1
|
Høiberg MA, Stadler K, Verones F. Disentangling marine plastic impacts in Life Cycle Assessment: Spatially explicit Characterization Factors for ecosystem quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175019. [PMID: 39059661 DOI: 10.1016/j.scitotenv.2024.175019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Inputs of persistent plastic items to marine environments continue to pose a serious and long-term threat to marine fauna and ecosystem health, justifying further interventions on local and global scales. While Life Cycle Assessment (LCA) is frequently used for sustainability evaluations by industries and policymakers, plastic leakage to the environment and its subsequent impacts remains absent from the framework. Incorporating plastic pollution in the assessments requires development of both inventories and impact assessment methods. Here, we propose spatially explicit Characterization Factors (CF) for quantifying the impacts of plastic entanglement on marine megafauna (mammals, birds and reptiles) on a global scale. We utilize Lagrangian particle tracking and a Species Sensitivity Distribution (SSD) model along with species susceptibility records to estimate potential entanglement impacts stemming from lost plastic-based fishing gear. By simulating plastic losses from fishing hotspots within all Exclusive Economic Zones (EEZs) we provide country-specific impact estimates for use in LCA. The impacts were found to be similar across regions, although the median CF associated with Oceania was higher compared to Europe, Africa and Asia. Our findings underscore the presence of susceptible species across the world and the transboundary issue of plastic pollution. We discuss the application of the factors and identify areas of further refinement that can contribute towards a comprehensive assessment of macroplastic pollution in sustainability assessments. Degradation and beaching rates for different types of fishing gear remain a research gap, along with population-level effects on marine taxa beyond surface breathing megafauna. Increasing the coverage of impacts specific to the marine realm in LCA alongside other stressors can facilitate informed decision-making towards more sustainable marine resource management.
Collapse
Affiliation(s)
- Marthe A Høiberg
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Konstantin Stadler
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesca Verones
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Stranddorf L, Colley T, Delefosse M, Svendsen JC, Irving Olsen S. Marine biodiversity impact pathways for offshore wind farm decommissioning: Implications for Life Cycle impact assessment development. ECOLOGICAL INDICATORS 2024; 167:112613. [DOI: 10.1016/j.ecolind.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Ran Y, Cederberg C, Jonell M, Bergman K, De Boer IJM, Einarsson R, Karlsson J, Potter HK, Martin M, Metson GS, Nemecek T, Nicholas KA, Strand Å, Tidåker P, Van der Werf H, Vanham D, Van Zanten HHE, Verones F, Röös E. Environmental assessment of diets: overview and guidance on indicator choice. Lancet Planet Health 2024; 8:e172-e187. [PMID: 38453383 DOI: 10.1016/s2542-5196(24)00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and private-sector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consumption, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environmental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.
Collapse
Affiliation(s)
- Ylva Ran
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Christel Cederberg
- Division of Physical Resource Theory, Department of Space, Earth and Environment, Chalmers University of Technology, Göteborg, Sweden
| | - Malin Jonell
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Kristina Bergman
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, Stockholm, Sweden
| | - Imke J M De Boer
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Rasmus Einarsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Karlsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Karlsson Potter
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael Martin
- IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Geneviève S Metson
- Department of Geography and Environment, Social Sciences Centre, University of Western Ontario, London, ON, Canada; Ecological and Environmental Modeling Division, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Thomas Nemecek
- Agroscope, Life Cycle Assessment Research Group, Zurich, Switzerland
| | | | - Åsa Strand
- IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Pernilla Tidåker
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hayo Van der Werf
- French National Research Institute for Agriculture, Food and Environment, l'Institut Agro Rennes-Angers, Rennes, France
| | | | - Hannah H E Van Zanten
- Farming Systems Ecology Group, Wageningen Universityand Research, Wageningen, Netherlands; Department of Global Development, College of Agriculture and Life Sciences, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elin Röös
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Li C, Coolen JWP, Scherer L, Mogollón JM, Braeckman U, Vanaverbeke J, Tukker A, Steubing B. Offshore Wind Energy and Marine Biodiversity in the North Sea: Life Cycle Impact Assessment for Benthic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6455-6464. [PMID: 37058594 PMCID: PMC10134491 DOI: 10.1021/acs.est.2c07797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Large-scale offshore wind energy developments represent a major player in the energy transition but are likely to have (negative or positive) impacts on marine biodiversity. Wind turbine foundations and sour protection often replace soft sediment with hard substrates, creating artificial reefs for sessile dwellers. Offshore wind farm (OWF) furthermore leads to a decrease in (and even a cessation of) bottom trawling, as this activity is prohibited in many OWFs. The long-term cumulative impacts of these changes on marine biodiversity remain largely unknown. This study integrates such impacts into characterization factors for life cycle assessment based on the North Sea and illustrates its application. Our results suggest that there are no net adverse impacts during OWF operation on benthic communities inhabiting the original sand bottom within OWFs. Artificial reefs could lead to a doubling of species richness and a two-order-of-magnitude increase of species abundance. Seabed occupation will also incur in minor biodiversity losses in the soft sediment. Our results were not conclusive concerning the trawling avoidance benefits. The developed characterization factors quantifying biodiversity-related impacts from OWF operation provide a stepping stone toward a better representation of biodiversity in life cycle assessment.
Collapse
Affiliation(s)
- Chen Li
- Institute
of Environmental Sciences (CML), Leiden
University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Joop W. P. Coolen
- Wageningen
Marine Research, P.O. Box 57, 1780 AB Den Helder, The Netherlands
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PD Wageningen, The Netherlands
| | - Laura Scherer
- Institute
of Environmental Sciences (CML), Leiden
University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - José M. Mogollón
- Institute
of Environmental Sciences (CML), Leiden
University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Ulrike Braeckman
- Marine
Biology Research Group (MARBIOL), Ghent
University, Krijgslaan 281, 9000 Ghent, Belgium
- Operational
Directorate Natural Environment, Marine Ecology and Management, Royal Belgian Institute for Natural Science, Vautierstraat 29, 1000 Brussels, Belgium
| | - Jan Vanaverbeke
- Operational
Directorate Natural Environment, Marine Ecology and Management, Royal Belgian Institute for Natural Science, Vautierstraat 29, 1000 Brussels, Belgium
| | - Arnold Tukker
- Institute
of Environmental Sciences (CML), Leiden
University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
- Netherlands
Organization for Applied Scientific Research, P.O. Box 96800, 2509 JE Den Haag, The Netherlands
| | - Bernhard Steubing
- Institute
of Environmental Sciences (CML), Leiden
University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Fariñas-Franco JM, Cook RL, Gell FR, Harries DB, Hirst N, Kent F, MacPherson R, Moore C, Mair JM, Porter JS, Sanderson WG. Are we there yet? Management baselines and biodiversity indicators for the protection and restoration of subtidal bivalve shellfish habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161001. [PMID: 36539096 DOI: 10.1016/j.scitotenv.2022.161001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Biodiversity loss and degradation of natural habitats is increasing at an unprecedented rate. Of all marine habitats, biogenic reefs created by once-widespread shellfish, are now one of the most imperilled, and globally scarce. Conservation managers seek to protect and restore these habitats, but suitable baselines and indicators are required, and detailed scientific accounts are rare and inconsistent. In the present study the biodiversity of a model subtidal habitat, formed by the keystone horse mussel Modiolus modiolus (L.), was analysed across its Northeast Atlantic biogeographical range. Consistent samples of 'clumped' mussels were collected at 16 locations, covering a wide range of environmental conditions. Analysis of the associated macroscopic biota showed high biodiversity across all sites, cumulatively hosting 924 marine macroinvertebrate and algal taxa. There was a rapid increase in macroinvertebrate biodiversity (H') and community evenness (J) between 2 and 10 mussels per clump, reaching an asymptote at mussel densities of 10 per clump. Diversity declined at more northern latitudes, with depth and in coarser substrata with the fastest tidal flows. Diversity metrics corrected for species abundance were generally high across the habitats sampled, with significant latitudinal variability caused by current, depth and substrate type. Faunal community composition varied significantly between most sites and was difficult to assign to a 'typical' M. modiolus assemblage, being significantly influenced by regional environmental conditions, including the presence of algal turfs. Within the context of the rapid global increase in protection and restoration of bivalve shellfish habitats, site and density-specific values of diversity are probably the best targets for conservation management and upon which to base monitoring programmes.
Collapse
Affiliation(s)
- Jose M Fariñas-Franco
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Marine and Freshwater Research Centre and Department of Natural Resource and the Environment, School of Science and Computing, Atlantic Technological University, Old Dublin Road, Galway H91 T8NW, Ireland.
| | - Robert L Cook
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Fiona R Gell
- Fisheries Directorate, Department of Environment Food and Agriculture, Isle of Man Government, St John's, Isle of Man
| | - Dan B Harries
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Natalie Hirst
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Flora Kent
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Scottish Natural Heritage, Silvan House, 231 Corstorphine Rd, Edinburgh EH12 7AT, UK
| | - Rebecca MacPherson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Colin Moore
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - James M Mair
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Joanne S Porter
- International Centre for Island Technology, Heriot-Watt University, Franklin Road, Stromness, Orkney KW16 3AN, UK
| | - William G Sanderson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| |
Collapse
|
6
|
Kaikkonen L, Virtanen EA. Shallow-water mining undermines global sustainability goals. Trends Ecol Evol 2022; 37:931-934. [PMID: 36114051 DOI: 10.1016/j.tree.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/31/2022]
Abstract
Coastal mineral resources are promoted as a sustainable option to meet increasing metal demands. However, shallow-water mining contradicts international conservation and sustainability goals and its regulative legislation is still being developed. In the absence of thorough comparisons of different mining practices, there are no justifications in favour of shallow-water mining.
Collapse
Affiliation(s)
- Laura Kaikkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Baltic Marine Environment Protection Commission (HELCOM), Helsinki, Finland.
| | - Elina A Virtanen
- Finnish Natural History Museum, University of Helsinki, Helsinki, Finland; Marine Research Centre, Finnish Environment Institute, Helsinki, Finland.
| |
Collapse
|
7
|
Gilmour M, Adams J, Block B, Caselle J, Friedlander A, Game E, Hazen E, Holmes N, Lafferty K, Maxwell S, McCauley D, Oleson E, Pollock K, Shaffer S, Wolff N, Wegmann A. Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Préat N, Lefaible N, Alvarenga RAF, Taelman SE, Dewulf J. Development of a life cycle impact assessment framework accounting for biodiversity in deep seafloor ecosystems: A case study on the Clarion Clipperton Fracture Zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144747. [PMID: 33736364 DOI: 10.1016/j.scitotenv.2020.144747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The transformation of ecosystems is known to be a major driver of biodiversity loss. Consequently, supporting tools such as life cycle assessment methods (LCA) include this aspect in the evaluation of a product's environmental performance. Such methods consist of quantifying input and output flows to assess their specific contributions to impact categories. Therefore, land occupation and transformation are considered as inputs to assess biodiversity impacts amongst others. However, the modelling of biodiversity impact in deep seafloor ecosystems is still lacking in LCA. Most of the LCA methods focus on terrestrial biodiversity and none of them can be transposed to benthic deep sea because of knowledge gaps. This manuscript proposes a LCA framework to assess biodiversity impacts in deep seafloor ecosystems. The framework builds upon the existing methods accounting for biodiversity impacts in terrestrial and coastal habitats. A two-step approach is proposed, assessing impacts on regional and on global biodiversity. While the evaluation of regional biodiversity impacts relies only on the benthic communities' response to disturbance, the global perspective considers ecosystem vulnerability and scarcity. Those provide additional perspective for the comparison of impacts occurring in different ecosystems. The framework is operationalised to a case study for deep-sea mining in the Clarion Clipperton Fractures Zone (CCZ). Through the large variety of data sources needed to run the impact evaluation modelling, the framework shows consistency and manages the existing limitations in the understanding of deep seafloor ecosystems, although limitations for its application in the CCZ were observed mainly due to the lack of finer scaled habitat maps and data on connectivity. With growing interest for commercial activities in the deep sea and hence, increased environmental research, this work is a first attempt for the implementation of LCA methods to deep-sea products.
Collapse
Affiliation(s)
- Nils Préat
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Nene Lefaible
- Department of Biology, Marine Biology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Rodrigo A F Alvarenga
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sue Ellen Taelman
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jo Dewulf
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Ruiz-Salmón I, Laso J, Margallo M, Villanueva-Rey P, Rodríguez E, Quinteiro P, Dias AC, Almeida C, Nunes ML, Marques A, Cortés A, Moreira MT, Feijoo G, Loubet P, Sonnemann G, Morse AP, Cooney R, Clifford E, Regueiro L, Méndez D, Anglada C, Noirot C, Rowan N, Vázquez-Rowe I, Aldaco R. Life cycle assessment of fish and seafood processed products - A review of methodologies and new challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144094. [PMID: 33360652 DOI: 10.1016/j.scitotenv.2020.144094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.
Collapse
Affiliation(s)
- Israel Ruiz-Salmón
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s.n., 39005 Santander, Spain.
| | - Jara Laso
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s.n., 39005 Santander, Spain
| | - María Margallo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s.n., 39005 Santander, Spain
| | - Pedro Villanueva-Rey
- EnergyLab, Fonte das Abelleiras s/n, Campus Universidad de Vigo, 36310 Vigo, Galicia, Spain
| | - Eduardo Rodríguez
- EnergyLab, Fonte das Abelleiras s/n, Campus Universidad de Vigo, 36310 Vigo, Galicia, Spain
| | - Paula Quinteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Cláudia Dias
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cheila Almeida
- IPMA - Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Aquacultura, Valorização e Bioprospeção, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Maria Leonor Nunes
- IPMA - Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Aquacultura, Valorização e Bioprospeção, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- IPMA - Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Aquacultura, Valorização e Bioprospeção, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Antonio Cortés
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gumersindo Feijoo
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Philippe Loubet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Guido Sonnemann
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Andrew P Morse
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Ronan Cooney
- School of Engineering, NUI Galway, Galway H91 HX31 j Ryan Institute, NUI Galway, H91 TK33; Ryan Institute, NUI Galway, Ireland
| | - Eoghan Clifford
- School of Engineering, NUI Galway, Galway H91 HX31 j Ryan Institute, NUI Galway, H91 TK33; Ryan Institute, NUI Galway, Ireland
| | | | - Diego Méndez
- ANFACO-CECOPESCA, Campus University 16, 36310 Vigo PO, Spain
| | - Clémentine Anglada
- VertigoLab, Darwin Ecosystème, 87 Quai de Queyries, 33100 Bordeaux, France
| | - Christelle Noirot
- VertigoLab, Darwin Ecosystème, 87 Quai de Queyries, 33100 Bordeaux, France
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland
| | - Ian Vázquez-Rowe
- Peruvian LCA Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel, 15088 Lima, Peru
| | - Rubén Aldaco
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. de Los Castros, s.n., 39005 Santander, Spain
| |
Collapse
|
10
|
Dorber M, Kuipers K, Verones F. Global characterization factors for terrestrial biodiversity impacts of future land inundation in Life Cycle Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134582. [PMID: 31831240 DOI: 10.1016/j.scitotenv.2019.134582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Life Cycle Assessment (LCA) is a tool for analyzing and comparing environmental impacts of products throughout their life cycles, facilitating shifts towards more environmentally friendly products. However, LCA does currently not address terrestrial biodiversity impacts related to the conversion of terrestrial habitat into aquatic habitat. This conversion can occur because of sea level rise, establishment of new land-based aquaculture, as well as reservoir expansion or creation. Here, we focus on land occupation and terrestrial biodiversity impacts, while transformation impacts, and habitat gain for aquatic species were beyond the scope of the study. To be able to estimate the regional and global terrestrial biodiversity impacts of future land occupation from terrestrial to aquatic habitat in LCA, we developed new characterization factors (CFs) for 781 terrestrial ecoregions, 5 land cover/use types, and 4 taxonomic groups. The basis for the development of the proposed CFs is the model concept of the currently recommended method for quantifying land use impacts on biodiversity in LCA by the Life Cycle Initiative hosted by United Nations Environmental Program. The global CFs vary between 7.44 E-20 PDF/m2 and 6.25 E-09 PDF/m2, showing that a highly variable terrestrial biodiversity impact of land inundation between land cover/use types, taxonomic groups and ecoregions exists.
Collapse
Affiliation(s)
- Martin Dorber
- Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Koen Kuipers
- Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Francesca Verones
- Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
11
|
Spatio-temporal Analysis of Anthropogenic Disturbances on Landscape Pattern of Tourist Destinations: a case study in the Li River Basin, China. Sci Rep 2019; 9:19285. [PMID: 31848369 PMCID: PMC6917706 DOI: 10.1038/s41598-019-55532-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
The impact of human-related activities on the eco-environment of tourist destinations is an important part of recreation ecology research. However, traditional studies have mainly concentrated on the static influences upon the simple factors of soil or vegetation in tourist destinations, and the relationship between anthropogenic disturbances and landscape patterns is little understood. In this study, we constructed a disturbance model on a landscape scale to identify and quantify the main anthropogenic disturbances. The overall variation coefficient (OVC) index is defined as the intensity of different disturbance sources, and landscape structure analysis methods are used for temporal and spatial differentiation, which is applied in the Li River Basin, China. Three typical types of human-related activities are identified as possible anthropogenic disturbance sources in the region, and their notable influential spheres are determined. Then, the dynamic changes in tourism disturbance in two periods and the spatial distribution characteristics related to three factors are explored. The results suggest that settlement and tourism disturbances have exerted considerable impacts on landscape patterns, and the differentiation characteristics are closely related to local tourism development policies and patterns. The disturbance model could be applied in other tourism destinations and provide countermeasures for regional tourism management.
Collapse
|