1
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Rojas-Flores S, De La Cruz-Noriega M, Benites SM, Delfín-Narciso D, Luis AS, Díaz F, Luis CC, Moises GC. Electric Current Generation by Increasing Sucrose in Papaya Waste in Microbial Fuel Cells. Molecules 2022; 27:molecules27165198. [PMID: 36014437 PMCID: PMC9416207 DOI: 10.3390/molecules27165198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The accelerated increase in energy consumption by human activity has generated an increase in the search for new energies that do not pollute the environment, due to this, microbial fuel cells are shown as a promising technology. The objective of this research was to observe the influence on the generation of bioelectricity of sucrose, with different percentages (0%, 5%, 10% and 20%), in papaya waste using microbial fuel cells (MFCs). It was possible to generate voltage and current peaks of 0.955 V and 5.079 mA for the cell with 20% sucrose, which operated at an optimal pH of 4.98 on day fifteen. In the same way, the internal resistance values of all the cells were influenced by the increase in sucrose, showing that the cell without sucrose was 0.1952 ± 0.00214 KΩ and with 20% it was 0.044306 ± 0.0014 KΩ. The maximum power density was 583.09 mW/cm2 at a current density of 407.13 A/cm2 and with a peak voltage of 910.94 mV, while phenolic compounds are the ones with the greatest presence in the FTIR (Fourier transform infrared spectroscopy) absorbance spectrum. We were able to molecularly identify the species Achromobacter xylosoxidans (99.32%), Acinetobacter bereziniae (99.93%) and Stenotrophomonas maltophilia (100%) present in the anode electrode of the MFCs. This research gives a novel use for sucrose to increase the energy values in a microbial fuel cell, improving the existing ones and generating a novel way of generating electricity that is friendly to the environment.
Collapse
Affiliation(s)
- Segundo Rojas-Flores
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru
- Correspondence:
| | | | - Santiago M. Benites
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru
| | - Daniel Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo 13007, Peru
| | - Angelats-Silva Luis
- Laboratorio de Investigación Multidisciplinario, Universidad Privada Antenor Orrego (UPAO), Trujillo 13008, Peru
| | - Felix Díaz
- Escuela Académica Profesional de Medicina Humana, Universidad Norbert Wiener, Lima 15046, Peru
| | - Cabanillas-Chirinos Luis
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru
| | | |
Collapse
|
3
|
Facile fabrication of amino-functionalized MIL-68(Al) metal-organic framework for effective adsorption of arsenate (As(V)). Sci Rep 2022; 12:11865. [PMID: 35831402 PMCID: PMC9279506 DOI: 10.1038/s41598-022-16038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/04/2022] [Indexed: 12/07/2022] Open
Abstract
An amino-functionalized MIL-68(Al) metal–organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R2 > 0.99, F-value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m2/g) and high reusability for As(V)-contaminated water.
Collapse
|
4
|
Abstract
The large amounts of organic waste thrown into the garbage without any productivity, and the increase in the demand for electrical energy worldwide, has led to the search for new eco-friendly ways of generating electricity. Because of this, microbial fuel cells have begun to be used as a technology to generate bioelectricity. The main objective of this research was to generate bioelectricity through banana waste using a low-cost laboratory-scale method, achieving the generation of maximum currents and voltages of 3.71667 ± 0.05304 mA and 1.01 ± 0.017 V, with an optimal pH of 4.023 ± 0.064 and a maximum electrical conductivity of the substrate of 182.333 ± 3.51 µS/cm. The FTIR spectra of the initial and final substrate show a decrease in the peaks belonging to phenolic compounds, alkanes, and alkenes, mainly. The maximum power density was 5736.112 ± 12.62 mW/cm2 at a current density of 6.501 A/cm2 with a peak voltage of 1006.95 mV. The molecular analysis of the biofilm formed on the anode electrode identified the species Pseudomonas aeruginosa (100%), and Paenalcaligenes suwonensis (99.09%), Klebsiella oxytoca (99.39%) and Raoultella terrigena (99.8%), as the main electricity generators for this type of substrate. This research gives a second use to the fruit with benefits for farmers and companies dedicated to exporting and importing because they can reduce their expenses by using their own waste.
Collapse
|
5
|
Mesbah NM. Industrial Biotechnology Based on Enzymes From Extreme Environments. Front Bioeng Biotechnol 2022; 10:870083. [PMID: 35480975 PMCID: PMC9036996 DOI: 10.3389/fbioe.2022.870083] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Biocatalysis is crucial for a green, sustainable, biobased economy, and this has driven major advances in biotechnology and biocatalysis over the past 2 decades. There are numerous benefits to biocatalysis, including increased selectivity and specificity, reduced operating costs and lower toxicity, all of which result in lower environmental impact of industrial processes. Most enzymes available commercially are active and stable under a narrow range of conditions, and quickly lose activity at extremes of ion concentration, temperature, pH, pressure, and solvent concentrations. Extremophilic microorganisms thrive under extreme conditions and produce robust enzymes with higher activity and stability under unconventional circumstances. The number of extremophilic enzymes, or extremozymes, currently available are insufficient to meet growing industrial demand. This is in part due to difficulty in cultivation of extremophiles in a laboratory setting. This review will present an overview of extremozymes and their biotechnological applications. Culture-independent and genomic-based methods for study of extremozymes will be presented.
Collapse
Affiliation(s)
- Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Anang E, Tei M, Aduboffour VK. Enhanced arsenic removal using lateritic bauxite modified by heating and blending. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1568-1580. [PMID: 35290232 DOI: 10.2166/wst.2022.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of bauxite to remove arsenic from wastewater has been confirmed to be effective, but its removal efficiency in literature is not up to 90%, hence the need to devise a more effective method to remove arsenic from wastewater. In this study, a novel material was prepared by thermally modifying and blending yellow and red lateritic bauxite to form thermally modified and blended yellow and red lateritic bauxite (TYB + TRB). The adsorption isotherm, morphology and chemical composition of the novel material were determined by the Langmuir and Freundlich models, Scanning Electron Microscopy (SEM) and X-ray Fluorescence (XRF), respectively. Application of the novel material in arsenic removal resulted in >97% removal efficiency within 60 min. The arsenic adsorption by TYB + TRB conformed to the Freundlich model. The SEM image depicted a compacted earth material after use of the TYB + TRB to remove arsenic from the wastewater. The XRF results also showed a drastic reduction in the chemical composition of the novel bauxite except Ti, thus suggesting the occurrence of multiple mechanisms during the arsenic removal. This study demonstrated the potential of TYB + TRB to be developed and used as the most suitable material for wastewater treatment.
Collapse
Affiliation(s)
- Emmanuella Anang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Meshack Tei
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana E-mail:
| | | |
Collapse
|
7
|
Leiva-Aravena E, Vera MA, Nerenberg R, Leiva ED, Vargas IT. Biofilm formation of Ancylobacter sp. TS-1 on different granular materials and its ability for chemolithoautotrophic As(III)-oxidation at high concentrations. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126733. [PMID: 34339991 DOI: 10.1016/j.jhazmat.2021.126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of arsenic (As) is a key step in its removal from water, and biological oxidation may provide a cost-effective and sustainable method. The biofilm-formation ability of Ancylobacter sp. TS-1, a novel chemolithoautotrophic As oxidizer, was studied for four materials: polypropylene, graphite, sand, and zeolite. After seven days under batch mixotrophic conditions, with high concentrations of As(III) (225 mg·L-1), biofilm formation was detected on all materials except for polypropylene. The results demonstrate As(III)-oxidation of TS-1 biofilms and suggest that the number of active cells was similar for graphite, sand, and zeolite. However, the biofilm biomass follows the specific surface area of each material: 7.0, 2.4, and 0.4 mg VSS·cm-3 for zeolite, sand, and graphite, respectively. Therefore, the observed biofilm-biomass differences were probably associated with different amounts of EPS and inert biomass. Lastly, As(III)-oxidation kinetics were assessed for the biofilms formed on graphite and zeolite under chemolithoautotrophic conditions. The normalized oxidation rate for biofilms formed on these materials was 3.6 and 1.0 mg·L-1·h-1·cm-3, resulting among the highest reported values for As(III)-oxidizing biofilms operated at high-As(III) concentrations. Our findings suggest that biofilm reactors based on Ancylobacter sp. TS-1 are highly promising for their utilization in As(III)-oxidation pre-treatment of high-As(III) polluted waters.
Collapse
Affiliation(s)
- Enzo Leiva-Aravena
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Chile
| | - Mario A Vera
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences Notre Dame, University of Notre Dame, Notre Dame, IN, United States
| | - Eduardo D Leiva
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Chile.
| |
Collapse
|
8
|
Oseghe EO, Idris AO, Feleni U, Mamba BB, Msagati TAM. A review on water treatment technologies for the management of oxoanions: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61979-61997. [PMID: 34561799 DOI: 10.1007/s11356-021-16302-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Oxoanions are a class of contaminants that are easily released into the aquatic systems either through natural or anthropogenic activities. Depending on their oxidation states, they are highly mobile, resulting in the contamination of underground water. Above the permissible level in groundwater, they pose as threats to mammals when the contaminated water is consumed. Some of the health challenges caused are cancer, neurological, cardiac, gastrointestinal, and skin disorders. Several treatment technologies have been adopted over the years for the management of these oxoanions present in the aquatic systems. However interesting these treatment technologies might be, they also have their limitations such as cost-effectiveness, the complexity of the process, and generation of secondary pollutants. This work focused on some of the water treatment technologies applied for the removal of oxoanions. Some of the advantages and disadvantages of these treatment technologies are also highlighted. Amongst all the treatment technologies, adsorption is the most applied method for the removal of oxoanions. However, photocatalysis has a higher prospect since it is non-selective and secondary pollutants are not generated after the treatment process. Also, photocatalysis can simultaneously reduce and oxidise oxoanions as well as organic pollutants respectively.
Collapse
Affiliation(s)
- Ekemena Oghenovoh Oseghe
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa.
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
9
|
Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z. Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges. ENERGY & ENVIRONMENT 2021; 32:1029-1058. [DOI: 10.1177/0958305x19896781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Environmental contamination with persistent organic pollutants has emerged as a serious threat of pollution. Bioremediation is a key to eliminate these harmful pollutants from the environment and has gained the interest of researchers during the past few decades. Scientific knowledge upon microbial interactions with individual pollutants over the past decades has helped to abate environmental pollution. Traditional bioremediation approaches have limitations for their applications; hence, it is essential to discover new bioremediation approaches with biotechnological interventions for best results. The developments in various methodologies are expected to increase the efficiency of bioremediation techniques and provide environmentally sound strategies. This paper deals with the profiling of microorganisms present in polluted sites using various techniques such as culture-based approaches and omics-based approaches. Besides this, it also provides up-to-date scientific literature on the microbial electrochemical technologies which are nowadays considered as the best approach for remediation of pollutants. Detailed information about future outlook and challenges to evaluate the effect of various treatment technologies for remediation of pollutants has been discussed.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Raveendran Sindhu
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Parameswaran Binod
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute of Water Education, Delft, The Netherlands
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| |
Collapse
|
10
|
Leiva E, Tapia C, Rodríguez C. Removal of Mn(II) from Acidic Wastewaters Using Graphene Oxide-ZnO Nanocomposites. Molecules 2021; 26:molecules26092713. [PMID: 34063077 PMCID: PMC8125303 DOI: 10.3390/molecules26092713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pollution due to acidic and metal-enriched waters affects the quality of surface and groundwater resources, limiting their uses for various purposes. Particularly, manganese pollution has attracted attention due to its impact on human health and its negative effects on ecosystems. Applications of nanomaterials such as graphene oxide (GO) have emerged as potential candidates for removing complex contaminants. In this study, we present the preliminary results of the removal of Mn(II) ions from acidic waters by using GO functionalized with zinc oxide nanoparticles (ZnO). Batch adsorption experiments were performed under two different acidity conditions (pH1 = 5.0 and pH2 = 4.0), in order to evaluate the impact of acid pH on the adsorption capacity. We observed that the adsorption of Mn(II) was independent of the pHPZC value of the nanoadsorbents. The qmax with GO/ZnO nanocomposites was 5.6 mg/g (34.1% removal) at pH = 5.0, while with more acidic conditions (pH = 4.0) it reached 12.6 mg/g (61.2% removal). In turn, the results show that GO/ZnO nanocomposites were more efficient to remove Mn(II) compared with non-functionalized GO under the pH2 condition (pH2 = 4.0). Both Langmuir and Freundlich models fit well with the adsorption process, suggesting that both mechanisms are involved in the removal of Mn(II) with GO and GO/ZnO nanocomposites. Furthermore, adsorption isotherms were efficiently modeled with the pseudo-second-order kinetic model. These results indicate that the removal of Mn(II) by GO/ZnO is strongly influenced by the pH of the solution, and the decoration with ZnO significantly increases the adsorption capacity of Mn(II) ions. These findings can provide valuable information for optimizing the design and configuration of wastewater treatment technologies based on GO nanomaterials for the removal of Mn(II) from natural and industrial waters.
Collapse
Affiliation(s)
- Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.T.); (C.R.)
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-2-2354-7224; Fax: +56-2-2354-5876
| | - Camila Tapia
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.T.); (C.R.)
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Ñuñoa 7800003, Chile
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.T.); (C.R.)
| |
Collapse
|
11
|
Kang C, Li Q, Yi H, Deng H, Mo W, Meng M, Huang S. EDTAD-modified cassava stalks loaded with Fe 3O 4: highly efficient removal of Pb 2+ and Zn 2+ from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6733-6745. [PMID: 33006734 DOI: 10.1007/s11356-020-10858-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel magnetic cassava stalk composite (M-EMCS) was prepared through modification with ethylenediamine tetraacetic anhydride (EDTAD) and loading of Fe3O4. The surface morphology, molecular structure, and magnetic characteristics of the composite were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD). It was shown that EDTAD and Fe3O4 were successfully modified and loaded in cassava straw (CS), respectively. The capacity of M-EMCS to absorb heavy metals under different influencing factors was tested by atomic absorption spectroscopy. The adsorption processes of both Pb2+ and Zn2+ were suitably described by second-order kinetic models and Langmuir models, indicating monolayer chemisorption. M-EMCS had high adsorption rates and adsorption capacities for these two metal ions. The adsorption of Pb2+ and Zn2+ reached a plateau after 10 min, and the adsorption capacity of Pb2+ (163.93 mg/g) was higher than that of Zn2+ (84.74 mg/g). Thermodynamic analysis showed that the adsorption of two metals by M-EMCS was spontaneous, endothermic, and irreversible. XPS analysis showed that M-EMCS mainly removes Pb2+ and Zn2+ through ion exchange, chelation, and redox. Graphical abstract.
Collapse
Affiliation(s)
- Caiyan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Qiuyan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hui Yi
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Weiming Mo
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Siyu Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
12
|
Deng H, Li Q, Huang M, Li A, Zhang J, Li Y, Li S, Kang C, Mo W. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: adsorption process and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2962-2974. [PMID: 33341785 DOI: 10.2166/wst.2020.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g-1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.
Collapse
Affiliation(s)
- Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Qiuyan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Meijia Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Anyu Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail:
| | - Junyu Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Yafen Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Shuangli Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Caiyan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Weiming Mo
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
13
|
Graphene Oxide-ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186911. [PMID: 32967362 PMCID: PMC7559710 DOI: 10.3390/ijerph17186911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Adsorption technologies are a focus of interest for the removal of pollutants in water treatment systems. These removal methods offer several design, operation and efficiency advantages over other wastewater remediation technologies. Particularly, graphene oxide (GO) has attracted great attention due to its high surface area and its effectiveness in removing heavy metals. In this work, we study the functionalization of GO with zinc oxide nanoparticles (ZnO) to improve the removal capacity of aluminum (Al) and copper (Cu) in acidic waters. Experiments were performed at different pH conditions (with and without pH adjustment). In both cases, decorated GO (GO/ZnO) nanocomposites showed an improvement in the removal capacity compared with non-functionalized GO, even when the pH of zero charge (pHPZC) was higher for GO/ZnO (5.57) than for GO (3.98). In adsorption experiments without pH adjustment, the maximum removal capacities for Al and Cu were 29.1 mg/g and 45.5 mg/g, respectively. The maximum removal percentages of the studied cations (Al and Cu) were higher than 88%. Further, under more acidic conditions (pH 4), the maximum sorption capacities using GO/ZnO as adsorbent were 19.9 mg/g and 33.5 mg/g for Al and Cu, respectively. Moreover, the removal percentages reach 95.6% for Al and 92.9% for Cu. This shows that decoration with ZnO nanoparticles is a good option for improving the sorption capacity of GO for Cu removal and to a lesser extent for Al, even when the pH was not favorable in terms of electrostatic affinity for cations. These findings contribute to a better understanding of the potential and effectiveness of GO functionalization with ZnO nanoparticles to treat acidic waters contaminated with heavy metals and its applicability for wastewater remediation.
Collapse
|
14
|
Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation. Catalysts 2020. [DOI: 10.3390/catal10080819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide variety of pollutants are discharged into water bodies like lakes, rivers, canal, etc. due to the growing world population, industrial development, depletion of water resources, improper disposal of agricultural and native wastes. Water pollution is becoming a severe problem for the whole world from small villages to big cities. The toxic metals and organic dyes pollutants are considered as significant contaminants that cause severe hazards to human beings and aquatic life. The microbial fuel cell (MFC) is the most promising, eco-friendly, and emerging technique. In this technique, microorganisms play an important role in bioremediation of water pollutants simultaneously generating an electric current. In this review, a new approach based on microbial fuel cells for bioremediation of organic dyes and toxic metals has been summarized. This technique offers an alternative with great potential in the field of wastewater treatment. Finally, their applications are discussed to explore the research gaps for future research direction. From a literature survey of more than 170 recent papers, it is evident that MFCs have demonstrated outstanding removal capabilities for various pollutants.
Collapse
|
15
|
Rodríguez C, Briano S, Leiva E. Increased Adsorption of Heavy Metal Ions in Multi-Walled Carbon Nanotubes with Improved Dispersion Stability. Molecules 2020; 25:molecules25143106. [PMID: 32650371 PMCID: PMC7397306 DOI: 10.3390/molecules25143106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, carbon nanotubes (CNTs) have been intensively studied as an effective adsorbent for the removal of pollutants from wastewater. One of the main problems for its use corresponds to the agglomeration of the CNTs due to the interactions between them, which prevents using their entire surface area. In this study, we test the effect of dispersion of oxidized multi-walled carbon nanotubes (MWCNTs) on the removal of heavy metals from acidic solutions. For this, polyurethane filters were dyed with a well-dispersed oxidized MWCNTs solution using chemical and mechanical dispersion methods. Filters were used in column experiments, and the sorption capacity increased more than six times (600%) compared to experiments with suspended MWCNTs. Further, kinetic experiments showed a faster saturation on MWCNTs in column experiments. These results contribute to a better understanding of the effect of dispersion on the use of CNTs as heavy metal ions adsorbent.
Collapse
Affiliation(s)
- Carolina Rodríguez
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Sebastián Briano
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Eduardo Leiva
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-2-2354-7224; Fax: +56-2-2354-5876
| |
Collapse
|
16
|
Wu Q, Jiao S, Ma M, Peng S. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6749-6764. [PMID: 31956948 DOI: 10.1007/s11356-020-07745-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
The microbial fuel cell (MFC) system is a promising environmental remediation technology due to its simple compact design, low cost, and renewable energy producing. MFCs can convert chemical energy from waste matters to electrical energy, which provides a sustainable and environmentally friendly solution for pollutant degradations. In this review, we attempt to gather research progress of MFC technology in pollutant removal and environmental remediation. The main configurations and pollutant removal mechanism by MFCs are introduced. The research progress of MFC systems in pollutant removal and environmental remediation, including wastewater treatment, soil remediation, natural water and groundwater remediation, sludge and solid waste treatment, and greenhouse gas emission control, as well as the application of MFCs in environmental monitoring have been reviewed. Subsequently, the application of MFCs in environmental monitoring and the combination of MFCs with other technologies are described. Finally, the current limitations and potential future research has been demonstrated in this review.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Mengxing Ma
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
17
|
Zhou Y, Zou Q, Fan M, Xu Y, Chen Y. Highly efficient anaerobic co-degradation of complex persistent polycyclic aromatic hydrocarbons by a bioelectrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120945. [PMID: 31421548 DOI: 10.1016/j.jhazmat.2019.120945] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) that undergo long-distance migration and have strong biological toxicity are a great threat to the health of ecosystems. In this study, the biodegradation characteristics and combined effects of mixed PAHs in bioelectrochemical systems (BESs) were studied. The results showed that, compared with a mono-carbon source, low-molecular-weight PAHs (LMW PAHs)-naphthalene (NAP) served as the co-substrate to promote the degradation of phenanthrene (PHE) and pyrene (PYR). The maximum degradation rates of PHE and PYR were 89.20% and 51.40% at 0.2500 mg/L in NAP-PHE and NAP-PYR at the degradation time of 120 h, respectively. Intermediate products were also detected, which indicated that the appending of relatively LMW PAHs had different effects on the metabolism of high-molecular-weight PAHs (HMW PAHs). The microbe species under different substrates (NAP-B, PHE-B, PYR-B, NAP-PHE, NAP-PYR, PHE-PYR) are highly similar, although the structure of the microbial community changed on the anode in the BES. In this study, the degradation regularity of mixed PAHs in BES was studied and provided theoretical guidance for the effective co-degradation of PAHs in the environment.
Collapse
Affiliation(s)
- Yukang Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qingping Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Mengjie Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuan Xu
- College of Architecture and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
18
|
Li Y, Han Y, Li W, Li Y, Zhang D, Lan Y. Efficient removal of As(III) via simultaneous oxidation and adsorption by magnetic sulfur-doped Fe-Cu-Y trimetal oxide nanoparticles. ENVIRONMENTAL RESEARCH 2020; 180:108896. [PMID: 31732169 DOI: 10.1016/j.envres.2019.108896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
A novel magnetic sulfur-doped Fe-Cu-Y trimetal oxide (MST) nanomaterial was successfully synthesized by a chemical coprecipitation method to remove As(III) via simultaneous oxidation and adsorption and then characterized by BET, VSM, FESEM, XPS, and FTIR techniques. The effect of solution initial pH on the adsorption of As(III), and the adsorption kinetics and isotherm were investigated in detail. The results indicated that the MST nanoparticles exhibited an excellent performance for As(III) removal in a pH range of 7-10 and were easily separated from aqueous solution with a magnet. The maximum removal capability for As(III) reached 202.0 mg/g at pH 7.0. The adsorption of As(III) was well fitted by the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The investigation of mechanism revealed that As(III) could be oxidized to As(V) by O2- and OH free radicals, generated via the dissolved O2 obtaining an electron from Cu(I) on the surface of the adsorbent and Fenton/Fenton-like reaction, respectively. Meanwhile, the produced As(V) was adsorbed onto the surface of the nanoparticles through the electrostatic attraction or diffusion. The adsorbed As(V) further interacted with -OH groups via ion exchange or with Y(III) on the surface of the adsorbent to form a precipitate. Therefore, the MST nanoparticles are promising for the removal of arsenic from water.
Collapse
Affiliation(s)
- Ying Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yijie Han
- Academic Affairs Office of Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China; Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, PR China
| | - Yuxin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Deyun Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
19
|
Wei X, Zhang S, Shimko J, Dengler RW. Mine drainage: Treatment technologies and rare earth elements. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1061-1068. [PMID: 31291681 DOI: 10.1002/wer.1178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
The recent research and development on mine drainage published in 2018 was summarized in this annual review. In particular, this review was focused on two main aspects of mine drainage: (a) advances in treatment technologies and (b) rare earth elements in mine drainage and its recovery. The first section covers passive treatment technologies and active treatment options, including physiochemical treatment and biological treatment. The second section includes the characterization of rare earth elements in mine drainage and recovery technologies. Due to the importance of rare earth elements and the growing interest in their recovery from mine drainage, rare earth elements are reported as a separate section for the first time in this review. PRACTITIONER POINTS: Advances in treatment technologies for mine drainage are reviewed. Rare earth elements in mine drainage and its recovery are summarized. Reviewed technologies include passive, active, advanced and novel processes.
Collapse
Affiliation(s)
- Xinchao Wei
- Department of Physics and Engineering, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | | | - Robert W Dengler
- Municipal Services Group, Gannett Fleming, Inc., Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Cecconet D, Bolognesi S, Callegari A, Capodaglio AG. Simulation tests of in situ groundwater denitrification with aquifer-buried biocathodes. Heliyon 2019; 5:e02117. [PMID: 31388574 PMCID: PMC6667668 DOI: 10.1016/j.heliyon.2019.e02117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023] Open
Abstract
Bioelectrochemical systems (BES) application was proposed for a variety of specific uses, due to these systems’ characteristics: electrodes can act as virtually inexhaustible electron acceptors/donors, offering a growth-support surface for microorganisms, and stimulating naturally-occurring microbial degradation activities. In situ, groundwater denitrification therefore seems to be a potential candidate for their use. In this study, buried biocathodes were operated in laboratory settings for the simulation of in situ groundwater denitrification. Two alternative configurations were tested: biocathode buried in sand, and biocathode buried in gravel. A control test with a biocathode in absence of sand/gravel was also performed. In all the cases, biocathodes were driven by power supply or potentiostat to guarantee a steady electron flux to the cathode. The presence of sand and gravel strongly influenced the denitrification process: in both configurations, accumulation of intermediate N-forms was detected, suggesting that the denitrification process was only partially achieved. In addition, a significant decrease (in the 20–36% range) in nitrate removal rates was measured in sand and gravel setups compared to the control reactor; this issue could be attributed to lack of recirculation that limited contact between substrate and electrode-adherent biofilm. Biocathodes buried in gravel obtained better results than those buried in sand due to the lower packing of the medium. The results of this study suggest that, in order to achieve successful in situ treatment, special design of submerged-biocathodic BESs is necessary.
Collapse
Affiliation(s)
- Daniele Cecconet
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Silvia Bolognesi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy.,LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Arianna Callegari
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Andrea G Capodaglio
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| |
Collapse
|
21
|
Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles. Int J Mol Sci 2019; 20:ijms20143566. [PMID: 31330881 PMCID: PMC6678696 DOI: 10.3390/ijms20143566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/04/2022] Open
Abstract
As concerns about public health and environmental problems regarding contamination by toxic substances increase worldwide, the development of a highly effective and specific treatment method is imperative. Although physicochemical arsenic treatment methods have been developed, microbial in vivo remediation processes using live cell fabricated nanoparticles have not yet been reported. Herein, we report the development of magnetic iron nanoparticles immobilized an extremophilic microorganism, Deinococcus radiodurans R1, capable of removing toxic arsenic species. First, in vivo synthesis of magnetic iron nanoparticles was successfully achieved with the D. radiodurans R1 strain and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), zeta-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. Second, the maximum removal capacity of the magnetic iron nanoparticle-immobilized D. radiodurans R1 strain (DR-FeNPs) for arsenic [As(V)] was evaluated under the optimized conditions. Finally, the removal capacity of DR-FeNPs in the presence of various competitive anions was also investigated to simulate the practical application. More than 98% of As(V) was efficiently removed by DR-FeNPs within 1 h, and the removal efficiency was stably maintained for up to 32 h (98.97%). Furthermore, the possibility of recovery of DR-FeNPs after use was also suggested using magnets as a proof-of-concept.
Collapse
|
22
|
Song X, Yang W, Lin Z, Huang L, Quan X. A loop of catholyte effluent feeding to bioanodes for complete recovery of Sn, Fe, and Cu with simultaneous treatment of the co-present organics in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1698-1708. [PMID: 30317169 DOI: 10.1016/j.scitotenv.2018.10.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
A loop of catholyte effluent feeding to the bioanodes of air-cathode microbial fuel cells (MFCs) achieved complete recovery of mixed Sn(II), Fe(II) and Cu(II), with simultaneous treatment of the co-present organics in synthetic wastewater of printed circuit boards (PrCBs). This in-situ utilization of caustic in the cathodes and the neutralization of acid in the anodes achieved superior metal recovery performance at an optimal hydraulic retention time (HRT) of 24 h. Cathode chambers primarily removed Sn of 91 ± 4% (bottom: 74 ± 3%; electrode: 17 ± 1%), Fe of 89 ± 8% (bottom: 64 ± 4%; electrode: 25 ± 2%), and Cu of 92 ± 7% (electrode: 63 ± 5%; bottom: 29 ± 1%), compared to Sn of 9 ± 3% (electrode: 7 ± 1%; bottom: 2 ± 1%), Fe of 9 ± 3% (electrode: 8 ± 3%; bottom: 1 ± 0%), and Cu of 7 ± 3% (electrode: 4 ± 1%; bottom: 3 ± 1%) in the bioanodes. Bacterial communities on the anodes were well evolutionarily developed after the feeding of catholyte effluent, with the increase in abundance of Rhodopseudomonas and Geobacter, and the shift from Thiobacillus and Acinetobacter to Pseudomonas, Comamonas, Aeromonas and Azospira. This loop of cathodic effluent feeding to the bioanodes of MFCs may represent a unique method for complete metal recovery with simultaneous extraction of renewable electrical energy from the co-present organics. This study also offers new insights into the development of compact microbial electro-metallurgical processes for simultaneous recovery of value-added products from PrCBs processing wastewaters and accomplishing the national wastewater discharge standard for both metals and organics.
Collapse
Affiliation(s)
- Xu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wulin Yang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Zheqian Lin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|