1
|
Cai W, Zhang C, Wu Y, Wang W, Lin M, Lin T, Lin C, Gao M, Zhao C, Wu X. H 2O 2 activated moxa ash via ball milling for ultrafast removal of mitoxantrone. RSC Adv 2023; 13:11720-11727. [PMID: 37063737 PMCID: PMC10102883 DOI: 10.1039/d3ra00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
As emerging contaminants, antineoplastic drugs are widely used, but their residues in water may cause long-term genotoxicity to aquatic organisms and human beings. Here, waste moxa ash was selected as biomass raw material and modified by ball milling to obtain carbon-based materials with excellent adsorption performance, which were used to remove the antineoplastic drug mitoxantrone (MTX) from water. The experimental results indicate that moxa ash modified by ball milling in hydrogen peroxide exhibits ultrafast removal of MTX (the removal efficiency reaches 97.66% in 1 min and 99.72% in 30 min). The pseudo-second-order kinetics and Freundlich isotherm models accurately describe the MTX adsorption process, and the mechanism of adsorption probably involves pore filling, hydrogen bond, π-π interaction and electrostatic attraction. Not only that, moxa ash also has the ability to remove dyes such as malachite green (97.81%) and methylene blue (99.97%). In this study, a simple and environmentally friendly process was used to convert waste moxa ash into an effective MTX adsorbent, providing a feasible solution for controlling MTX pollution and identifying a circular and economic way to reuse the waste.
Collapse
Affiliation(s)
- Wanqian Cai
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Chongbiao Zhang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Yourong Wu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Wei Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Mei Lin
- College of Environment and Resource Science, Fujian Normal University Fuzhou 350007 Fujian Province China
| | - Tengfei Lin
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Cong Lin
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Min Gao
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Chunlin Zhao
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Xiao Wu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
2
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130818. [PMID: 36680899 DOI: 10.1016/j.jhazmat.2023.130818] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | |
Collapse
|
3
|
Ma P, Zhang C, Dou B, Yi X, Bin F, Liang W. Synthesis of Cu 2O micro/nanocrystals for catalytic combustion of high-concentration CO: The crucial role of glucose. CHEMOSPHERE 2023; 314:137720. [PMID: 36596327 DOI: 10.1016/j.chemosphere.2022.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Cubic Cu2O micro/nanocrystals were successfully synthesized by liquid-phase reduction using copper salt of CuSO4 or CuCl2·2H2O, and glucose or ascorbic acid as reducing agent, respectively. The activity of the catalysts was evaluated by light-off curves of CO self-sustained catalytic combustion via temperature-programmed oxidation of CO (CO-TPO), with the results showing the activity of catalysts following the order of Cu2O-Cl-GLU > Cu2O-S-GLU > Cu2O-S-AA > Cu2O-Cl-AA, (Cl denotes CuCl2·2H2O, GLU denotes glucose, S denotes CuSO4 and AA denotes ascorbic acid, respectively), corresponding to the ignition temperature of 109 °C, 122 °C, 137 °C and 186 °C, respectively. The crystal structure, elemental valence, morphology and redox property of the prepared catalysts were analyzed by using various characterization techniques. Combined with in situ infrared spectrum, the CO self-sustained catalytic combustion over Cu2O catalysts mainly follows the Mars-van-Krevelen (M-v-K) mechanism: the adsorbed and activated CO reacts with lattice oxygen to yield CO2 and oxygen vacancy, and then the oxygen vacancy can be replenished by gaseous oxygen. Combined with catalytic performance of high-concentration CO, it is found that the catalysts prepared using glucose as reducing agent are more angular compared with ascorbic acid. The Cu2O-Cl-GLU synthesized with glucose and CuCl2·2H2O exhibits the best catalytic activity among all the catalysts tested, attributing to its more obvious edge and rough crystal surface. The unique structure of Cu2O-Cl-GLU leads to the high exposure rate and coordination unsaturation of atoms on the cubic Cu2O micro/nanocrystals that can improve the ability of activating gaseous O2 and low temperature reducibility, and consequently facilitating the catalytic activity.
Collapse
Affiliation(s)
- Pandong Ma
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, PR China; College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin, 30022, PR China
| | - Chenhang Zhang
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, PR China; College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin, 30022, PR China
| | - Baojuan Dou
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin, 30022, PR China
| | - Xiaokun Yi
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin, 30022, PR China
| | - Feng Bin
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Wenjun Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
4
|
Ullah S, Ferreira-Neto EP, Khan AA, Medeiros IPM, Wender H. Supported nanostructured photocatalysts: the role of support-photocatalyst interactions. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:219-240. [PMID: 36178668 DOI: 10.1007/s43630-022-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Heterogeneous photocatalysis employing semiconductor oxide photocatalysts is a sustainable and promising method for environmental remediation and clean energy generation. In this context, nanostructured photocatalysts, with at least one dimension in the 1‒100 nm size regime, have attracted ever-growing attention due to their unique and often enhanced size-dependent physicochemical properties. While their reduced size ensures enhanced photocatalytic performance, the same makes it difficult and time/energy-demanding to remove/recover such nanostructured photocatalysts from aqueous media. This fundamental limitation has paved the way towards developing supported nanophotocatalysts where the active photocatalytic nanostructures are coated on the surface of polymeric or inorganic support materials, often in a core@shell conformation. This arrangement solves the problem of photocatalysts' recovery for effective reuse or recycling and leads to improved and desired target properties due to specific photocatalyst-support interactions. While the enhanced physicochemical properties of supported photocatalysts have been widely studied in many target applications, the role of support-photocatalysts interactions in improving these properties remains unexplored. This review article provides an updated viewpoint on the photocatalyst-support interactions and the resulting unique physiochemical properties important for diverse photochemical applications and the design of practical devices. While exploring the properties of supported nanostructured metal oxide/sulfides photocatalysts such as TiO2 and MoS2, we also briefly discuss the common strategies employed to coat the active nanomaterials on the surface of different supports (organic/polymeric, inorganic, active, inert, and magnetic).
Collapse
Affiliation(s)
- Sajjad Ullah
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan.
| | - Elias P Ferreira-Neto
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Abrar A Khan
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan
| | - Isaac P M Medeiros
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| |
Collapse
|
5
|
Zhang B, Li X, Ma Y, Jiang T, Zhu Y, Ren H. Visible-light photoelectrocatalysis/H 2O 2 synergistic degradation of organic pollutants by a magnetic Fe 3O 4@SiO 2@mesoporous TiO 2 catalyst-loaded photoelectrode. RSC Adv 2022; 12:30577-30587. [PMID: 36337955 PMCID: PMC9597414 DOI: 10.1039/d2ra05183d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
In this paper, we describe a method for photoelectrocatalysis (PEC)/H2O2 synergistic degradation of organic pollutants with a magnetic Fe3O4@SiO2@mesoporous TiO2 (FST) photocatalyst-loaded electrode. At optimal conditions of pH 3.0, 2.25% H2O2, working electrode (fixed FST 30 mg) potential +0.6 V (vs. SCE), and 10 mg L-1 of all experimental pollutants, the FST PEC/H2O2 synergistic system exhibited high activity and stability for the removal of various organic pollutants under visible light with comparable degradation efficiencies, including MB (98.8%), rhodamine B (Rh B, 96.7%), methyl orange (MO, 97.7%), amoxicillin (AMX, 83.9%). Moreover, this system obtained TOC removal ratios of 83.5% (MB), 77.9% (Rh B), 80.2% (MO), 65.5% (AMX) within 8 min. The kinetic rate constants of the PEC/H2O2 synergistic system were nearly 53 and 1436 times higher than that of the PEC process and H2O2 photolysis under visible light, respectively. Furthermore, the main reactive oxidant species (˙OH, ˙O2 -) were studied and enhanced mechanisms of the photocatalytic-electro-H2O2 coupling system were proposed. This work brings new insights to efficiently purify organic pollutants by PEC coupled with peroxide under solar light illumination.
Collapse
Affiliation(s)
- Bo Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Yongshan Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Yanyan Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| | - Huixue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu UniversityJinan 250101ShandongChina
| |
Collapse
|
6
|
Lima AR, Silva CM, da Silva LM, Machulek A, De Souza AP, de Oliveira KT, Souza LM, Inada NM, Bagnato VS, Oliveira SL, Caires ARL. Environmentally Safe Photodynamic Control of Aedes aegypti Using Sunlight-Activated Synthetic Curcumin: Photodegradation, Aquatic Ecotoxicity, and Field Trial. Molecules 2022; 27:5699. [PMID: 36080466 PMCID: PMC9457702 DOI: 10.3390/molecules27175699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study reports curcumin as an efficient photolarvicide against Aedes aegypti larvae under natural light illumination. Larval mortality and pupal formation were monitored daily for 21 days under simulated field conditions. In a sucrose-containing formulation, a lethal time 50 (LT50) of 3 days was found using curcumin at 4.6 mg L-1. This formulation promoted no larval toxicity in the absence of illumination, and sucrose alone did not induce larval phototoxicity. The photodegradation byproducts (intermediates) of curcumin were determined and the photodegradation mechanisms proposed. Intermediates with m/z 194, 278, and 370 were found and characterized using LC-MS. The ecotoxicity of the byproducts on non-target organisms (Daphnia, fish, and green algae) indicates that the intermediates do not exhibit any destructive potential for aquatic organisms. The results of photodegradation and ecotoxicity suggest that curcumin is environmentally safe for non-target organisms and, therefore, can be considered for population control of Ae. aegypti.
Collapse
Grants
- 440585/2016-3, 309636/2017-5, 303633/2018-2, 407990/2018-6, 310585/2020-1, 308232/2021-6 Brazilian funding agencies CNPq
- 88881.311921/2018-01, 88887.311920/2018-00, 88887.311798/2018-00, 88881.311799/2018-01 Brazilian funding agencies CAPES
- 59/300.490/2016, 71/700.129/2018 Brazilian funding agencies FUNDECT
- 465360/2014-9 National Institute of Science and Technology of Basic Optics and Optics Applied to Life Science
- 440214/2021-1 National System of Photonics Laboratories - Sisfóton/MCTI
- CEPOF (2013/07276-1), 2019/27176-8 São Paulo Research State Foundation (FAPESP)
- Finance Code 001 Universidade Federal de Mato Grosso do Sul - UFMS/MEC - Brasil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
Collapse
Affiliation(s)
- Alessandra R. Lima
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Cicera M. Silva
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Lucas M. da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Antônio P. De Souza
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Larissa M. Souza
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Natalia M. Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Samuel L. Oliveira
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Anderson R. L. Caires
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
7
|
Synthesis and Characterization of N and Fe-Doped TiO2 Nanoparticles for 2,4-Dimethylaniline Mineralization. NANOMATERIALS 2022; 12:nano12152538. [PMID: 35893506 PMCID: PMC9331849 DOI: 10.3390/nano12152538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
The present study aimed to evaluate the feasibility of developing low-cost N- and Fe-doped TiO2 photocatalysts for investigating the mineralization of 2,4-dimethylaniline (2,4-DMA). With a single anatase phase, the photocatalysts showed high thermal stability with mass losses of less than 2%. The predominant oxidative state is Ti4+, but there is presence of Ti3+ associated with oxygen vacancies. In materials with N, doping was interstitial in the NH3/NH4+ form and for doping with Fe, there was a presence of Fe-Ti bonds (indicating substitutional occupations). With an improved band gap energy from 3.16 eV to 2.82 eV the photoactivity of the photocatalysts was validated with an 18 W UVA lamp (340–415 nm) with a flux of 8.23 × 10−6 Einstein s−1. With a size of only 14.45 nm and a surface area of 84.73 m2 g−1, the photocatalyst doped with 0.0125% Fe mineralized 92% of the 2,4-DMA in just 180 min. While the 3% N photocatalyst with 12.27 nm had similar performance at only 360 min. Factors such as high surface area, mesoporous structure and improved Ebg, and absence of Fe peak in XPS analysis indicate that doping with 0.0125% Fe caused a modification in TiO2 structure.
Collapse
|
8
|
Sharma S, Mittal A, Singh Chauhan N, Makgwane PR, Kumari K, Maken S, Kumar N. Developments in visible-light active TiO2/SnX (X = S and Se) and their environmental photocatalytic applications – A mini-review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Ebadi S, Ghasemipanah K, Alaie E, Rashidi A, Khataee A. COD removal from gasfield produced water using photoelectrocatalysis process on coil type microreactor. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Antonio da Silva D, Pereira Cavalcante R, Batista Barbosa E, Machulek Junior A, César de Oliveira S, Falcao Dantas R. Combined AOP/GAC/AOP systems for secondary effluent polishing: Optimization, toxicity and disinfection. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Miguel TBAR, Porto ECM, de Paiva Pinheiro SK, de Castro Miguel E, Fernandes FAN, Rodrigues S. Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Wei Y, Wang C, Liu D, Jiang L, Chen X, Li H, Zhang F. Photo-catalytic oxidation for pyridine in circumneutral aqueous solution by magnetic Fe-Cu materials activated H2O2. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hamad AA, Ali R, Derayea SM. Investigating the interaction of mitoxantrone with anionic surfactants by spectrofluorimetry and its application for the feasible analysis of pharmaceutical preparation and biological fluids. LUMINESCENCE 2020; 36:443-453. [PMID: 33047899 DOI: 10.1002/bio.3962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022]
Abstract
The behaviour of mitoxantrone (MTX), an anthracenedione antineoplastic agent, in different types of organized medium was explored using molecular spectrofluorometry. The original fluorescence and quantum yield of MTX were augmented by about five-fold in the aqueous buffered solution (Britton-Robinson, pH 3.0) by the addition of sodium dodecyl sulfate. Enhancement in the fluorescence intensity did not come from the boost in the ultraviolet (UV) light absorbance of the drug in the presence of micelles but due to shielding of the lowest excited singlet state of the drug from a radiationless process inside the cavity of the micelle. Accordingly, a versatile, sensitive, and feasible spectrofluorimetric method was constructed and evaluated for MTX determination. Fluorescence measurements were performed at 675 nm (λex 610 nm). A linear relationship was shown between fluorescence intensity and drug concentration within the range 0.01-2.0 μg ml-1 of MTX with a correlation coefficient of 0.9999 and a detection limit of 2 ng ml-1 . The developed method was effectively used for analysis of MTX in biological samples and dosage forms. In addition, the method was expanded to study the stability of MTX exposed to different drastic degradations and the kinetic parameters of the degradation were calculated.
Collapse
Affiliation(s)
- Ahmed Abdulhafez Hamad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| | - Sayed M Derayea
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
15
|
Xiao B, Wu M, Wang Y, Chen R, Liu H. Facile Synthesis of CuO Nanosheets and Efficient Degradation of Rhodamine B in a Copper Oxide/Ascorbic Acid/Hydrogen Peroxide System: Kinetics, Fate of Ascorbic Acid, and Mechanism. ChemistrySelect 2020. [DOI: 10.1002/slct.202001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bing Xiao
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education Hebei Normal University No.20 Road East. 2nd Ring South, Yuhua District Shijiazhuang, Hebei 050024 China
| | - Meng Wu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education Hebei Normal University No.20 Road East. 2nd Ring South, Yuhua District Shijiazhuang, Hebei 050024 China
| | - Yun Wang
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education Hebei Normal University No.20 Road East. 2nd Ring South, Yuhua District Shijiazhuang, Hebei 050024 China
| | - Rufen Chen
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education Hebei Normal University No.20 Road East. 2nd Ring South, Yuhua District Shijiazhuang, Hebei 050024 China
| | - Hui Liu
- School of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, National Demonstration Center for Experimental Chemistry Education Hebei Normal University No.20 Road East. 2nd Ring South, Yuhua District Shijiazhuang, Hebei 050024 China
| |
Collapse
|
16
|
Wu J, Lin Z, Weng X, Owens G, Chen Z. Removal mechanism of mitoxantrone by a green synthesized hybrid reduced graphene oxide @ iron nanoparticles. CHEMOSPHERE 2020; 246:125700. [PMID: 31884233 DOI: 10.1016/j.chemosphere.2019.125700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Anti-tumor drugs, due to their non-specific toxicity will cause long-term delayed toxicity to organisms and humans when discharged into the environment. In this study, reduced graphene oxide @ iron nanoparticles (rGO@Fe NPs) were successfully prepared using green tea extract as reductant and subsequently used for mitoxantrone (MTX) removal. SEM and Raman spectroscopy showed that 30-60 nm sized Fe NPs were loaded on rGO and green tea extract successfully reduced GO to rGO. The removal efficiency of MTX by the hybrid material was higher (98.5%) than either rGO (77.5%) or Fe NPs (53.1%) alone. In addition, the removal efficiency of MTX by the hybrid material was as high as 95% within 5 min, MTX adsorption followed both a pseudo-second-order kinetic model and the Langmuir isotherm, and it is a spontaneous adsorption. Recycling experiments showed that the removal efficiency of MTX decreased from 99.9 to 76.8% after six cycles, and could be as high as 99% in both municipal and medical wastewater. Scanning electron microscopy (SEM), Fourier transform infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and High performance liquid chromatography (HPLC) were all used to characterize and analyze the hybrid material, and possible adsorption mechanisms which revealed that MTX adsorption probably involved a combination of π-π stacking interaction, hydrogen bonding, electrostatic interaction and pore-filling.
Collapse
Affiliation(s)
- Jing Wu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ze Lin
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiulan Weng
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
17
|
Zhou J, Liu W, Cai W. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C 3N 4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133962. [PMID: 31442719 DOI: 10.1016/j.scitotenv.2019.133962] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, a series of Ag/AgCl@ZIF-8 modified g-C3N4 composites were synthesized and used to degrade levofloxacin (LVFX) in water under visible light irradiation with the assistant of peroxymonosulfate (PMS). The morphologies and physicochemical properties of the materials were characterized by SEM, TEM, XRD, XPS, FTIR, and DRS technologies. The results of photocatalytic experiments showed that in the presence of PMS, the degradation rate of LVFX reached 87.3% in 60min. Furthermore, factors affecting photocatalytic efficiency such as the concentration of PMS, photocatalyst dosage and different pH values were investigated. The degradation products of LVFX were analyzed by LC-MS and the degradation pathway was inferred. Active species trapping experiments indicated that O2-, h+ and SO4- played important roles in the degradation process in the presence of PMS and the possible degradation mechanism was put forward. This work provides a photocatalyst system that is beneficial to the separation of photogenerated carriers and demonstrates the great potential of PMS-assisted photocatalysis in the purification of organic pollutants.
Collapse
Affiliation(s)
- Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Wei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
18
|
Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl Microbiol Biotechnol 2019; 104:23-31. [DOI: 10.1007/s00253-019-10229-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|