1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
3
|
Taligrot H, Wurtzer S, Monnot M, Moulin L, Moulin P. Implementation of a Sensitive Method to Assess High Virus Retention Performance of Low-Pressure Reverse Osmosis Process. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:97-108. [PMID: 38085424 DOI: 10.1007/s12560-023-09570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/07/2023] [Indexed: 03/26/2024]
Abstract
Human enteric viruses are important etiological agents of waterborne diseases. Environmental waters are usually contaminated with low virus concentration requiring large concentration factors for effective detection by (RT)-qPCR. Low-pressure reverse osmosis is often used to remove water contaminants, but very few studies focused on the effective virus removal of reverse osmosis treatment with feed concentrations as close as possible to environmental concentrations and principally relied on theoretical virus removal. The very low viral concentrations usually reported in the permeates (i.e. at least 5 log of removal rate) mean that very large volumes of water need to be analysed to have sufficient sensitivity and assess the process efficiency. This study evaluates two methods for the concentration of adenoviruses, enteroviruses and MS2 bacteriophages at different viral concentrations in large (< 200 L) and very large (> 200 L) volumes. The first method is composed of two ultrafiltration membranes with low-molecular weight cut-offs while the second method primarily relies on adsorption and elution phases using electropositive-charged filters. The recovery rates were assessed for both methods. For the ultrafiltration-based protocol, recovery rates were similar for each virus studied: 80% on average at high virus concentrations (106-107 viruses L-1) and 50% at low virus concentrations (103-104 viruses L-1). For the electropositive-charged filter-based method, the average recoveries obtained were about 36% for ADV 41, 57% for CV-B5 and 1.6% for MS2. The ultrafiltration-based method was then used to evaluate the performance of a low-pressure reverse osmosis lab-scale pilot plant. The retentions by reverse osmosis were similar for all studied viruses and the validated recovery rates applied to the system confirmed the reliability of the concentration method. This method was effective in concentrating all three viruses over a wide range of viral concentrations. Moreover, the second concentration method using electropositive-charged filters was studied, allowing the filtration of larger volumes of permeate from a semi-industrial low-pressure reverse osmosis pilot plant. This reference method was used because of the inability of the UF method to filter volumes on the order of one cubic metre.
Collapse
Affiliation(s)
- Hugo Taligrot
- CNRS, Centrale Marseille, M2P2, Équipe Procédés Membranaires (EPM), Aix Marseille University, Marseille, France
- Eau de Paris, Direction de la Recherche du Développement et de la Qualité de l'Eau, 33 Avenue Jean Jaurès, 94200, Ivry-Sur-Seine, France
| | - Sébastien Wurtzer
- Eau de Paris, Direction de la Recherche du Développement et de la Qualité de l'Eau, 33 Avenue Jean Jaurès, 94200, Ivry-Sur-Seine, France
| | - Mathias Monnot
- CNRS, Centrale Marseille, M2P2, Équipe Procédés Membranaires (EPM), Aix Marseille University, Marseille, France
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche du Développement et de la Qualité de l'Eau, 33 Avenue Jean Jaurès, 94200, Ivry-Sur-Seine, France
| | - Philippe Moulin
- CNRS, Centrale Marseille, M2P2, Équipe Procédés Membranaires (EPM), Aix Marseille University, Marseille, France.
| |
Collapse
|
4
|
Sun K, Yang X, Wang Y, Guan Q, Fu W, Zhang C, Liu Q, An W, Zhao Y, Xing W, Xu D. A Novel Sample-to-Answer Visual Nucleic Acid Detection System for Adenovirus Detection. Microbiol Spectr 2023; 11:e0517022. [PMID: 37022182 PMCID: PMC10269611 DOI: 10.1128/spectrum.05170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Human adenoviruses (HAdVs) are common viruses that can cause local outbreaks in schools, communities and military camps, posing a huge threat to public health. An ideal POCT device for adenovirus detection in resource-limited settings is critical to control the spread of the virus. In this study, we developed an integrated and electricity-independent sample-to-answer system that can complete nucleic acid extraction, amplification, and detection at room temperature. This system is suitable for field and on-site detection because of its rapidity, sensitivity, lack of contamination, and lack of requirements of high-precision instruments and skilled technicians. It consists of two separate modules, ALP FINA (alkaline lysis with the paper-based filtration isolation of nucleic acid) and SV RPA (sealed and visual recombinase polymerase amplification). The extraction efficiency of ALP FINA can reach 48 to 84%, which is close to that of the conventional centrifuge column. The detection sensitivity of SV RPA is close to 10 copies/μL of AdvB and AdvE without aerosol contamination after repeated operations. When SV RPA was applied to the detection of nasopharyngeal swab samples of 19 patients who were infected with AdvB or AdvE as well as 10 healthy volunteers, its sensitivity and specificity reached 100%, respectively. IMPORTANCE HAdV infections are readily transmittable and, in some instances, highly contagious. Early and rapid diagnosis is essential for disease control. In this work, we developed a portable, disposable, and modularized sample-to-answer detection system for AdvB and AdvE, which rendered the entire test to be completely independent of electricity and other laboratory infrastructure. Thus, this detection system can be applied in resource-limited settings, and it has the potential to be further developed as an early diagnosis method in the field.
Collapse
Affiliation(s)
- Kui Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Energy Laboratory of 970 Hospital of the PLA Joint Logistic Support Force, Beijing, China
| | - Xiaodong Yang
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou, China
| | - Qun Guan
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qin Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenzheng An
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
6
|
Forés E, Rusiñol M, Itarte M, Martínez-Puchol S, Calvo M, Bofill-Mas S. Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154431. [PMID: 35278558 DOI: 10.1016/j.scitotenv.2022.154431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Assessing the presence of viruses in large-volume samples involves cumbersome methods that require specialized training and laboratory equipment. In this study, a large volume concentration (LVC) method, based on dead-end ultrafiltration (DEUF) and Wet Foam Elution™ technology, was evaluated in different type of waters and different microorganisms. Its recovery efficiency was evaluated through different techniques (infectivity assays and molecular detection) by spiking different viral surrogates (bacteriophages PhiX174 and MS2 and Coxsackie virus B5 (CVB5) and Escherichia coli (E. coli). Furthermore, the application of a secondary concentration step was evaluated and compared with skimmed milk flocculation. Viruses present in river water, seawater and groundwater samples were concentrated by applying LVC method and a centrifugal ultrafiltration device (CeUF), as a secondary concentration step and quantified with specific qPCR Human adenoviruses (HAdV) and noroviruses (NoVs). MS2 was used as process control, obtaining a mean viral recovery of 22.0 ± 12.47%. The presence of other viruses was also characterized by applying two different next-generation sequencing approaches. LVC coupled to a secondary concentration step based on CeUF allowed to detect naturally occurring viruses such as HAdV and NoVs in different water matrices. Using HAdV as a human fecal indicator, the highest viral pollution was found in river water samples (100% of positive samples), followed by seawater (83.33%) and groundwater samples (66.67%). The LVC method has also proven to be useful as a virus concentration method in the filed since HAdV and NoVs were detected in the river water and groundwater samples concentrated in the field. All in all, LVC method presents high concentration factor and a low limit of detection and provides viral concentrates useful for subsequent molecular analysis such as PCR and massive sequencing.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Catalonia, Spain.
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miquel Calvo
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@Au-Teicoplanin and aptamer functionalized Au@Ag nanoparticles for detection of Staphylococcus aureus. Talanta 2022; 250:123648. [DOI: 10.1016/j.talanta.2022.123648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
|
8
|
Water Quality and Microbiological Contamination across the Fish Marketing Chain: A Case Study in the Peruvian Amazon (Lagoon Yarinacocha). WATER 2022. [DOI: 10.3390/w14091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The contamination of the surface water of lagoons is a common problem in developing countries, and can affect fishing activities. A case study was conducted on water quality and microbiological contamination of the fishing marketing chain in the Peruvian Amazon (Laguna de Yarinacocha). The microbiological, physical–chemical and parasitological parameters of the surface water were evaluated in three points of the lagoon near the landing stage; and microbiological parameters of facilities, handlers and three species of fish (Prochilodus nigricans, Mylossoma duriventre and Siluriforme spp.). In the water, there were coliform counts ≥ 23 (Most probable number—MPN)/100 mL, Escherichia coli ≥ 3.6 MPN/100 mL, and Pseudomona spp. up to 2.2 MPN/100 mL; high turbidity and variable amounts of parasites. In facilities and handlers, high levels of coliforms, mainly Escherichia coli, and Staphylococcus aureus and Escherichia coli, were found in M. duriventre meat. A poor quality of the surface water of the lagoon is concluded that compromises part of the fishing marketing chain, mainly facilities and manipulators. Furthermore, the levels of Staphylococcus aureus and Escherichia coli in fish meat show poor handling practices and possible risk of contamination by water sources.
Collapse
|
9
|
Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. WATER 2021. [DOI: 10.3390/w13081110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Even in countries with extensive sanitation systems, outbreaks of waterborne infectious diseases are being reported. Current tendencies, such as the growing concentration of populations in large urban conurbations, climate change, aging of existing infrastructures, and emerging pathogens, indicate that the management of water resources will become increasingly challenging in the near future. In this context, there is an urgent need to control the fate of fecal microorganisms in wastewater to avoid the negative health consequences of releasing treated effluents into surface waters (rivers, lakes, etc.) or marine coastal water. On the other hand, the measurement of bacterial indicators yields insufficient information to gauge the human health risk associated with viral infections. It would therefore seem advisable to include a viral indicator—for example, somatic coliphages—to monitor the functioning of wastewater treatments. As indicated in the studies reviewed herein, the concentrations of somatic coliphages in raw sewage remain consistently high throughout the year worldwide, as occurs with bacterial indicators. The removal process for bacterial indicators and coliphages in traditional sewage treatments is similar, the concentrations in secondary effluents remaining sufficiently high for enumeration, without the need for cumbersome and costly concentration procedures. Additionally, according to the available data on indicator behavior, which is still limited for sewers but abundant for surface waters, coliphages persist longer than bacterial indicators once outside the gut. Based on these data, coliphages can be recommended as indicators to assess the efficiency of wastewater management procedures with the aim of minimizing the health impact of urban wastewater release in surface waters.
Collapse
|
10
|
Kongprajug A, Chyerochana N, Mongkolsuk S, Sirikanchana K. Effect of Quantitative Polymerase Chain Reaction Data Analysis Using Sample Amplification Efficiency on Microbial Source Tracking Assay Performance and Source Attribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8232-8244. [PMID: 32484662 DOI: 10.1021/acs.est.0c01559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The widely used microbial source tracking (MST) technique, quantitative polymerase chain reaction (qPCR), quantifies host-specific gene abundance in polluted water to identify and prioritize contamination sources. This study characterized the effects of a qPCR data analysis using the sample PCR efficiencies (the LinRegPCR model) on gene abundance and compared them with the standard curve-based method (the mixed model). Five qPCR assays were evaluated: the universal GenBac3, human-specific HF183/BFDrev and CPQ_056, swine-specific Pig-2-Bac, and cattle-specific Bac3qPCR assays. The LinRegPCR model increased the low-copy amplification, especially in the HF183/BFDrev assay, thus lowering the specificity to 0.34. Up to 1.41 log10 copies/g and 0.41 log10 copies/100 mL differences were observed for composite fecal and sewage samples (n = 147) by the LinRegPCR approach, corresponding to an 18.2% increase and 6.4% decrease, respectively. Freshwater samples (n = 48) demonstrated a maximum of 1.95 log10 copies/100 mL difference between the two models. Identical attributing sources by both models were shown in 54.55% of environmental samples; meanwhile, the LinRegPCR approach improved the inability to identify sources by the mixed model in 29.55% of the samples. This study emphasizes the need for a standardized data analysis protocol for qPCR MST assays for interlaboratory consistency and comparability.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Integration of diagnosis and treatment in the detection and kill of S.aureus in the whole blood. Biosens Bioelectron 2019; 142:111507. [DOI: 10.1016/j.bios.2019.111507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
|
12
|
Rosiles-González G, Ávila-Torres G, Moreno-Valenzuela OA, Cháidez-Quiroz C, Hernández-Flores CI, Acosta-González G, Brown JK, Betancourt WQ, Gerba CP, Hernández-Zepeda C. Norovirus and human adenovirus occurrence and diversity in recreational water in a karst aquifer in the Yucatan Peninsula, Mexico. J Appl Microbiol 2019; 127:1255-1269. [PMID: 31309647 DOI: 10.1111/jam.14385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
AIMS To determine the seasonal occurrence and diversity of norovirus (NoV) and human adenovirus (HAdV) in groundwater from sinkholes, and brackish water used for recreational activities in the karst aquifer of the Yucatan Peninsula, Mexico. METHODS AND RESULTS Hollow fibre ultrafiltration was used to concentrate viruses and standard plaque assay methods were used to enumerate somatic and F+ specific coliphages as viral indicators. Real-time quantitative polymerase chain reaction assays were used to estimate the number of genome copies for NoV strains GI, and GII, and HAdVs. The predominant NoV genotypes and HAdV serotypes were identified by comparative sequence analysis. Somatic and male F+ specific coliphages were detected at concentrations up to 94 and 60 plaque-forming units per 100 ml respectively. The NoV genogroup I (GI) was associated with 50% of the sampled sites during the rainy season only, at concentrations ranging from 120 to 1600 genome copies per litre (GC l-1 ). The NoV genogroup II (GII) was detected in 30 and 40% of the sampled sites during the rainy and dry seasons, respectively, at concentrations ranging from 10 to 290 GC l-1 . During the rainy and dry seasons, HAdVs were detected in 20% of the sites, at concentrations ranging from 24 to 690 GC l-1 . Identification of viral types revealed the presence of NoV GI.2, GII.Pe, GII.P16 and GII.P17, and HAdV F serotypes 40 and 41. CONCLUSIONS These findings demonstrate that NoVs and HAdVs are prevalent as virus contaminants in the karst aquifer, representing potential health risks particularly during the rainy season, in one of the most important areas used for tourism in Mexico. SIGNIFICANCE AND IMPACT OF THE STUDY This is one of the few studies conducted in karst aquifers that provide a foundational baseline of the distribution, concentrations and diversity of NoVs and HadVs in these particular environments.
Collapse
Affiliation(s)
- G Rosiles-González
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| | - G Ávila-Torres
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| | - O A Moreno-Valenzuela
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, México
| | - C Cháidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, Sinaloa, México
| | - C I Hernández-Flores
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| | - G Acosta-González
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| | - J K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - W Q Betancourt
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, Tucson, AZ, USA
| | - C P Gerba
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, Tucson, AZ, USA
| | - C Hernández-Zepeda
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| |
Collapse
|