1
|
Tong A, Liu W, Liu X, Zhu J, Zhou Y, Li J. Comparative analysis of actinorhizal nodule and associated soil microorganism diversity and structure in three Alnus species. FRONTIERS IN PLANT SCIENCE 2025; 16:1572494. [PMID: 40406724 PMCID: PMC12095336 DOI: 10.3389/fpls.2025.1572494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025]
Abstract
Background Due to the importance of biological nitrogen fixation in terrestrial ecosystems, actinorhizal symbiosis has attracted more and more attention. Alders (Alnus) are important actinorhizal plants, but little is known about the diversity of symbiotic microbiota in the actinorhizal nodules. In addition, it remains unclear about the influence of the host species and habitats on the microbial community of alder root nodules and rhizospheric soils. Methods In this study we sequenced the hyper-variable regions of the 16S rRNA from the root nodules and their rhizosphere soils of three alder species (Alnus mandshurica, A. sibirica, A. japonica) in northeastern China to explore the diversity, composition, network association, and nitrogen cycling pathway of the microbial communities in the actinorhizal nodules and associated soils. Results The results showed that the microbial community α-diversity decreased significantly from the associated soil to the root nodule, and the microbial diversity in the root nodule of A. sibirica was not affected by the habitats. The dominant microbe genus in alder nodules was Frankia, whose abundance was significantly higher than that in associated soil samples. Furthermore, the abundance of Frankia was affected by alder tree species, but not by the habitats. The most significant taxon in the nodules of all the three alders was Frankia genus, which was negatively correlated with other six genera of microbes. The main function of microorganisms in alder nodules is nitrogen fixation, which is not affected by tree species and their habitats. Conclusion These findings suggest that the host determines the microbial community composition in the root nodule of three alders. This study provides valuable insights into the effects of alder species and habitats on the microbial communities of alder nodules and associated soils.
Collapse
Affiliation(s)
- Aizi Tong
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Wei Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Xiaoliang Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Junyi Zhu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - You Zhou
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Jianhua Li
- Biology Department, Hope College, Holland, MI, United States
| |
Collapse
|
2
|
Basu A, Chalasani D, Sarma PVSRN, Uikey S, Chenna VR, Choudhari PL, Podile AR. Influence of genotype, nodule position, and edaphic factors on microbial diversity and assembly of pigeonpea (Cajanus cajan) root nodules in Indian soils. ENVIRONMENTAL MICROBIOME 2025; 20:41. [PMID: 40270064 PMCID: PMC12016423 DOI: 10.1186/s40793-025-00707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Pigeonpea (Cajanus cajan) is an important legume crop in semi-arid regions with multiple uses. The microbial diversity within its root nodules in Indian soils remains poorly explored. We investigated the bacterial diversity of pigeonpea root nodules across different genotypes and soil types to identify the factors driving their assembly. Using a metagenomic approach and high-throughput sequencing of the 16S rRNA gene, we analyzed the nodule microbiomes of three pigeonpea genotypes (Asha, Durga, and Mannem Konda Kandi) grown in three different soil types (Alfisol, Vertisol, and Inceptisol) and wild pigeonpea (C. scarabaeoides) in its native soil. RESULTS Our results indicated that pigeonpea nodules harbor diverse rhizobial and non-rhizobial endophytes and that host genotype, nodule position, soil type, and other edaphic factors influence significant variation in the microbial community structure. The core nodule microbiome was dominated by Proteobacteria and Bacteroidetes. Bradyrhizobium and Ensifer were predominant among the rhizobial taxa, and non-rhizobial genera such as Pseudomonas, Chitinophaga, and Limnobacter were also abundant. Edaphic factors, particularly soil type, pH, and nutrient availability, had a stronger influence on the nodule bacterial community composition than the host genotype. Although bulk soil exhibited higher bacterial diversity, nodule microbiomes were less diverse but more specialized, indicating host-mediated selection. A comparison of the nodule microbiomes of wild and cultivated pigeonpea revealed distinct differences, with the core nodule microbiome of wild pigeonpea dominated by Bradyrhizobium, while that of cultivated pigeonpea exhibited a diverse bacterial community. CONCLUSIONS These findings demonstrate that soil properties play a more critical role than host genetics in shaping the pigeonpea nodule microbiome, emphasizing the importance of environmental conditions in symbiotic interactions. The differences between wild and cultivated genotypes suggest that domestication has altered microbial recruitment strategies. This study provides foundational insights into the factors driving microbial assembly in pigeonpea nodules, with implications for improving crop productivity through targeted microbial management. Future research should explore the functional roles of these microbial communities to optimize their use in sustainable agriculture.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Danteswari Chalasani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Sheetal Uikey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Vijaya Ranganatha Chenna
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, Telangana, India
| | - Pushpajeet Lokpal Choudhari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
3
|
Hassen AI, Muema EK, Diale MO, Mpai T, Bopape FL. Non-Rhizobial Endophytes (NREs) of the Nodule Microbiome Have Synergistic Roles in Beneficial Tripartite Plant-Microbe Interactions. Microorganisms 2025; 13:518. [PMID: 40142410 PMCID: PMC11945167 DOI: 10.3390/microorganisms13030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Microbial symbioses deal with the symbiotic interactions between a given microorganism and another host. The most widely known and investigated microbial symbiosis is the association between leguminous plants and nitrogen-fixing rhizobia. It is one of the best-studied plant-microbe interactions that occur in the soil rhizosphere and one of the oldest plant-microbe interactions extensively studied for the past several decades globally. Until recently, it used to be a common understanding among scientists in the field of rhizobia and microbial ecology that the root nodules of thousands of leguminous species only contain nitrogen-fixing symbiotic rhizobia. With the advancement of molecular microbiology and the coming into being of state-of-the-art biotechnology innovations, including next-generation sequencing, it has now been revealed that rhizobia living in the root nodules of legumes are not alone. Microbiome studies such as metagenomics of the root nodule microbial community showed that, in addition to symbiotic rhizobia, other bacteria referred to as non-rhizobial endophytes (NREs) exist in the nodules. This review provides an insight into the occurrence of non-rhizobial endophytes in the root nodules of several legume species and the beneficial roles of the tripartite interactions between the legumes, the rhizobia and the non-rhizobial endophytes (NREs).
Collapse
Affiliation(s)
- Ahmed Idris Hassen
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, Limpopo, South Africa
| | - Esther K. Muema
- Department of Soil Science, Faculty of Agri-Sciences, Stellenbosch University, Stellenbosch 6201, Western Cape, South Africa;
| | - Mamonokane O. Diale
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Tiisetso Mpai
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Francina L. Bopape
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| |
Collapse
|
4
|
Rejili M, Bouznif B, Benabderrahim MA, Mars M. Multilocus sequencing analysis of the rhizobial symbionts isolated from Acacia salicina (Lindl.) grown in different regions in Tunisia reveals putative novel Bradyrhizobium species. World J Microbiol Biotechnol 2024; 41:22. [PMID: 39738700 DOI: 10.1007/s11274-024-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In this study, we investigated various chromosomal and symbiotic markers in 40 bacterial strains that nodulate an invasive alien plant, Acacia salicina Lindl. in Tunisia. Our findings showed that the native rhizobia associated to A. salicina are grouped into eight distinct RAPD electrophoretic types (RETs) (genotypes). Sequence analyses of rrs gene and three housekeeping genes (recA, rpoB and glnII) assigned sixteen isolates to three putative new lineages within the genus Bradyrhizobium. Seven strains clustered with B. rifense CTAW71T with a 91% bootstrap support, five strains grouped with B. niftali CNPSo3448T with a very low bootstrap support (60%), and four strains formed a group phylogenetically related with B. shewense ERR11T and B. centrosematis A9T. Based on nodC phylogeny and cross inoculation tests, the 16 strains are clustered within symbiovar retamae (six strains) and cyanophyllae (ten strains). Moreover, we showed by the first time in this work that the type strains B. diversitatis CNPSo4019T and B. xenonodulans 14ABT, which nodulated soybean and A. dealbata respectively, belong to the symbiovar cyanophyllae according to the results of the nodC gene analysis.
Collapse
Affiliation(s)
- Mokhtar Rejili
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia.
| | - Besma Bouznif
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia
| | - Mohamed Ali Benabderrahim
- Arid and Oases Cropping Laboratory LR16IRA02, Arid Lands Institute, 4119, Medenine, Tunisia.
- Department of Biology, Faculty of Science of Tunis, University of Tunis EL Manar, 2092, Tunis, Tunisia.
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia
| |
Collapse
|
5
|
Aserse AA, Nimusiima J, Tumuhairwe JB, Yli-Halla M, Lindström K. Phylogenetic diversity of Rhizobium species recovered from nodules of common beans (Phaseolus vulgaris L.) in fields in Uganda: R. phaseoli, R. etli, and R. hidalgonense. FEMS Microbiol Ecol 2024; 100:fiae120. [PMID: 39270668 PMCID: PMC11556343 DOI: 10.1093/femsec/fiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
A total of 75 bacterial isolates were obtained from nodules of beans cultivated across 10 sites in six agro-ecological zones in Uganda. Using recA gene sequence analysis, 66 isolates were identified as members of the genus Rhizobium, while 9 were related to Agrobacterium species. In the recA gene tree, most Rhizobium strains were classified into five recognized species. Phylogenetic analysis based on six concatenated sequences (recA-rpoB-dnaK-glnII-gyrB-atpD) placed 32 representative strains into five distinct Rhizobium species, consistent with the species groups observed in the recA gene tree: R. phaseoli, R. etli, R. hidalgonense, R. ecuadorense, and R. sophoriradicis, with the first three being the predominant. The rhizobial strains grouped into three nodC subclades within the symbiovar phaseoli clade, encompassing strains from distinct phylogenetic groups. This pattern reflects the conservation of symbiotic genes, likely acquired through horizontal gene transfer among diverse rhizobial species. The 32 representative strains formed symbiotic relationships with host beans, while the Agrobacterium strains did not form nodules and lacked symbiotic genes. Multivariate analysis revealed that species distribution was influenced by the environmental factors of the sampling sites, emphasizing the need to consider these factors in future effectiveness studies to identify effective nitrogen-fixing strains for specific locations.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| | - Jean Nimusiima
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
- College of Agricultural and Environmental Sciences, Department of Agricultural Production, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - John Baptist Tumuhairwe
- College of Agricultural and Environmental Sciences, Department of Agricultural Production, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Kristina Lindström
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| |
Collapse
|
6
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
7
|
Cao K, Chen J, Li Q, Gu P, Li L, Huang R. Bacteria from nodules of Abrus mollis Hance: genetic diversity and screening of highly efficient growth-promoting strains. Front Microbiol 2024; 15:1345000. [PMID: 38680912 PMCID: PMC11045970 DOI: 10.3389/fmicb.2024.1345000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.
Collapse
Affiliation(s)
- Kexin Cao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiuling Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Gu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongshao Huang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Liu H, Ni B, Duan A, He C, Zhang J. High Frankia abundance and low diversity of microbial community are associated with nodulation specificity and stability of sea buckthorn root nodule. FRONTIERS IN PLANT SCIENCE 2024; 15:1301447. [PMID: 38450407 PMCID: PMC10915256 DOI: 10.3389/fpls.2024.1301447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Introduction Actinorhizal symbioses are gaining attention due to the importance of symbiotic nitrogen fixation in sustainable agriculture. Sea buckthorn (Hippophae L.) is an important actinorhizal plant, yet research on the microbial community and nitrogen cycling in its nodules is limited. In addition, the influence of environmental differences on the microbial community of sea buckthorn nodules and whether there is a single nitrogen-fixing actinomycete species in the nodules are still unknown. Methods We investigated the diversity, community composition, network associations and nitrogen cycling pathways of the microbial communities in the root nodule (RN), nodule surface soil (NS), and bulk soil (BS) of Mongolian sea buckthorn distributed under three distinct ecological conditions in northern China using 16S rRNA gene and metagenomic sequencing. Combined with the data of environmental factors, the effects of environmental differences on different sample types were analyzed. Results The results showed that plants exerted a clear selective filtering effect on microbiota, resulting in a significant reduction in microbial community diversity and network complexity from BS to NS to RN. Proteobacteria was the most abundant phylum in the microbiomes of BS and NS. While RN was primarily dominated by Actinobacteria, with Frankia sp. EAN1pec serving as the most dominant species. Correlation analysis indicated that the host determined the microbial community composition in RN, independent of the ecological and geographical environmental changes of the sea buckthorn plantations. Nitrogen cycle pathway analyses showed that RN microbial community primarily functions in nitrogen fixation, and Frankia sp. EAN1pec was a major contributor to nitrogen fixation genes in RN. Discussion This study provides valuable insights into the effects of eco-geographical environment on the microbial communities of sea buckthorn RN. These findings further prove that the nodulation specificity and stability of sea buckthorn root and Frankia sp. EAN1pec may be the result of their long-term co-evolution.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingbing Ni
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Li Y, Wang C, Zheng L, Ma W, Li M, Guo Z, Zhao Q, Zhang K, Liu R, Liu Y, Tian Z, Bai Y, Zhong Y, Liao H. Natural variation of GmRj2/Rfg1 determines symbiont differentiation in soybean. Curr Biol 2023; 33:2478-2490.e5. [PMID: 37301200 DOI: 10.1016/j.cub.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.
Collapse
Affiliation(s)
- Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zilong Guo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingsong Zhao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Xia Y, He R, Xu W, Zhang J. The Zoige pioneer plant Leymus secalinus has different endophytic bacterial community structures to adapt to environmental conditions. PeerJ 2023; 11:e15363. [PMID: 37220526 PMCID: PMC10200098 DOI: 10.7717/peerj.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/16/2023] [Indexed: 05/25/2023] Open
Abstract
Background Leymus secalinus is a pioneer plant grown in the Zoige desertified alpine grassland and it is also one of the dominant plant species used for environmental remediation. L. secalinus plays a large role in vegetation reconstruction in sandy land, but the abundance and diversity of its endophytes have not yet been investigated. Objectives This study was performed to investigate the changes in the endophytic bacterial community structure of L. secalinus under different ecological environments and to analyze the effects of environmental changes and different plant tissues on the L. secalinus endophytic bacteria. Methods Leaf, stem, and root tissue samples of L. secalinus were collected from Zoige Glassland (Alpine sandy land) and an open field nursery (Control). DNA was extracted and the 16S ribosomal DNA was amplified. The sequence library was sequenced on an Illumina MiSeq platform and clustered by operational taxonomic units (OTUs). α-diversity and β-diversity analyses, species diversity analyses, functional prediction, and redundancy (RDA) analyses for the soil physicochemical properties were conducted. Results α-diversity and β-diversity analyses showed that the endophytic bacteria in L. secalinus varied in different areas and tissues. The abundance of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, which is related to nitrogen fixation, increased significantly in the L. secalinus found in the Zoige Grassland.Moreover, the abundance of nutrition metabolism and anti-stress abilities increased in functional prediction in the desert samples. The soil physicochemical properties had an insignificant influence on bacterial diversity. Conclusion The changes in the endophytic bacterial community structure in L. secalinus were significant and were caused by environmental alterations and plant choice. The endophytic bacteria in L. secalinus grown in alpine sandy land may have greater anti-stress properties and the ability to fix nitrogen, which has potential value in environmental remediation and agricultural production.
Collapse
Affiliation(s)
- Yue Xia
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ruipeng He
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wanru Xu
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Pulido-Suárez L, Notario Del Pino J, Díaz-Peña FJ, Perdomo-González A, González-Rodríguez ÁM, León-Barrios M. High Diversity of Bradyrhizobial Species Fix Nitrogen with Woody Legume Spartocytisus supranubius in a High Mountain Ecosystem. Microorganisms 2023; 11:1244. [PMID: 37317218 DOI: 10.3390/microorganisms11051244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
The symbiosis between rhizobia and legumes is of pivotal importance in nitrogen-poor ecosystems. Furthermore, as it is a specific process (most legumes only establish a symbiosis with certain rhizobia), it is of great interest to know which rhizobia are able to nodulate key legumes in a specific habitat. This study describes the diversity of the rhizobia that are able to nodulate the shrub legume Spartocytisus supranubius in the harsh environmental conditions of the high mountain ecosystem of Teide National Park (Tenerife). The diversity of microsymbionts nodulating S. supranubius was estimated from a phylogenetic analysis of root nodule bacteria isolated from soils at three selected locations in the park. The results showed that a high diversity of species of Bradyrhizobium and two symbiovars can nodulate this legume. Phylogenies of ribosomal and housekeeping genes showed these strains distributed into three main clusters and a few isolates on separate branches. These clusters consist of strains representing three new phylogenetic lineages of the genus Bradyrhizobium. Two of these lineages belong to the B. japonicum superclade, which we refer to as B. canariense-like and B. hipponense-like, as the type strains of these species are the closest species to our isolates. The third main group was clustered within the B. elkanii superclade and is referred to as B. algeriense-like as B. algeriense is its closest species. This is the first time that bradyrhizobia of the B. elkanii superclade have been reported for the canarian genista. Furthermore, our results suggest that these three main groups might belong to potential new species of the genus Bradyrhizobium. Analysis of the soil physicochemical properties of the three study sites showed some significant differences in several parameters, which, however, did not have a major influence on the distribution of bradyrhizobial genotypes at the different locations. The B. algeriense-like group had a more restrictive distribution pattern, while the other two lineages were detected in all of the soils. This suggests that the microsymbionts are well adapted to the harsh environmental conditions of Teide National Park.
Collapse
Affiliation(s)
- Laura Pulido-Suárez
- Department of Biochemistry, Microbiology, Genetics and Cellular Biology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jesús Notario Del Pino
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Adolfo Perdomo-González
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Águeda M González-Rodríguez
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Milagros León-Barrios
- Department of Biochemistry, Microbiology, Genetics and Cellular Biology, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
12
|
Zhu Q, Li G, Li X, Li C, Li J, Zhao C, Cui J, Du C, Tian Z, Shi Y, Ma Y, Zhang L. Effect of microbial network complexity and stability on nitrogen and sulfur pollutant removal during sediment remediation in rivers affected by combined sewer overflows. CHEMOSPHERE 2023; 331:138832. [PMID: 37150460 DOI: 10.1016/j.chemosphere.2023.138832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Discovering the complexity and improving the stability of microbial networks in urban rivers affected by combined sewer overflows (CSOs) is essential for restoring the ecological functions of urban rivers, especially to improve their ability to resist CSO impacts. In this study, the effects of sediment remediation on the complexity and stability of microbial networks was investigated. The results revealed that the restored microbial community structure using different approaches in the river sediments differed significantly, and random matrix theory showed that sediment remediation significantly affected microbial networks and topological properties; the average path distance, average clustering coefficient, connectedness, and other network topological properties positively correlated with remediation time and weakened the small-world characteristics of the original microbial networks. Compared with other sediment remediation methods, regulating low dissolved oxygen (DO) shifts the microbial network module hubs from Actinobacteria and Bacteroidetes to Chloroflexi and Proteobacteria. This decreases the positive association of networks by 17%-18%, which intensifies the competitiveness among microorganisms, further weakening the influence and transmission of external pressure across the entire microbial network. Compared with that of the original sediment, the vulnerability of the restored network was reduced by more than 36%, while the compositional stability was improved by more than 12%, with reduced fluctuation in natural connectivity. This microbial network succession substantially increased the number of key enzyme-producing genes involved in nitrogen and sulfur metabolism, enhancing nitrification, denitrification, and assimilatory sulfate reduction, thereby increasing the removal rates of ammonia, nitrate, and acid volatile sulfide by 43.42%, 250.68% and 2.66%, respectively. This study comprehensively analyzed the succession patterns of microbial networks in urban rivers affected by CSOs before and after sediment remediation, which may provide a reference for reducing the impact of CSO pollution on urban rivers in the subsequent stages.
Collapse
Affiliation(s)
- Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Eco-Environmental Research Department, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caole Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jianglong Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuzhu Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yangyang Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
13
|
Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes. Curr Opin Microbiol 2023; 72:102281. [PMID: 36848712 DOI: 10.1016/j.mib.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/27/2023]
Abstract
Rhizobial bacteria have complex lifestyles that involve growth and survival in bulk soil, plant rhizospheres and rhizoplanes, legume infection threads, and mature and senescing legume nodules. In nature, rhizobia coexist and compete with many other rhizobial strains and species to form host associations. We review recent work defining competitive interactions across these environments. We highlight the use of sophisticated measurement tools and sequencing technologies to examine competition mechanisms in planta, and highlight environments (e.g. soil and senescing nodules) where we still know exceedingly little. We argue that moving toward an explicitly ecological framework (types of competition, resources, and genetic differentiation) will clarify the evolutionary ecology of these foundational organisms and open doors for engineering sustainable, beneficial associations with hosts.
Collapse
Affiliation(s)
- Liana T Burghardt
- The Pennsylvania State University, Department of Plant Science, University Park, PA 16802, United States; The Pennsylvania State University, Ecology Graduate Program, University Park, PA 16802, United States.
| | - George C diCenzo
- Queen's University, Department of Biology, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
14
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Preliminary symbiotic performance of indigenous soybean (Glycine max)-nodulating rhizobia from agricultural soils of Tanzania. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1085843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Globally, the increase in human population continues to threaten the sustainability of agricultural systems. Despite the fast-growing population in Sub-Saharan Africa (SSA) and the efforts in improving the productivity of crops, the increase in the yield of crops per unit area is still not promising. The productivity of crops is primarily constrained by inadequate levels of soil nutrients to support optimum crop growth and development. However, smallholder farmers occasionally use fertilizers, and the amount applied is usually small and does not meet plant requirements. This is due to the unaffordability of the cost of fertilizers, which is enough to suffice the crop requirement. Therefore, there is a need for alternative affordable and effective fertilization methods for sustainable intensification and improvement of the smallholder farming system's productivity. This study was designed to evaluate the symbiotic performance of indigenous soybean nodulating rhizobia in selected agricultural soils of Tanzania. In total, 217 rhizobia isolates were obtained from three agroecological zones, i.e., eastern, northern, and southern highlands. The isolates collected were screened for N2 fixing abilities under in vitro (nitrogen-free medium) and screen house conditions. The results showed varying capabilities of isolates in nitrogen-fixing both under in vitro and screen house conditions. Under in vitro experiment, 22% of soybean rhizobia isolates were identified to have a nitrogen-fixing capability on an N-free medium, with the highest N2-fixing diameter of 1.87 cm. In the screen house pot experiment, results showed that soybean rhizobia isolate significantly (P < 0.001) influenced different plant growth and yield components, where the average shoot dry weight ranged from 2.49 to 10.98 g, shoot length from 41 to 125.27 cm whilst the number of leaves per plant ranged from 20 to 66. Furthermore, rhizobia isolates significantly (P = 0.038) increased root dry weight from 0.574 to 2.17 g. In the case of symbiotic parameters per plant, the number of nodules was in the range of 0.33–22, nodules dry weight (0.001–0.137 g), shoot nitrogen (2.37–4.97%), total nitrogen (53.59–6.72 g), and fixed nitrogen (46.878–0.15 g) per plant. In addition, the results indicated that 51.39% of the tested bacterial isolates in this study were ranked as highly effective in symbiosis, suggesting that they are promising as potential alternative biofertilizers for soybean production in agricultural soils of Tanzania to increase productivity per unit area while reducing production cost.
Collapse
|
15
|
Liu L, Jiang H, Zhang X, Peng D. Biogeographic pattern and relevant environmental factors for rhizobial communities in the rhizosphere and root nodules of kudzu (Pueraria lobata). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49136-49146. [PMID: 35212898 DOI: 10.1007/s11356-022-19335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Kudzu (Pueraria lobata) is an important medicinal plant, which can associate with rhizobia for nitrogen fixation. The mutualistic symbiosis between rhizobium and kudzu is not well understood, but it is necessary to fully utilize kudzu. Nodules and rhizosphere soils collected from 16 sampling sites were characterized based on phylogenetic analyses of the rpoB gene; 16S rRNA gene; the housekeeping genes SMc00019, truA, and thrA; and the symbiotic genes nodA and nifH. The relationships between biogeographic pattern, nitrogenase activity, and environmental factors were studied. Results indicated that a clear biogeographic pattern of rhizobial communities in the kudzu rhizosphere existed in southern China; latitude and soil pH were found to be the most important factors affecting the biogeographic pattern. Bradyrhizobium diazoefficiens and Bradyrhizobium erythrophlei were the dominant species in kudzu rhizosphere. The symbiotic rhizobia in kudzu nodules mainly belonged to B. lablabi, B. elkanii, B. pachyrhizi, and B. japonicum. Nitrogenase activities in the nodules of kudzu in the Jiangxi sampling region were significantly higher than those in the Guangxi and Hunan sampling regions, and they were significantly negatively correlated to pH and exchangeable Ca. These results constitute the first report of the existence of symbiotic genes in kudzu bradyrhizobia, which are similar to those in B. elkanii and B. pachyrhizi. Our findings could improve the understanding of kudzu-rhizobium symbiosis and could advance the application of rhizobial inoculation in medicinal legumes in terms of increasing the content of active ingredients.
Collapse
Affiliation(s)
- Lu Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Xin Zhang
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Di Peng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
16
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
17
|
Khairnar M, Hagir A, Parmar K, Sayyed RZ, James EK, Rahi P. Phylogenetic diversity and plant growth-promoting activities of rhizobia nodulating fenugreek (Trigonella foenum-graecum Linn.) cultivated in different agroclimatic regions of India. FEMS Microbiol Ecol 2022; 98:6526309. [PMID: 35142840 DOI: 10.1093/femsec/fiac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Fenugreek (Trigonella foenum-graecum Linn.), is an extensively cultivated legume crop used as a herb, spice, and traditional medicine in India. The symbiotic efficiency and plant growth-promoting potential of fenugreek rhizobia depend on the symbiont strain and environmental factors. We isolated 176 root-nodulating bacteria from fenugreek cultivated in different agroclimatic regions of India. MALDI-TOF MS-based identification and phylogenetic analyses based on 16S rRNA and five housekeeping genes classified the fenugreek-rhizobia as Ensifer (Sinorhizobium) meliloti. However, the strains represent separate sub-lineages of E. meliloti, distinct from all reported sub-lineages across the globe. We also observed the spatial distribution of fenugreek rhizobia, as the three sub-lineages of E. meliloti recorded during this study were specific to their respective agroclimatic regions. According to the symbiotic gene (nodC and nifH) phylogenies, all three sub-lineages of E. meliloti harboured symbiotic genes similar to symbiovar meliloti; as with the housekeeping genes, these also revealed a spatial distribution for different clades of sv. meliloti. The strains could nodulate fenugreek plants and they showed plant growth-promoting potential. Significant differences were found in the plant growth parameters in response to inoculation with the various strains, suggesting strain-level differences. This study demonstrates that fenugreek rhizobia in India are diverse and spatially distributed in different agro-climatic regions.
Collapse
Affiliation(s)
- Mitesh Khairnar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Ashwini Hagir
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Krupa Parmar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Riyazali Zafarali Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science, and Commerce College, Shahada 425409, India
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| |
Collapse
|
18
|
Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, Zhang Y, Chou M, Wei G. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol 2022; 12:747982. [PMID: 35069464 PMCID: PMC8767003 DOI: 10.3389/fmicb.2021.747982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient screening method is the prerequisite for getting plant growth-promoting (PGP) rhizobacteria (PGPR) which may play an important role in sustainable agriculture from the natural environment. Many current traditional preliminary screening criteria based on knowledge of PGP mechanisms do not always work well due to complex plant-microbe interactions and may lead to the low screening efficiency. More new screening criteria should be evaluated to establish a more effective screening system. However, the studies focused on this issue were not enough, and few new screening criteria had been proposed. The aim of this study was to analyze the correlation between the metabolic phenotypes of rhizobacterial isolates and their PGP ability. The feasibility of using these phenotypes as preliminary screening criteria for PGPR was also evaluated. Twenty-one rhizobacterial isolates were screened for their PGP ability, traditional PGP traits, and multiple metabolic phenotypes that are not directly related to PGP mechanisms, but are possibly related to rhizosphere colonization. Correlations between the PGP traits or metabolic phenotypes and increases in plant agronomic parameters were analyzed to find the indicators that are most closely related to PGP ability. The utilization of 11 nutrient substrates commonly found in root exudates, such as D-salicin, β-methyl-D-glucoside, and D-cellobiose, was significantly positively correlated with the PGP ability of the rhizobacterial isolates. The utilization of one amino acid and two organic acids, namely L-aspartic acid, α-keto-glutaric acid, and formic acid, was negatively correlated with PGP ability. There were no significant correlations between four PGP traits tested in this study and the PGP ability. The ability of rhizobacterial isolates to metabolize nutrient substrates that are identical or similar to root exudate components may act as better criteria than PGP traits for the primary screening of PGPR, because rhizosphere colonization is a prerequisite for PGPR to affect plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Ghodhbane-Gtari F, D’Angelo T, Gueddou A, Ghazouani S, Gtari M, Tisa LS. Alone Yet Not Alone: Frankia Lives Under the Same Roof With Other Bacteria in Actinorhizal Nodules. Front Microbiol 2021; 12:749760. [PMID: 34925263 PMCID: PMC8674757 DOI: 10.3389/fmicb.2021.749760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Actinorhizal plants host mutualistic symbionts of the nitrogen-fixing actinobacterial genus Frankia within nodule structures formed on their roots. Several plant-growth-promoting bacteria have also been isolated from actinorhizal root nodules, but little is known about them. We were interested investigating the in planta microbial community composition of actinorhizal root nodules using culture-independent techniques. To address this knowledge gap, 16S rRNA gene amplicon and shotgun metagenomic sequencing was performed on DNA from the nodules of Casuarina glauca. DNA was extracted from C. glauca nodules collected in three different sampling sites in Tunisia, along a gradient of aridity ranging from humid to arid. Sequencing libraries were prepared using Illumina NextEra technology and the Illumina HiSeq 2500 platform. Genome bins extracted from the metagenome were taxonomically and functionally profiled. Community structure based off preliminary 16S rRNA gene amplicon data was analyzed via the QIIME pipeline. Reconstructed genomes were comprised of members of Frankia, Micromonospora, Bacillus, Paenibacillus, Phyllobacterium, and Afipia. Frankia dominated the nodule community at the humid sampling site, while the absolute and relative prevalence of Frankia decreased at the semi-arid and arid sampling locations. Actinorhizal plants harbor similar non-Frankia plant-growth-promoting-bacteria as legumes and other plants. The data suggests that the prevalence of Frankia in the nodule community is influenced by environmental factors, with being less abundant under more arid environments.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université de la Manouba, Sidi Thabet, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Timothy D’Angelo
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Abdellatif Gueddou
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Sabrine Ghazouani
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
20
|
Liu L, Chen X, Hu S, Zhan Q, Peng W. Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province. Arch Microbiol 2021; 203:1971-1980. [PMID: 33394081 DOI: 10.1007/s00203-020-02120-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
To explore the genetic diversity and distribution of rhizobia in the rhizosphere of soybean grown in red soil, we have collected 21 soil samples from soybean fields across seven counties in Hunan province, China. MiSeq sequencing of rpoB gene was used to determine the intra-species diversity of rhizobia existing in soybean rhizospheres. Soil chemical properties were determined by routine methods. The Principal Coordinates Analysis (PCoA) plot indicated a clear biogeographical pattern characterizing the soybean rhizosphere across different sites. The Mantel test demonstrated that biogeographical pattern was significantly correlated with the geographical distance (Mantel statistic R 0.385, p < 0.001). There were obvious differences in the rhizobial communities among northeastern eco-region, southeastern eco-region and western eco-region. In general, Bradyrhizobium diazoefficiens was the most abundant rhizobial species in the soybean rhizosphere. At an intermediate (10-400 km) spatial scale, the biogeographical pattern of rhizobial communities in soybean rhizosphere is associated with both soil properties and geographical distance. Redundancy analysis (RDA) showed that total potassium (TK), available potassium (AK), soil organic carbon (SOC), and available nitrogen (AN) were the main factors that influenced the α-diversity of rhizobial communities. Canonical correspondence analysis (CCA) showed that pH and exchangeable Ca and Mg had the greatest influence on the β-diversity of the rhizobial communities in the soybean rhizosphere. These findings characterize the distribution pattern and its influencing factors of soybean rhizobia in rhizosphere in Hunan province, which may be helpful in selecting suitable strains or species as inoculants for soybeans in red soil regions.
Collapse
Affiliation(s)
- Lu Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Xi Chen
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Shujuan Hu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
- Longping Branch of Graduate School, Hunan University, Changsha, People's Republic of China
| | - Qingcai Zhan
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Weizheng Peng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Mayhood P, Mirza BS. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Nonrhizobial Endophytes. Appl Environ Microbiol 2021; 87:e02884-20. [PMID: 33674438 PMCID: PMC8117765 DOI: 10.1128/aem.02884-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Soybean root nodules are known to contain a high diversity of both rhizobial endophytes and nonrhizobial endophytes (NREs). Nevertheless, the variation of these bacteria among different root nodules within single plants has not been reported. So far, it is unclear whether the selection of NREs among different root nodules within single plants is a random process or is strictly controlled by the host plant to favor a few specific NREs based on their beneficial influence on plant growth. As well, it is also unknown if the relative frequency of NREs within different root nodules is consistent or if it varies based on the location or size of a root nodule. We assessed the microbiomes of 193 individual soybean root nodules from nine plants using high-throughput DNA sequencing. Bradyrhizobium japonicum strains occurred in high abundance in all root nodules despite the presence of other soybean-compatible rhizobia, such as Ensifer, Mesorhizobium, and other species of Bradyrhizobium in soil. Nitrobacter and Tardiphaga were the two nonrhizobial genera that were uniformly detected within almost all root nodules, though they were in low abundance. DNA sequences related to other NREs that have frequently been reported, such as Bacillus, Pseudomonas, Flavobacterium, and Variovorax species, were detected in a few nodules. Unlike for Bradyrhizobium, the low abundance and inconsistent occurrence of previously reported NREs among different root nodules within single plants suggest that these microbes are not preferentially selected as endophytes by host plants and most likely play a limited part in plant growth as endophytes.IMPORTANCE Soybean (Glycine max L.) is a valuable food crop that also contributes significantly to soil nitrogen by developing a symbiotic association with nitrogen-fixing rhizobia. Bacterial endophytes (both rhizobial and nonrhizobial) are considered critical for the growth and resilience of the legume host. In the past, several studies have suggested that the selection of bacterial endophytes within root nodules can be influenced by factors such as soil pH, nutrient availability, host plant genotype, and bacterial diversity in soil. However, the influence of size or location of root nodules on the selection of bacterial endophytes within soybean roots is unknown. It is also unclear whether the selection of nonrhizobial endophytes within different root nodules of a single plant is a random process or is strictly regulated by the host. This information can be useful in identifying potential bacterial species for developing bioinoculants that can enhance plant growth and soil nitrogen.
Collapse
Affiliation(s)
- Parris Mayhood
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Babur S Mirza
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| |
Collapse
|
22
|
Hailu Gunnabo A, Geurts R, Wolde-meskel E, Degefu T, E. Giller K, van Heerwaarden J. Phylogeographic distribution of rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. FEMS Microbiol Ecol 2021; 97:fiab046. [PMID: 33724341 PMCID: PMC8016211 DOI: 10.1093/femsec/fiab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/13/2021] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are soilborne bacteria that form symbiotic relations with legumes and fix atmospheric nitrogen. The nitrogen fixation potential depends on several factors such as the type of host and symbionts and on environmental factors that affect the distribution of rhizobia. We isolated bacteria nodulating common bean in Southern Ethiopia to evaluate their genetic diversity and phylogeography at nucleotide, locus (gene/haplotype) and species levels of genetic hierarchy. Phylogenetically, eight rhizobial genospecies (including previous collections) were determined that had less genetic diversity than found among reference strains. The limited genetic diversity of the Ethiopian collections was due to absence of many of the Rhizobium lineages known to nodulate beans. Rhizobium etli and Rhizobiumphaseoli were predominant strains of bean-nodulating rhizobia in Ethiopia. We found no evidence for a phylogeographic pattern in strain distribution. However, joint analysis of the current and previous collections revealed differences between the two collections at nucleotide level of genetic hierarchy. The differences were due to genospecies Rhizobium aethiopicum that was only isolated in the earlier collection.
Collapse
Affiliation(s)
- Ashenafi Hailu Gunnabo
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Endalkachew Wolde-meskel
- World Agroforestry Centre (ICRAF), c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, 4 Ethiopia
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, Ethiopia
| | - Ken E. Giller
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Joost van Heerwaarden
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| |
Collapse
|
23
|
Pang J, Palmer M, Sun HJ, Seymour CO, Zhang L, Hedlund BP, Zeng F. Diversity of Root Nodule-Associated Bacteria of Diverse Legumes Along an Elevation Gradient in the Kunlun Mountains, China. Front Microbiol 2021; 12:633141. [PMID: 33664721 PMCID: PMC7920992 DOI: 10.3389/fmicb.2021.633141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria in root nodules of legumes play important roles in promoting plant growth. In this study, we investigated root nodule-associated bacteria isolated from leguminous plants along an elevation gradient on the northern slope of the Kunlun Mountains, China, using a cultivation approach. In total, 300 isolates were obtained from seven legume species within six ecological zones. Isolates were identified based on 16S rRNA gene phylogenetic analysis and potential rhizobia were further identified using a recA gene phylogeny. Among the isolates, Bacillales (particularly Bacillus) were the dominant isolates from all host legumes and all elevations (63.5%), followed by Rhizobiales (13%) and Pseudomonadales (11.7%). Less than 3% of the isolates belonged to Burkholderiales, Paenibacillales, Enterobacteriales, Actinomycetales, Sphingomonadales, Xanthomonadales, Chitinophagales, Brevibacillales, Staphylococcales, or Mycobacteriales. A few elevation-specific patterns emerged within the Bacillales and Pseudomonadales. For example, isolates related to the psychrotroph Bacillus psychrosaccharolyticus were only isolated from the highest elevation sites (>3,500 m) whereas those related to the mesophile Bacillus endophyticus were only isolated from lowest elevation sites (1,350 m), suggestive of a role of soil temperature in their distribution. Similarly, isolates related to Pseudomonas brassicacearum were the dominant Pseudomonadales isolates, but they were only isolated from middle and low elevations (<3,200 m). A total of 39 isolates belonged to the Rhizobiales, 36 of which were confirmed to the genus level using the recA gene. In all, Rhizobiales isolates were obtained from five different host legumes spanning the entire elevation gradient. Those from the low-elevation Qira Desert-Oasis Transition Zone (1,350-1,960 m) suggested some patterns of host preference. For example, most isolates from Albizia julibrissin formed a monophyletic group related to Rhizobium lemnae and most from Alhagi sparsifolia were closely related to Ensifer kummerowiae. In general, this study shows that most bacteria associated with root nodules of legumes are widely distributed in distinct ecological zones within a single geographic region but suggests that both climate and host interactions may influence their distributions.
Collapse
Affiliation(s)
- Jinfeng Pang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Henry J Sun
- Desert Research Institute, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Ling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, Las Vegas, NV, United States
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.,Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, Chen W, Li X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. THE ISME JOURNAL 2020; 14:1915-1928. [PMID: 32336748 PMCID: PMC7367843 DOI: 10.1038/s41396-020-0648-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023]
Abstract
Rhizobia-legume symbiosis is an important type of plant-microbe mutualism; however, the establishment of this association is complicated and can be affected by many factors. The soybean rhizosphere has a specific microbial community, yet whether these organisms affect rhizobial nodulation has not been well investigated. Here, we analyzed the compositions and relationships of soybean rhizocompartment microbiota in three types of soil. First, we found that the rhizosphere community composition of soybean varied significantly in different soils, and the association network between rhizobia and other rhizosphere bacteria was examined. Second, we found that some rhizosphere microbes were correlated with the composition of bradyrhizobia and sinorhizobia in nodules. We cultivated 278 candidate Bacillus isolates from alkaline soil. Finally, interaction and nodulation assays showed that the Bacillus cereus group specifically promotes and suppresses the growth of sinorhizobia and bradyrhizobia, respectively, and alleviates the effects of saline-alkali conditions on the nodulation of sinorhizobia as well as affecting its colonization in nodules. Our findings demonstrate a crucial role of the bacterial microbiota in shaping rhizobia-host interactions in soybean, and provide a framework for improving the symbiotic efficiency of this system of mutualism through the use of synthetic bacterial communities.
Collapse
Affiliation(s)
- Qin Han
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Qun Ma
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yong Chen
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Bing Tian
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Lanxi Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, China.
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
25
|
Favero VO, Carvalho RH, Motta VM, Leite ABC, Coelho MRR, Xavier GR, Rumjanek NG, Urquiaga S. Bradyrhizobium as the Only Rhizobial Inhabitant of Mung Bean ( Vigna radiata) Nodules in Tropical Soils: A Strategy Based on Microbiome for Improving Biological Nitrogen Fixation Using Bio-Products. FRONTIERS IN PLANT SCIENCE 2020; 11:602645. [PMID: 33510747 PMCID: PMC7835340 DOI: 10.3389/fpls.2020.602645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/14/2020] [Indexed: 05/07/2023]
Abstract
The mung bean has a great potential under tropical conditions given its high content of grain protein. Additionally, its ability to benefit from biological nitrogen fixation (BNF) through association with native rhizobia inhabiting nodule microbiome provides most of the nitrogen independence on fertilizers. Soil microbial communities which are influenced by biogeographical factors and soil properties, represent a source of rhizobacteria capable of stimulating plant growth. The objective of this study is to support selection of beneficial bacteria that form positive interactions with mung bean plants cultivated in tropical soils, as part of a seed inoculation program for increasing grain yield based on the BNF and other mechanisms. Two mung bean genotypes (Camaleão and Esmeralda) were cultivated in 10 soil samples. Nodule microbiome was characterized by next-generation sequencing using Illumina MiSeq 16S rRNA. More than 99% of nodule sequences showed similarity with Bradyrhizobium genus, the only rhizobial present in nodules in our study. Higher bacterial diversity of soil samples collected in agribusiness areas (MW_MT-I, II or III) was associated with Esmeralda genotype, while an organic agroecosystem soil sample (SE_RJ-V) showed the highest bacterial diversity independent of genotype. Furthermore, OTUs close to Bradyrhizobium elkanii have dominated in all soil samples, except in the sample from the organic agroecosystem, where just B. japonicum was present. Bacterial community of mung bean nodules is mainly influenced by soil pH, K, Ca, and P. Besides a difference on nodule colonization by OTU sequences close to the Pseudomonas genus regarding the two genotypes was detected too. Although representing a small rate, around 0.1% of the total, Pseudomonas OTUs were only retrieved from nodules of Esmeralda genotype, suggesting a different trait regarding specificity between macro- and micro-symbionts. The microbiome analysis will guide the next steps in the development of an inoculant for mung bean aiming to promote plant growth and grain yield, composed either by an efficient Bradyrhizobium strain on its own or co-inoculated with a Pseudomonas strain. Considering the results achieved, the assessment of microbial ecology parameters is a potent coadjuvant capable to accelerate the inoculant development process and to improve the benefits to the crop by soil microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norma Gouvêa Rumjanek
- Embrapa Agrobiology, Seropédica, Rio de Janeiro, Brazil
- *Correspondence: Norma Gouvêa Rumjanek,
| | | |
Collapse
|
26
|
Deng ZS, Kong ZY, Zhang BC, Zhao LF. Insights into non-symbiotic plant growth promotion bacteria associated with nodules of Sphaerophysa salsula growing in northwestern China. Arch Microbiol 2019; 202:399-409. [DOI: 10.1007/s00203-019-01752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
|
27
|
Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 2019; 201:1333-1349. [PMID: 31309236 DOI: 10.1007/s00203-019-01702-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The present study aims to characterize nodule endophytic bacteria of spontaneous lupine plants regarding their diversity and their plant growth promoting (PGP) traits. The potential of PGPR inoculation was investigated to improve white lupine growth across controlled, semi-natural and field conditions. Lupinus luteus and Lupinus angustifolius nodules were shown inhabited by a large diversity of endophytes. Several endophytes harbor numerous plant growth promotion traits such as phosphates solubilization, siderophores production and 1-aminocyclopropane-1-carboxylate deaminase activity. In vivo analysis confirmed the plant growth promotion ability of two strains (Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215) in both sterilized and semi-natural conditions. Under field conditions, the co-inoculation of lupine by these strains increased shoot N content and grain yield by 25% and 36%, respectively. These two strains Paenibacillus glycanilyticus LJ121 and Pseudomonas brenneri LJ215 are effective plant growth-promoting bacteria and they may be used to develop an eco-friendly biofertilizer to boost white lupine productivity.
Collapse
|
28
|
Temprano-Vera F, Rodríguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gómez P, Zhen T, Yu D, An Q, Buendía-Clavería AM, Moreno J, López-Baena FJ, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans ( Glycine soja) From Central China but Are Ineffective on Northern China Accessions. Front Microbiol 2018; 9:2843. [PMID: 30519234 PMCID: PMC6258812 DOI: 10.3389/fmicb.2018.02843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Sinorhizobium fredii indigenous populations are prevalent in provinces of Central China whereas Bradyrhizobium species (Bradyrhizobium japonicum, B. diazoefficiens, B. elkanii, and others) are more abundant in northern and southern provinces. The symbiotic properties of different soybean rhizobia have been investigated with 40 different wild soybean (Glycine soja) accessions from China, Japan, Russia, and South Korea. Bradyrhizobial strains nodulated all the wild soybeans tested, albeit efficiency of nitrogen fixation varied considerably among accessions. The symbiotic capacity of S. fredii HH103 with wild soybeans from Central China was clearly better than with the accessions found elsewhere. S. fredii NGR234, the rhizobial strain showing the broadest host range ever described, also formed nitrogen-fixing nodules with different G. soja accessions from Central China. To our knowledge, this is the first report describing an effective symbiosis between S. fredii NGR234 and G. soja. Mobilization of the S. fredii HH103 symbiotic plasmid to a NGR234 pSym-cured derivative (strain NGR234C) yielded transconjugants that formed ineffective nodules with G. max cv. Williams 82 and G. soja accession CH4. By contrast, transfer of the symbiotic plasmid pNGR234a to a pSym-cured derivative of S. fredii USDA193 generated transconjugants that effectively nodulated G. soja accession CH4 but failed to nodulate with G. max cv. Williams 82. These results indicate that intra-specific transference of the S. fredii symbiotic plasmids generates new strains with unpredictable symbiotic properties, probably due to the occurrence of new combinations of symbiotic signals.
Collapse
Affiliation(s)
| | | | - Sebastian Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Xavier Perret
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Romain K Fossou
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Tao Zhen
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Deshui Yu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Qi An
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Ana Maria Buendía-Clavería
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Jose Enrique Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Jose Maria Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| |
Collapse
|