1
|
Gupta J, Bai X, Liverman DM, Rockström J, Qin D, Stewart-Koster B, Rocha JC, Jacobson L, Abrams JF, Andersen LS, Armstrong McKay DI, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi KL, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett E, Bjørn A, Bringezu S, Broadgate WJ, Bulkeley H, Crona B, Green PA, Hoff H, Huang L, Hurlbert M, Inoue CYA, Kılkış Ş, Lade SJ, Liu J, Nadeem I, Ndehedehe C, Okereke C, Otto IM, Pedde S, Pereira L, Schulte-Uebbing L, Tàbara JD, de Vries W, Whiteman G, Xiao C, Xu X, Zafra-Calvo N, Zhang X, Fezzigna P, Gentile G. A just world on a safe planet: a Lancet Planetary Health-Earth Commission report on Earth-system boundaries, translations, and transformations. Lancet Planet Health 2024; 8:e813-e873. [PMID: 39276783 DOI: 10.1016/s2542-5196(24)00042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/09/2023] [Accepted: 03/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Joyeeta Gupta
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands; IHE-Delft Institute for Water Education, Delft, Netherlands
| | - Xuemei Bai
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Diana M Liverman
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ben Stewart-Koster
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Juan C Rocha
- Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | | | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Lauren S Andersen
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - David I Armstrong McKay
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Systems Institute, University of Exeter, Exeter, UK; Georesilience Analytics, Leatherhead, UK
| | - Govindasamy Bala
- Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Daniel Ciobanu
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice DeClerck
- EAT, Oslo, Norway; Alliance of Bioversity and CIAT, CGIAR, Montpellier, France
| | - Kristie L Ebi
- Center for Health & the Global Environment, University of Washington, Seattle, WA, USA
| | - Lauren Gifford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Christopher Gordon
- Institute for Environment and Sanitation Studies, University of Ghana, Legon, Ghana
| | - Syezlin Hasan
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Norichika Kanie
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | - Sina Loriani
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Awaz Mohamed
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | | | - David Obura
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | | | - Klaudia Prodani
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Crelis Rammelt
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Joeri Scholtens
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Thejna Tharammal
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, India
| | - Detlef van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands
| | - Peter H Verburg
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricarda Winkelmann
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Caroline Zimm
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Elena Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Anders Bjørn
- Centre for Absolute Sustainability and Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bringezu
- Center for Environmental Systems Research, University of Kassel, Kassel, Germany
| | | | - Harriet Bulkeley
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; Department of Geography, Durham University, Durham, UK
| | - Beatrice Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Economic Dynamics and the Biosphere Programme, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Pamela A Green
- Advanced Science Research Center at the Graduate Center, City University of New York, NY, USA
| | - Holger Hoff
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Lei Huang
- National Climate Center, Beijing, China
| | - Margot Hurlbert
- Johnson-Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Cristina Y A Inoue
- Center for Global Studies, Institute of International Relations, University of Brasília, Brasília, Brazil; Institute for Management Research, Radboud University, Nijmegen, Netherlands
| | - Şiir Kılkış
- Scientific and Technological Research Council of Turkey, Ankara, Türkiye
| | - Steven J Lade
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia; Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Imran Nadeem
- Institute of Meteorology and Climatology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Christopher Ndehedehe
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia; School of Environment & Science, Griffith University, Nathan, QLD, Australia
| | | | - Ilona M Otto
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Simona Pedde
- Future Earth Secretariat, Stockholm, Sweden; Soil raphy and Landscape Group, Wageningen University & Research, Wageningen, Netherlands
| | - Laura Pereira
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Lena Schulte-Uebbing
- PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands; Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | - J David Tàbara
- Autonomous University of Barcelona, Barcelona, Spain; Global Climate Forum, Berlin, Germany
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Cunde Xiao
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Xinwu Xu
- China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Noelia Zafra-Calvo
- Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Biscay, Spain
| | - Xin Zhang
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Paola Fezzigna
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Giuliana Gentile
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Thomas A, Bentley L, Feeney C, Lofts S, Robb C, Rowe EC, Thomson A, Warren-Thomas E, Emmett B. Land degradation neutrality: Testing the indicator in a temperate agricultural landscape. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118884. [PMID: 37729834 DOI: 10.1016/j.jenvman.2023.118884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Land degradation directly affects around 25% of land globally, undermining progress on most of the UN Sustainable Development Goals (SDG), particularly target 15.3. To assess land degradation, SDG indicator 15.3.1 combines sub-indicators of productivity, soil carbon and land cover. Over 100 countries have set Land Degradation Neutrality (LDN) targets. Here, we demonstrate application of the indicator for a well-established agricultural landscape using the case study of Great Britain. We explore detection of degradation in such landscapes by: 1) transparently evaluating land cover transitions; 2) comparing assessments using global and national data; 3) identifying misleading trends; and 4) including extra sub-indicators for additional forms of degradation. Our results demonstrate significant impacts on the indicator both from the land cover transition evaluation and choice or availability of data. Critically, we identify a misleading improvement trend due to a trade-off between improvement detected by the productivity sub-indicator, and 30-year soil carbon loss trends in croplands (11% from 1978 to 2007). This carbon loss trend would not be identified without additional data from Countryside Survey (CS). Thus, without incorporating field survey data we risk overlooking the degradation of regulating and supporting ecosystem services (linked to soil carbon), in favour of signals from improving provisioning services (productivity sub-indicator). Relative importance of these services will vary between socioeconomic contexts. Including extra sub-indicators for erosion or critical load exceedance, as additional forms of degradation, produced a switch from net area improving (9%) to net area degraded (58%). CS data also identified additional degradation for soil health, including 44% arable soils exceeding bulk density thresholds and 35% of CS squares exceeding contamination thresholds for metals.
Collapse
Affiliation(s)
- Amy Thomas
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK.
| | - Laura Bentley
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Chris Feeney
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Stephen Lofts
- UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Ciaran Robb
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Ed C Rowe
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Amanda Thomson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Eleanor Warren-Thomas
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Bridget Emmett
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| |
Collapse
|
3
|
Smith AC, Harrison PA, Leach NJ, Godfray HCJ, Hall JW, Jones SM, Gall SS, Obersteiner M. Sustainable pathways towards climate and biodiversity goals in the UK: the importance of managing land-use synergies and trade-offs. SUSTAINABILITY SCIENCE 2022; 18:521-538. [PMID: 36405346 PMCID: PMC9640857 DOI: 10.1007/s11625-022-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Agricultural and environmental policies are being fundamentally reviewed and redesigned in the UK following its exit from the European Union. The UK government and the Devolved Administrations recognise that current land use is not sustainable and that there is now an unprecedented opportunity to define a better land strategy that responds fully to the interconnected challenges of climate change, biodiversity loss and sustainable development. This paper presents evidence from three pathways (current trends, sustainable medium ambition, and sustainable high ambition) to mid-century that were co-created with UK policymakers. The pathways were applied to a national integrated food and land-use model (the FABLE calculator) to explore potential synergies and trade-offs between achieving multiple sustainability targets under limited land availability and constraints to balance food supply and demand at national and global levels. Results show that under the Current Trends pathway all unprotected open natural land would be converted to urban, agriculture and afforested land, with the consequence that from 2030 onwards tree planting targets could not be met. In contrast, the two sustainable pathways illustrate how dietary change, agricultural productivity improvements and waste reduction can free up land for nature recovery and carbon sequestration. This enables a transition to a sustainable food and land-use system that provides a net carbon sink with up to 44% of land able to support biodiversity conservation. We highlight key trade-offs and synergies, which are important to consider for designing and implementing emerging national policies. These include the strong dependence of climate, food and biodiversity targets on dietary shifts, sustainable improvements in agricultural productivity, improved land-use design for protecting and restoring nature, and rapid reductions in food loss and waste. Supplementary Information The online version contains supplementary material available at 10.1007/s11625-022-01242-8.
Collapse
Affiliation(s)
- Alison C. Smith
- Environmental Change Institute, University of Oxford, South Parks Road, Oxford, OX1 3QY UK
| | - Paula A. Harrison
- UK Centre for Ecology and Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP UK
| | - Nicholas J. Leach
- Environmental Change Institute, University of Oxford, South Parks Road, Oxford, OX1 3QY UK
| | | | - Jim W. Hall
- Environmental Change Institute, University of Oxford, South Parks Road, Oxford, OX1 3QY UK
- Oxford Martin School, University of Oxford, 34 Broad St, Oxford, OX1 3BD UK
| | - Sarah M. Jones
- UK Centre for Ecology and Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP UK
- Lancaster University, Bailrigg, Lancaster, LA1 4YW UK
| | - Sarah S. Gall
- Environmental Change Institute, University of Oxford, South Parks Road, Oxford, OX1 3QY UK
| | - Michael Obersteiner
- Environmental Change Institute, University of Oxford, South Parks Road, Oxford, OX1 3QY UK
- Oxford Martin School, University of Oxford, 34 Broad St, Oxford, OX1 3BD UK
| |
Collapse
|
4
|
Schulp CJE, Komossa F, Scherer L, van der Zanden EH, Debolini M, Piorr A. The Role of Different Types of Actors In The Future of Sustainable Agriculture In a Dutch Peri-urban Area. ENVIRONMENTAL MANAGEMENT 2022; 70:401-419. [PMID: 35507108 PMCID: PMC9065672 DOI: 10.1007/s00267-022-01654-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Peri-urban areas support a broad range of multifunctional demands for public goods. In northwest Europe, peri-urban areas tend to overlap with intensive agricultural land, resulting in conflicts between agricultural use and the public good demands of residents. Sustainable intensification (SI) of agriculture might help reconcile agricultural and well-being goals, but it is unclear how the mix of actors in a peri-urban setting can trigger or restrain SI. In a Dutch case study, we explored how SI of agriculture can contribute to making peri-urban areas more sustainable, and which actors are key enabling factors for implementing SI. We used interviews, surveys, workshops, and empirical analysis to obtain insight into the stakeholder's vision of a sustainable future for the case study area, the farming system and actor network. We integrated these insights in a Bayesian Belief Network, where we linked the actor network to implementation of three SI measures (farm-level efficiency measures, small landscape elements, and direct sales), and used sensitivity analysis to model effects of support for implementation by different groups of actors. The case study has a dense stakeholder network, where, dependent on the SI measure, farmers are triggered by all actors to implement SI, or have a stronger role in uptake themselves. The sensitivity analysis suggested that the future preferred by the stakeholders requires broad support of all actors involved, with local actors without a formal role being essential for uptake. Overall, trade-offs among public goods are almost inevitable when taking up SI measures.
Collapse
Affiliation(s)
- Catharina J E Schulp
- Institute for Environmental Studies, Environmental Geography Group, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081HV, Amsterdam, the Netherlands.
| | - Franziska Komossa
- Institute for Environmental Studies, Environmental Geography Group, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081HV, Amsterdam, the Netherlands
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Emma H van der Zanden
- Institute for Environmental Studies, Environmental Geography Group, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081HV, Amsterdam, the Netherlands
- PBL Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, 2594 AV, The Hague, the Netherlands
| | - Marta Debolini
- UMR EMMAH INRAE/AU, 228 route de l'Aérodrome, 89914, Avignon, France
| | - Annette Piorr
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374, Müncheberg, Germany
| |
Collapse
|