1
|
Hu S, Lv Y, Hou X, Li J, Hou Y, Fu X, Xu T. BDD electrode pulsed alternating electrochemical oxidation of sulfamethazine in antibiotic wastewater: Process optimization and degradation mechanism. ENVIRONMENTAL RESEARCH 2025; 275:121375. [PMID: 40081652 DOI: 10.1016/j.envres.2025.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
To address the issues of electrode passivation and high electric energy consumption (EEC) associated with the removal of antibiotic wastewater using traditional direct current electrocatalytic oxidation (DCEO) with Boron-Doped Diamond (BDD) electrodes, this study aims to develop an efficient, low-cost, and self-cleaning BDD electrode pulsed alternating electrocatalytic oxidation (BDD-PAEO) technology. The experimental findings demonstrated that, under optimal conditions, the BDD-PAEO mode achieved a 99.9% removal efficiency for sulfamethazine (SMZ). Furthermore, the removal efficiency of COD in the BDD-PAEO mode consistently remained above 93% in 10 experimental cycles. Compared with the BDD-DCEO mode, the EEC of the BDD-PAEO mode is reduced by 17.39%, and the current efficiency (CE) is increased by 47.15%. The ·OH was confirmed to be the main active oxidant species for degradation of SMZ by free radical quenching experiments, electron paramagnetic resonance (EPR) and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy. The degradation pathway of SMZ was revealed by density functional theory (DFT) calculation and gas chromatography-mass spectrometry (GC-MS) analysis. Toxicity estimation illustrated that BDD-PAEO technology can effectively reduce the toxicity of wastewater after SMZ degradation. This study shows BDD-PAEO technology's high potential for efficient SMZ degradation and toxicity reduction in antibiotic wastewater, offering a novel treatment solution.
Collapse
Affiliation(s)
- Simeng Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yongshang Lv
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xifei Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiahao Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaxuan Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohua Fu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
3
|
Lutosławski K, Ryznar-Luty A, Cibis E. Efficiency of aerobic biodegradation of sugar beet distillery stillage under dissolved oxygen tension-controlled conditions. PLoS One 2024; 19:e0306330. [PMID: 38968255 PMCID: PMC11226112 DOI: 10.1371/journal.pone.0306330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
The efficiency of aerobic biodegradation of distillery wastewater using various microbial cultures is intricately linked to process conditions. The study aimed to examine the aerobic biodegradation by a Bacillus bacteria under controlled dissolved oxygen tension (DOT) conditions as a novel approach in the treatment of sugar beet distillery stillage. The processes were conducted in a 2-L Biostat®B stirred-tank reactor (STR), at a temperature of 36°C, with aeration of 1.0 L/(L·min), and uncontrolled pH of the medium (an initial pH of 8.0). Each experiment was performed at a different DOT setpoint: 75%, 65% and 55% saturation, controlled through stirrer rotational speed adjustments. The study showed that the DOT setpoint did not influence the process efficiency, determined by the pollutant load removal expressed as COD, BOD5 and TOC. In all three experiments, the obtained reduction values of these parameters were comparable, falling within the narrow ranges of 78.6-78.7%, 97.3-98.0% and 75.0-76.4%, respectively. However, the DOT setpoint did influence the rate of process biodegradation. The removal rate of the pollutant load expressed as COD, was the lowest when DOT was set at 55% (0.48 g O2/(L•h)), and the highest when DOT was set at 65% (0.55 g O2/(L•h)). For biogenic elements (nitrogen and phosphorus), a beneficial effect was observed at a low setpoint of controlled DOT during biodegradation. The maximum extent of removal of both total nitrogen (54%) and total phosphorus (67.8%) was achieved at the lowest DOT setpoint (55%). The findings suggest that conducting the batch aerobic process biodegradation of sugar beet stillage at a relatively low DOT setpoint in the medium might achieve high efficiency pollutant load removal and potentially lead to a reduction in the process cost.
Collapse
Affiliation(s)
- Krzysztof Lutosławski
- Department of Process Management, Faculty of Business and Management, Wroclaw University of Economics and Business, Wrocław, Poland
| | - Agnieszka Ryznar-Luty
- Department of Bioprocess Engineering, Faculty of Production Engineering, Wroclaw University of Economics and Business, Wrocław, Poland
| | - Edmund Cibis
- Department of Bioprocess Engineering, Faculty of Production Engineering, Wroclaw University of Economics and Business, Wrocław, Poland
| |
Collapse
|
4
|
Sandoval MA, Coreño O, García V, Salazar-González R. Enhancing industrial swine slaughterhouse wastewater treatment: Optimization of electrocoagulation technique and operating mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119556. [PMID: 37984271 DOI: 10.1016/j.jenvman.2023.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
In this study, industrial swine slaughterhouse effluents were treated by an electrocoagulation process (EC) with aluminum and iron electrodes. Batch and semicontinuous operation were performed. EC tests were carried out in batch operating mode for 2.5 h using fixed current densities (j = 10, 20, and 30 mA cm-2) in sulfate and chloride media. At the laboratory scale, higher TOC removal efficiencies were observed using aluminum electrodes at 20 mA cm-2 without the addition of a supporting electrolyte (82.7%). However, the EC process with Fe electrodes consumed 43.6% less energy. After the best operating parameters were found at the laboratory scale, the process was tested as a semicontinuous prepilot process using a filter-press FM01-LC-type electrochemical reactor equipped with flat plate aluminum electrodes. In this stage, current densities and mean linear flow rates were assessed. The highest TOC removal efficiency of 72.7% (i.e., residual TOC concentration of 85.18 mg L-1) in the semicontinuous process was achieved by the application of j = 25 mA cm-2 and ur = 0.64 cm s-1 with an energy consumption of 19.80 kW h m-3. The residual COD and TP concentrations met the international standard limits. Moreover, complete decoloration and disinfection were accomplished. EDXRF, SEM, EDAX, XRD, and FTIR analyses indicated that pollutants were removed by adsorption on aluminum/iron hydroxides/oxyhydroxides.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas km. 10.5, 36262, Guanajuato, Guanajuato, Mexico; Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico.
| | - Oscar Coreño
- Departamento de Ingeniería Civil, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Ricardo Salazar-González
- Analysis, Treatment, Electrochemistry, Recovery and Reuse of Water Research Group, WATER(2), Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
5
|
Elaboration of Highly Modified Stainless Steel/Lead Dioxide Anodes for Enhanced Electrochemical Degradation of Ampicillin in Water. SEPARATIONS 2022. [DOI: 10.3390/separations10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lead dioxide-based electrodes have shown a great performance in the electrochemical treatment of organic wastewater. In the present study, modified PbO2 anodes supported on stainless steel (SS) with a titanium oxide interlayer such as SS/TiO2/PbO2 and SS/TiO2/PbO2-10% Boron (B) were prepared by the sol–gel spin-coating technique. The morphological and structural properties of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that the SS/TiO2/PbO2-10% B anode led to a rougher active surface, larger specific surface area, and therefore stronger ability to generate powerful oxidizing agents. The electrochemical impedance spectroscopy (EIS) measurements showed that the modified PbO2 anodes displayed a lower charge transfer resistance Rct. The influence of the introduction of a TiO2 intermediate layer and the boron doping of a PbO2 active surface layer on the electrochemical degradation of ampicillin (AMP) antibiotic have been investigated by chemical oxygen demand measurements and HPLC analysis. Although HPLC analysis showed that the degradation process of AMP with SS/PbO2 was slightly faster than the modified PbO2 anodes, the results revealed that SS/TiO2/PbO2-10%B was the most efficient and economical anode toward the pollutant degradation due to its physico-chemical properties. At the end of the electrolysis, the chemical oxygen demand (COD), the average current efficiency (ACE) and the energy consumption (EC) reached, respectively, 69.23%, 60.30% and 0.056 kWh (g COD)−1, making SS/TiO2/PbO2-10%B a promising anode for the degradation of ampicillin antibiotic in aqueous solutions.
Collapse
|
6
|
AlJaberi FY, Alardhi SM, Ahmed SA, Salman AD, Juzsakova T, Cretescu I, Le PC, Chung WJ, Chang SW, Nguyen DD. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? ENVIRONMENTAL RESEARCH 2022; 214:113890. [PMID: 35870500 DOI: 10.1016/j.envres.2022.113890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical technologies or conventional methods for effective removal of different pollutants with less cost and sometimes over shorter durations of operation. It has also been observed that the hybrid effects besides increasing the removal efficiency can overcome the disadvantages of using electrocoagulation alone, such as less sludge formation, high cost of operation and increased life of the used electrodes, and stable flux of water with longer periods of operation. More than 20 types of other technologies have been combined efficiently with electrocoagulation.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Gheorghe Asachi Technical University of Iasi, Romania
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Vietnam.
| |
Collapse
|
7
|
Tan X, Wang X, Zhou T, Chen T, Liu Y, Ma C, Guo H, Li B. Preparation of three dimensional bimetallic Cu-Ni/NiF electrodes for efficient electrochemical removal of nitrate nitrogen. CHEMOSPHERE 2022; 295:133929. [PMID: 35149017 DOI: 10.1016/j.chemosphere.2022.133929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
It still remains a hotspot and great challenge to efficiently remove the nitrate nitrogen from high salt wastewater. Herein, a novel three dimensional porous bimetallic copper-nickel alloy electrode was fabricated with Ni foam (NiF) as substrate. The physicochemical and electrochemical characterization results showed Cu-Ni/NiF electrode possessed the smaller particle size (0.3-1.0 μm) and electrode film resistance comparing with Ni/NiF and Cu/NiF electrodes. Besides, higher double layer capacitance (Cdl) for Cu-Ni/NiF electrode indicated more electrochemical active sites could be used in the electrochemical nitrate nitrogen (NO3--N) removal. The electrochemical experiments showed the Cu-Ni/NiF electrode had the optimal NO3--N reduction ability and almost 100% NO3--N removal could be achieved with 30 min. All NO3--N removal processes were in accord with the pseudo-first-order reaction kinetics completely. The gaseous nitrogen selectivity for Cu-Ni/NiF electrode could reach 80.9% within 300 min. Stability assessment experiments indicated the Cu-Ni/NiF electrode all kept an excellent stability with Na2SO4 or NaCl electrolyte and the Cl- addition could significantly improve the gaseous nitrogen selectivity. Finally, a possible removal mechanism of NO3--N was proposed. This work offered a direction for designing non-noble bimetallic electrodes for nitrate removal.
Collapse
Affiliation(s)
- Xiangdong Tan
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China.
| | - Xueqing Wang
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Tong Zhou
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Tianzuo Chen
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Ya Liu
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Chuanjun Ma
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Hongshan Guo
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| | - Baozhong Li
- Dalian (Fushun) Research Institute of Petroleum and Petrochemical, Sinopec Corp, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Dalian, 116045, China
| |
Collapse
|
8
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
Affiliation(s)
- Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Muhammad Uaman
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
9
|
Slaughterhouse Wastewater Treatment: A Review on Recycling and Reuse Possibilities. WATER 2021. [DOI: 10.3390/w13223175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Slaughterhouses produce a large amount of wastewater, therefore, with respect to the increasing water scarcity, slaughterhouse wastewater (SWW) recycling seems to be a desirable goal. The emerging challenges and opportunities for recycling and reuse have been examined here. The selection of a suitable process for SWW recycling is dependent on the characteristics of the wastewater, the available technology, and the legal requirements. SWW recycling is not operated at a large scale up to date, due to local legal sanitary requirements as well as challenges in technical implementation. Since SWW recycling with single-stage technologies is unlikely, combined processes are examined and evaluated within the scope of this publication. The process combination of dissolved air flotation (DAF) followed by membrane bioreactor (MBR) and, finally, reverse osmosis (RO) as a polishing step seems to be particularly promising. In this way, wastewater treatment for process water reuse could be achieved in theory, as well as in comparable laboratory experiments. Furthermore, it was calculated via the methane production potential that the entire energy demand of wastewater treatment could be covered if the organic fraction of the wastewater was used for biogas production.
Collapse
|
10
|
Khurram R, Javed A, Ke R, Lena C, Wang Z. Visible Light-Driven GO/TiO 2-CA Nano-Photocatalytic Membranes: Assessment of Photocatalytic Response, Antifouling Character and Self-Cleaning Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2021. [PMID: 34443852 PMCID: PMC8401995 DOI: 10.3390/nano11082021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/07/2022]
Abstract
Photocatalysis and membrane technology in a single unit is an ideal strategy for the development of wastewater treatment systems. In this work, novel GO (x wt%)/TiO2-CA hybrid membranes have been synthesized via a facile non-solvent induced phase inversion technique. The strategy aimed to address the following dilemmas: (1) Effective utilization of visible light and minimize e-/h+ recombination; (2) Enhanced separation capability and superior anti-fouling and self-cleaning ability. The experimental results reveal that the integration of nano-composite (GO/TiO2) boosts the membrane properties when compared to pristine CA and single photocatalyst employed membrane (GO-CA and TiO2-CA). The effect of GO content on the properties of the photocatalytic membrane has been determined by utilizing three different ratios of GO, viz. 0.5 wt%, 1 wt%, and 2 wt% designated as NC(1)-CA, NC(2)-CA, and NC(3)-CA, respectively. Amongst them, NC(3)-CA membrane showed state-of-the-art performance with an elevated photocatalytic response (four times higher than pristine CA membrane) toward methyl orange. Moreover, the water flux of NC(3)-CA membrane is 613 L/m2h, approximately three times higher than bare CA membrane (297 L/m2h), while keeping the MO rejection high (96.6%). Besides, fouling experiments presented the lowest total and fouling resistance ratios and a higher flux recovery ratio (91.78%) for the NC(3)-CA membrane, which endows the membrane with higher anti-fouling and self-cleaning properties. Thus, NC(3)-CA membrane outperforms the other as synthesized membranes in terms of separation efficiency, visible light photo-degradation of pollutant, anti-fouling and self-cleaning ability. Therefore, NC(3)-CA membrane is considered as the next generation membrane for exhibiting great potential for the wastewater treatment applications.
Collapse
Affiliation(s)
- Rooha Khurram
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| | - Aroosa Javed
- Department of Chemistry, School of Natural Sciences (S.N.S.), NUST, H-12, Islamabad 44000, Pakistan;
| | - Ruihua Ke
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
- School of Ecological Construction and Environmental Protection, Jiangxi Environmental Engineering Vocational College, Ganzhou 341002, China
| | - Cheng Lena
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| | - Zhan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| |
Collapse
|
11
|
Bargaoui M, Jellali S, Azzaz AA, Jeguirim M, Akrout H. Optimization of hybrid treatment of olive mill wastewaters through impregnation onto raw cypress sawdust and electrocoagulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24470-24485. [PMID: 32337671 DOI: 10.1007/s11356-020-08907-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This research investigation proposes a new method for sustainable olive mill wastewater (OMW) treatment and handling. It is based on the combination of its impregnation onto raw cypress sawdust (RCS) followed by electrocoagulation. The retention of OMW compounds onto various RCS doses show an important decrease of its chemical oxygen demand (COD) and its main cation and anion content. The maximum retention efficiencies of COD, Na+, K+, Ca2+, Mg2+, Cl-, [Formula: see text], and [Formula: see text] were about 51.0%, 75.3%, 28.7%, 77.9%, 84.7%, 41.1%, 98.3%, and 90.9%, respectively, for the highest RCS dose (200 g L-1). This organic matter- and nutrient-loaded biomass could be thermochemically converted through pyrolysis into biofuel and biochar for energetic and agronomic purposes, respectively. The treatment by electrocoagulation of the pre-treated OMW using mild steel electrodes could be considered an attractive treatment method since 75.6% of COD removal efficiency was achieved. Besides, this approach permits a significant energy consumption reduction by 46% as compared with the electrocoagulation process alone. It allows also a significant improvement of the treated effluent quality in terms of both organic and mineral contents that could be reused for the irrigation of olive trees in the context of circular economy.
Collapse
Affiliation(s)
- Malika Bargaoui
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, Carthage University, BP 273, 8020, Soliman, Tunisia
| | - Salah Jellali
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, 123, Muscat, Oman.
| | - Ahmed Amine Azzaz
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Mejdi Jeguirim
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Hanene Akrout
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, Carthage University, BP 273, 8020, Soliman, Tunisia
| |
Collapse
|
12
|
Du X, Mo Z, Li Z, Zhang W, Luo Y, Nie J, Wang Z, Liang H. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: Antibiotics degradation and biofouling. ENVIRONMENT INTERNATIONAL 2021; 146:106291. [PMID: 33395938 DOI: 10.1016/j.envint.2020.106291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, a boron-doped diamond (BDD) electro-oxidation technology coupled with nanofiltration membrane (EO-NF) technology was investigated for its effectiveness in removing antibiotics (i.e., sulfamethazine:SMZ) and mitigating biofouling during secondary wastewater treatment. The result showed that EO obtained an effective SMZ removal, owing to the ·OH generation observed by Electron paramagnetic resonance (EPR) analysis; complete elimination of SMZ was found under the high current density (30 mA/cm2) and long Electrolysis Time (ET = 60 min). Meanwhile, EO-NF process enabled to reduce COD content from 60 mg/L to nearly 5 mg/L. Furthermore, regardless of the effect of EO process, NF could retain most NH3-N because of the excellent performance of NF for ions rejection, and its permeate concentration was below 0.5 mg/L. EO was able to reduce membrane fouling notably, increasing the final flux (15 L/(m2·h)) of NF by 25.1% during long-term operation (240 h). Scanning electron microscopy-Energy dispersive spectrometry (SEM-EDS) showed that a porous layer formed on the vicinity of NF membrane in the case of filtrating EO effluent, in contrast to a uniform and dense biofouling layer generated during the direct NF. Besides, the content of adenosine triphosphate (ATP) and the number of bacterial colonies in the retentate of the EO-NF process were greater than those of the direct NF process. This resulted in a smaller amount of extracellular polymeric substances (EPS) attaching to the membrane surface, decreasing the tightness and hardness of the fouling layer in the case of EO, as indicated by CLSM analysis. Overall, considering its ability to effectively eliminate persistent contaminants and reduce membrane fouling, BDD-based EO is considered a promising pre-treatment option for future NF applications.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
13
|
Electrochemical Oxidation of Effluents from Food Processing Industries: A Short Review and a Case-Study. WATER 2020. [DOI: 10.3390/w12123546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A short review on the treatment of effluents from food processing industries by electrochemical oxidation (EO) was performed. Olive mill wastewater (OMW) and boron-doped diamond (BDD) are the most reported effluent and anode material, respectively. The addition of NaCl or Na2SO4 as supporting electrolytes is common in these studies, and their influence on the EO performance depends, among other things, on the anode material, since the electrolyte oxidation mechanism is different when active and non-active anode materials are utilized. A case-study on the application of a pilot plant, working in batch mode with recirculation, equipped with a BDD anode, to treat 4 L of OMW, slaughterhouse (SW) and winery (WW) wastewaters, with initial chemical oxygen demands (COD) of 20.5, 3.6 and 0.26 g L−1, respectively, is presented and discussed. In 16 h assays, 94% COD removal was achieved for OMW, and for SW and WW the Portuguese COD legal discharge limit of 150 mg L−1 was accomplished. Process efficiency decreased for lower organic load. NaCl addition increased COD removal in SW and WW, but presented an adverse effect for OMW COD removal, when compared to Na2SO4 addition. Nevertheless, lower specific energy consumptions were attained in chloride medium (48 Wh (g COD)−1).
Collapse
|
14
|
Adsorption of Organic Pollutants from Cold Meat Industry Wastewater by Electrochemical Coagulation: Application of Artificial Neural Networks. WATER 2020. [DOI: 10.3390/w12113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cold meat industry is considered to be one of the main sources of organic pollutants in the wastewater of the meat sector due to the complex mixture of protein, fats, and dyes present. This study describes electrochemical coagulation (EC) treatment for the adsorption of organic pollutants reported in cold meat industry wastewater, and an artificial neural network (ANN) was employed to model the adsorption of chemical oxygen demand (COD). To depict the adsorption process, the parameters analyzed were current density (2–6 mA cm−2), initial pH (5–9), temperature (288–308 K), and EC time (0–180 min). The experimental results were fit to the Langmuir and Freundlich isotherm equations, while the modeling of the adsorption kinetics was evaluated by means of pseudo-first and pseudo-second-order rate laws. The data reveal that current density is the main control parameter in EC treatment, and 60 min are required for an effective adsorption process. The maximum removal of COD was 2875 mg L−1 (82%) when the following conditions were employed: pH = 7, current density = 6 mA cm−2, and temperature of 298 K. Experimental results obey second-order kinetics with values of the constant in the range of 1.176 × 10−5 ≤ k2 (mg COD adsorbed/g-Al.min) ≤ 1.284 × 10−5. The ANN applied in this research established that better COD removal, 3262.70 mg L−1 (93.22%) with R2 = 0.98, was found using the following conditions: EC time of 30.22 min, initial pH = 7.80, and current density = 6 mA cm−2. The maximum adsorption capacity of 621.11 mg g−1 indicates a notable affinity between the organic pollutants and coagulant metallic ions.
Collapse
|
15
|
The Effect of Scale on the Performance of an Integrated Poultry Slaughterhouse Wastewater Treatment Process. SUSTAINABILITY 2020. [DOI: 10.3390/su12114679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficiency of a wastewater treatment process may be affected by several factors including the scale at which the system is operating. This study aimed at investigating the influence of scale on a poultry slaughterhouse wastewater treatment process. The process is comprised of several units including electrolysis, membrane filtration, and ultraviolet irradiation. The results of the industrial-scale wastewater treatment plant of the Izevski poultry farm slaughterhouse in Kazakhstan were compared with those of a lab-scale wastewater treatment process under the same conditions. The traditional and water quality index (WQI) approaches were used to present the results and the drinking water quality standards of Kazakhstan were used as a reference. The industrial and lab-scale plants showed high purification efficiency for most of the studied water quality parameters. The comparative analysis based on the WQI showed that the industrial-scale wastewater treatment plant outperforms the lab-scale wastewater treatment process.
Collapse
|
16
|
Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. WATER 2020. [DOI: 10.3390/w12010247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work examined the behavior of a novel zeolite augmented on the electrocoagulation process (ZAEP) using an aluminum electrode in the removal of high-strength concentration ammonia (3471 mg/L) from landfill leachate which was saline (15.36 ppt) in nature. For this, a response surfaces methodology (RSM) through central composite designs (CCD) was used to optimize the capability of the treatment process. Design-Expert software (version 11.0.3) was used to evaluate the influences of significant variables such as zeolite dosage (100–120 g), current density (540–660 A/m2), electrolysis duration (55–65 min), and initial pH (8–10) as well as the percentage removal of ammonia. It is noted that the maximum reduction of ammonia was up to 71%, which estimated the optimum working conditions for the treatment process as follows: zeolite dosage of 105 g/L, the current density of 600 A/m2, electrolysis duration of 60 min, and pH 8.20. Furthermore, the regression model indicated a strong relationship between the predicted values and the actual experimental results with a high R2 of 0.9871. These results provide evidence of the ability of the ZAEP treatment as a viable alternative in removing high-strength landfill leachate of adequate salinity without the use of any supporting electrolyte.
Collapse
|
17
|
Cornejo OM, Murrieta MF, Castañeda LF, Nava JL. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: A critical review. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135373] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Cai J, Niu T, Shi P, Zhao G. Boron-Doped Diamond for Hydroxyl Radical and Sulfate Radical Anion Electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900153. [PMID: 30848873 DOI: 10.1002/smll.201900153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Boron-doped diamond-based electrochemical advanced oxidation processes (BDD-EAOPs) have attracted much attention. However, few systematic studies concerning the radical mechanism in BDD-EAOPs have been published. In situ electron paramagnetic resonance spectrometry is used to confirm that SO4•- is directly electrogenerated from SO42- . Then, excess SO4•- dimerizes to form S2 O82- and accumulates in the BDD-EAOP system. But no S2 O82- accumulates at pH = 10 owing to the rapid transformation of SO4•- and S2 O82- . Above the overpotential of water oxidation, • OH is electrogenerated and cooperated with SO4•- . In the power-off phase, the accumulated S2 O82- can be reactivated to SO4•- via specific degradation intermediates to achieve sustainable degradation. Di-n-butyl phthalate (DnBP), a typical endocrine disruptor, is selected as a model contaminant. Surprisingly, 99.8% of DnBP (initial concentration of 1 mg L-1 ) is removed, using an intermittent power supply strategy with a periodic 10 min power-on phase at a duty ratio of 1:2, reducing the electrical energy consumption (1.8 kWh m-3 ) by more than 30% compared with continuous power supply consumption. These radical electrogeneration transformation mechanisms reveal an important new strategy for sustainable oxidation, especially for in situ water restoration, and are expected to provide a theoretical basis for BDD applications.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Tiezheng Niu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
19
|
Li P, Chen L, Ding Y, Tian X, Guan D, Zhang Z, Li J. Phosphorus recovery from urine using cooling water system effluent as a precipitant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:391-398. [PMID: 31132620 DOI: 10.1016/j.jenvman.2019.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus (P) recovery from wastewater has been recognized as a critical technology for solving the sustainable supply of this indispensable and non - renewable natural resource. In this study, the cost - free magnesium and calcium sources of using the cooling water system effluent (CWSE) in two thermal power plants were proposed (Z - CWSE and G - CWSE) and the P recovery performance from source - separated urine was investigated. About 90% P recovery efficiency was achieved from the hydrolyzed urine when Z - CWSE and G - CWSE were added at the Ca: Mg: P molar ratios of 3.1 : 4.0: 1 and 3.6 : 3.4: 1, respectively. More than 95% P recovery performance was obtained from the fresh urine as the initial pH of the CWSE - FU mixtures was adjusted to over 9.5 and 10.0, respectively. The precipitates obtained contain 10.84-17.04% Ca, 6.22-9.58% P, 0.75-3.76% Mg and 0.13-0.23% N. XRD analysis confirmed the presence of struvite in the precipitates. The reuse of precipitates is secure due to extremely low contents of heavy metals. The feasibility of using CWSEs as the flushing water in urinals and toilets was assessed. Besides, we proposed CWSEs could be invoked as precipitants in various wastewaters as long as it contains considerable phosphate, e.g. P concentration more than 100 mg/L and 50 mg/L for Z - CWSE and G - CWSE, respectively.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Liping Chen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Yishan Ding
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Detian Guan
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, Beijing, China
| | - Zhongguo Zhang
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, Beijing, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
20
|
Shi Y, Huang J, Zeng G, Cheng W, Hu J. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.078] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Zhao B, Yu H, Lu Y, Qu J, Zhu S, Huo M. Polyethylene glycol assisted synthesis of a praseodymium-doped PbO2 electrode and its enhanced electrocatalytic oxidation performance. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|