze, ed. 4, 90128 Palermo, Italy
| | - Antonella Di Vincenzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universita degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy.
| |
Collapse
|