1
|
Patnaik R, Kumar Bagchi S, Rawat I, Bux F. Nanotechnology for the enhancement of algal cultivation and bioprocessing: Bridging gaps and unlocking potential. BIORESOURCE TECHNOLOGY 2024; 406:131025. [PMID: 38914236 DOI: 10.1016/j.biortech.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Algae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO2 utilization, real-time monitoring, cost-effective harvesting, etc. Synthetic nanoparticles are extensively used due to ease of manufacturing and targeted application. Nonetheless, there is a growing interest in transitioning to environmentally friendly options like natural and 'green' nanoparticles which are produced from renewable/biological sources by using eco-friendly solvents. Presently, natural, and 'green' nanoparticles are predominantly utilized in algal harvesting, with limited application in other areas, the reasons for which remain unclear. This review aims to critically evaluate research on nanotechnology-based algae system enhancement, identify research gaps and propose solutions using natural and 'green' nanoparticles for a sustainable future.
Collapse
Affiliation(s)
- Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sourav Kumar Bagchi
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
Nanowaste: Another Future Waste, Its Sources, Release Mechanism, and Removal Strategies in the Environment. SUSTAINABILITY 2022. [DOI: 10.3390/su14042041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanowaste is defined as waste derived from materials with at least one dimension in the 1–100 nm range. The nanomaterials containing products are considered as “nanoproducts” and they can lead to the development of nanomaterial-containing waste, also termed as “nanowaste”. The increased production and consumption of these engineered nanomaterials (ENMs) and nanoproducts that generate enormous amounts of nanowaste have raised serious concerns about their fate, behavior, and ultimate disposal in the environment. It is of the utmost importance that nanowaste is disposed of in an appropriate manner to avoid an adverse impact on human health and the environment. The unique properties of ENMs, combined with an inadequate understanding of appropriate treatment techniques for many forms of nanowaste, makes nanowaste disposal a complex task. Presently, there is a lack of available information on the optimized standards for identifying, monitoring, and managing nanowaste. Therefore, this review highlights concerns about nanowaste as future waste that need to be addressed. The review focuses on ENMs waste (in the form of NP, nanotubes, nanowires, and quantum dots) generated from the manufacture of a wide variety of nanoproducts that end up as nanowaste and adversely affect the environment. Furthermore, the review considers different types of ENMs in waste streams and environmental compartments (i.e., soil, water, and air). Detailed studies are still required to identify data gaps and implement strategies to remove and control this future waste.
Collapse
|
3
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|
4
|
Kim ES, Ha JH, Choi J. Biological fixed-film systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:491-501. [PMID: 32866339 DOI: 10.1002/wer.1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The technical papers published in 2019 regarding wastewater treatment and microbial films were classified into two categories: biofilm and biofilm reactors. The biofilm category includes biofilm formation, biofilm consortia, bacterial signals, biofouling, extracellular polymeric substances, and biofilm membrane bioreactors. The biofilm reactors category provides recent information on rotating biological contactors, fluidized-bed biofilm reactors, integrated fixed-film activated sludge, moving-bed biofilm reactors, packed-bed biofilm reactors, sequencing biofilm batch reactors, and trickling filters.
Collapse
Affiliation(s)
- Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu, Korea
| | - Jae-Hoon Ha
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| | - Jeongdong Choi
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| |
Collapse
|
5
|
Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
Nanomaterials (NMs), both natural and synthetic, are produced, transformed, and exported into our environment daily. Natural NMs annual flux to the environment is around 97% of the total and is significantly higher than synthetic NMs. However, synthetic NMs are considered to have a detrimental effect on the environment. The extensive usage of synthetic NMs in different fields, including chemical, engineering, electronics, and medicine, makes them susceptible to be discharged into the atmosphere, various water sources, soil, and landfill waste. As ever-larger quantities of NMs end up in our environment and start interacting with the biota, it is crucial to understand their behavior under various environmental conditions, their exposure pathway, and their health effects on human beings. This review paper comprises a large portion of the latest research on NMs and the environment. The article describes the natural and synthetic NMs, covering both incidental and engineered NMs and their behavior in the natural environment. The review includes a brief discussion on sampling strategies and various analytical tools to study NMs in complex environmental matrices. The interaction of NMs in natural environments and their pathway to human exposure has been summarized. The potential of NMs to impact human health has been elaborated. The nanotoxicological effect of NMs based on their inherent properties concerning to human health is also reviewed. The knowledge gaps and future research needs on NMs are reported. The findings in this paper will be a resource for researchers working on NMs all over the world to understand better the challenges associated with NMs in the natural environment and their human health effects.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Sushil R Kanel
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA; Department of Chemistry, Wright State University, Dayton, OH 45435, USA.
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| |
Collapse
|
6
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
7
|
Salinas C, Amé MV, Bracamonte AG. Synthetic non-classical luminescence generation by enhanced silica nanophotonics based on nano-bio-FRET. RSC Adv 2020; 10:20620-20637. [PMID: 35517765 PMCID: PMC9054290 DOI: 10.1039/d0ra02939d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
Fluorescent silica nanoparticles (NPs–(SiO2–Fluo)) were synthesized based on the classical Störber method for cyanobacteria labelling. Modified mono-coloured SiO2 NPs with fluorescein (Fl) and rhodamine B (RhB) were obtained (NPs–(SiO2–Fl) and NPs–(SiO2–RhB)). Moreover, multi-coloured SiO2 NPs, via the incorporation of both emitters (NPs–(SiO2–RhB–Fl)), were tuned for optimal emissions and the biodetection of cyanobacteria. NPs–(SiO2–Fl) and NPs–(SiO2–RhB–Fl) were optimized for detection via laser fluorescence microscopy and in-flow cytometry with laser excitation and fluorescence detection. By TEM, homogeneous SiO2 NPs of 180.0 nm in diameter were recorded. These sizes were slightly increased due to the covalent linking incorporation of fluorescent dye emitters to 210.0 nm with mono-coloured fluorescent modified amine-organosilanes, and to 340.0 nm in diameter with multi-coloured dye incorporation. NPs–(SiO2–Fluo) showed variable emission depending on the dye emitter concentration, quantum yield and applied luminescent pathway. Thus, mono-coloured NPs–(SiO2–Fl) and NPs–(SiO2–RhB) showed diminished emissions in comparison to multi-coloured NPs–(SiO2–RhB–Fl). This enhancement was explained by fluorescence resonance energy transfer (FRET) between Fl as a fluorescent energy donor and RhB as an energy acceptor produced within the nanoarchitecture, produced only in the presence of both fluorophores with the appropriate laser excitation of the energy donor. The depositions of the nano-emitters on cyanobacteria by non-covalent interactions were observed by TEM and laser fluorescence microscopy. For multi-coloured NPs–(SiO2–RhB–Fl) labelling, bio-FRET was observed between the emission of the nano-labellers and the natural fluorophores from the cyanobacteria that quenched the emission of the whole nano-biostructure in comparison to mono-coloured NPs–(SiO2–Fl) labelling. This fact was explained and discussed in terms of different fluorescence energy transfer from the nanolabellers towards different natural chromophore coupling. In the presence of NPs–(SiO2–RhB–Fl) and NPs–(SiO2–RhB), the emission was coupled with lower quantum yield chromophores; while upon the application of NPs–(SiO2–Fl), it was coupled with higher quantum yield chromophores. In this manner, for enhanced luminescent nanoplatform tracking, the multi-coloured NPs–(SiO2–RhB–Fl) showed improved properties; but more highly luminescent bio-surfaces were generated with mono-coloured NPs–(SiO2–Fl) that permitted faster cyanobacteria detection and counting by laser fluorescence microscopy, and by in-flow cytometry with laser excitation and fluorescence detection. Fluorescent silica nanophotonics for cyanobacteria labelling.![]()
Collapse
Affiliation(s)
- Carina Salinas
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clinica, Facultad de Ciencias Químicas, UNC Argentina
| | - A Guillermo Bracamonte
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria 5000 Córdoba Argentina .,Departement de Chimie, Centre d'Optique, Photonique et Laser (COPL), Université Laval Québec (QC) G1V 0A6 Canada
| |
Collapse
|
8
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
9
|
Ashkanani A, Almomani F, Khraisheh M, Bhosale R, Tawalbeh M, AlJaml K. Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133425. [PMID: 31362224 DOI: 10.1016/j.scitotenv.2019.07.231] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the impact of bio-carriers' surface area and shape, wastewater chemistry and operating temperature on ammonia removal from real wastewater effluents using Moving bed biofilm reactors (MBBRs) operated with three different AnoxKaldness bio-carriers (K3, K5, and M). The study concludes the surface area loading rate, specific surface area, and shape of bio-carrier affect ammonia removal under real conditions. MBBR kinetics and sensitivity for temperature changes were affected by bio-carrier type. High surface area bio-carriers resulted in low ammonia removal and bio-carrier clogging. Significant ammonia removals of 1.420 ± 0.06 and 1.103 ± 0.06 g - N/m2. d were achieved by K3(As = 500 m2/m3) at 35 and 20 °C, respectively. Lower removals were obtained by high surface area bio-carrier K5 (1.123 ± 0.06 and 0.920 ± 0.06 g - N/m2. d) and M (0.456 ± 0.05 and 0.295 ± 0.05 g - N/m2. d) at 35 and 20 °C, respectively. Theta model successfully represents ammonia removal kinetics with θ values of 1.12, 1.06 and 1.13 for bio-carrier K3, K5 and M respectively. MBBR technology is a feasible choice for treatment of real wastewater effluents containing high ammonia concentrations.
Collapse
Affiliation(s)
- Amal Ashkanani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rahul Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Muhammad Tawalbeh
- Sustainable & Renewable Energy Engineering Department, College of Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Khaled AlJaml
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
10
|
Alizadeh S, Abdul Rahim A, Guo B, Hawari J, Ghoshal S, Comeau Y. Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9148-9159. [PMID: 31294965 DOI: 10.1021/acs.est.9b01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 μg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor, and effluent of MBBRs using single particle inductively coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Arshath Abdul Rahim
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Bing Guo
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Jalal Hawari
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| |
Collapse
|
11
|
Zhou H, Xu G. Effect of silver nanoparticles on an integrated fixed-film activated sludge-sequencing batch reactor: Performance and community structure. J Environ Sci (China) 2019; 80:229-239. [PMID: 30952340 DOI: 10.1016/j.jes.2018.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The effects of silver nanoparticles (AgNPs) on reactor performance, extracellular polymeric substances composition and microbial community structure and function in integrated fixed-film activated sludge-sequencing batch reactors (IFAS-SBRs) were investigated. Results showed that the addition of AgNPs from 0.1 to 10 mg/L exhibited no significant effects on nutrient removal. The average overall removal of COD, NH4+-N and PO43--P was 96.6%, 99.9% and 98.8%, respectively. The introduction of AgNPs caused an increase in extracellular polymeric substances content for the sludge and biofilm of IFAS-SBRs. The release of Ag+ from AgNPs and lactate dehydrogenase test implied the low toxicity of AgNPs to IFAS-SBRs. High-throughput sequencing revealed that microbial community structure showed significant shifts at phylum and genus levels after long-term exposure to AgNPs, but core functional groups responsible for nutrient removal remained at high abundance. Bacterial function prediction indicated that the metabolic categories showed no significant shifts under AgNPs stress, therefore good process performance could still be achieved.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Maciel MVDOB, Almeida ADR, Machado MH, Melo APZD, Rosa CGD, Freitas DZD, Noronha CM, Teixeira GL, Armas RDD, Barreto PLM. <i> Syzygium aromaticum</i> L. (Clove) Essential Oil as a Reducing Agent for the Green Synthesis of Silver Nanoparticles. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ojapps.2019.92005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|