1
|
Rose MT, Zhang P, Rose TJ, Scanlan CA, McGrath G, Van Zwieten L. Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155105. [PMID: 35398436 DOI: 10.1016/j.scitotenv.2022.155105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Herbicides are used extensively in Australian grain cropping systems. Despite occasional observations of herbicide-induced phytotoxicity, there is little information on the persistence and carryover of multiple herbicide classes in cropping soils and the risk to subsequent crops. Two soil surveys were conducted, in 2015 (n = 40) and 2016 (n = 42), across different Australian grain cropping fields prior to sowing of winter crops, and soil samples analysed for herbicide residues (16 analytes in 2015 and 22 analytes in 2016). Samples in 2015 were taken at two depths (0-10 cm and 10-30 cm), whilst samples in 2016 were taken in topsoil (0-10 cm) only, but from two discrete locations in each field. Our research in both years found at least one herbicide (or herbicide metabolite) residue at all sites, with a median of 6 analytes detected in 2015 and 7 analytes detected in 2016. The most frequently detected residues were glyphosate and its primary breakdown product aminomethylphosphonic acid (AMPA), in 87 and 100%, respectively, of topsoil (0-10 cm) samples in 2015, and 67 and 93% of samples in 2016. The median concentration of glyphosate in 2015 was 0.12 mg kg-1, while AMPA was 0.41 mg kg-1. In 2016, median concentrations of glyphosate and AMPA were 0.22 mg kg-1 and 0.31 mg kg-1. Residues of 2,4-dichlorophenoxyacetic acid, trifluralin and diflufenican were also detected in >40% of topsoil samples in both seasons, but with median concentrations of <0.05 mg kg-1. A literature review found limited availability of phytotoxicity thresholds for major grain crops exposed to soilborne herbicide residues. A risk assessment using available thresholds suggested that although up to 29% of fields contained trifluralin residues that could constrain cereal crop growth, and 24% of fields contained residues of phenoxy or sulfonylureas that could affect dicotyledonous crops, the majority of these fields when planted with tolerant crops would be unlikely to be affected by herbicide residues. More work is required to ascertain the spatial distribution, bioavailability and phytotoxicity of residues and residue mixtures to enable a more accurate agronomic risk assessment.
Collapse
Affiliation(s)
- Michael T Rose
- NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW 2380, Australia.
| | - Pei Zhang
- Agriculture Victoria Research (AVR), Macleod, VIC 3085, Australia
| | - Terry J Rose
- Southern Cross University, Lismore, NSW 2480, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW 2380, Australia
| | - Craig A Scanlan
- Department of Primary Industries and Regional Development, Northam, WA 6401, Australia
| | - Gavan McGrath
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW 2380, Australia
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia; Southern Cross University, Lismore, NSW 2480, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW 2380, Australia
| |
Collapse
|
2
|
Using Simulated Pest Models and Biological Clustering Validation to Improve Zoning Methods in Site-Specific Pest Management. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Site-specific pest management (SSPM) is a component of precision agriculture that relies on spatially enabled agronomic data to facilitate pest control practices within management zones rather than whole fields. Recent integration of high-resolution environmental data, multivariate clustering algorithms, and species distribution modeling has facilitated the development of a novel approach to SSPM that bases zone delineation on environmentally independent subfield units with individual potential to host pest populations (eSSPM). Although the potential benefits of eSSPM are clear, methods currently described for its implementation still demand further evaluation. To offer clear insight into this matter, we used field-level environmental data from a Tahiti lime orchard and realistic simulations of six citrus pests to: (1) generate a series of virtual (i.e., controlled) infestation scenarios suitable for methodological testing purposes, (2) evaluate the utility of nested (i.e., within-cluster) partitioning essays to improve the accuracy of current eSSPM methods, and (3) implement two biological clustering validators to evaluate the performance of 10 clustering algorithms and choose appropriate numbers of management zones during field partitioning essays. Our results demonstrate that: (1) nested partitioning essays outperform zoning methods previously described in eSSPM, (2) more than one clustering algorithm tend to be necessary to generate field partition models that optimize site-specific pest control practices within crop fields, and (3) biological clustering validation is an essential addition to eSSPM zoning methods. Finally, the generated evidence was integrated into an improved workflow for within-field zone delineation with pest control purposes.
Collapse
|
3
|
Kim H, Wang H, Abassi S, Ki JS. The herbicide alachlor severely affects photosystem function and photosynthetic gene expression in the marine dinoflagellate Prorocentrum minimum. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:620-629. [PMID: 32364417 DOI: 10.1080/03601234.2020.1755198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alachlor is one of the most widely used herbicides and can remain in agricultural soils and wastewater. The toxicity of alachlor to marine life has been rarely studied; therefore, we evaluated the physiological and transcriptional responses in the marine dinoflagellate Prorocentrum minimum. The herbicide led to considerable decreases in P. minimum cell numbers and pigment contents. The EC50 was determined to be 0.373 mg/L. Photosynthesis efficiency and chlorophyll autofluorescence dramatically decreased with increasing alachlor dose and exposure time. Real-time PCR analysis showed that the photosynthesis-related genes PmpsbA, PmatpB, and PmrbcL were induced the most by alachlor; the transcriptional level of each gene varied with time. PmrbcL expression increased after 30 min of alachlor treatment, whereas PmatpB and PmpsbA increased after 24 h. The PmpsbA expression level was highest (5.0 times compared to control) after 6 h of alachlor treatment. There was no significant change in PmpsaA expression with varying treatment time or concentration. Additionally, there was no notable change in the expression of antioxidant genes PmGST and PmKatG, or in ROS accumulation. These suggest that alachlor may affect microalgal photosystem function, with little oxidative stress, causing severe physiological damage to the cells, and even cell death.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| |
Collapse
|