1
|
Adly A, Galal MM, Matta ME. Catalytic degradation of norfloxacin using persulfate activation by Ni-Fe layered double hydroxide catalyst supported on activated carbon. Sci Rep 2025; 15:5132. [PMID: 39934292 DOI: 10.1038/s41598-025-89106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the catalytic degradation of Norfloxacin (NOR), a persistent fluoroquinolone antibiotic, using a novel Ni-Fe Layered Double Hydroxide supported on Activated Carbon (NiFe-LDH@AC) as a catalyst. The composite was designed to activate persulfate (PDS) and generate sulfate radicals for NOR degradation in aqueous solutions. Characterization techniques such as XRD, SEM, EDS, TEM, FTIR, and BET confirmed the successful synthesis and structural integrity of the composite. The optimal degradation was achieved with a NiFe-LDH@AC ratio of 2:1, 0.3 g/L catalyst dosage, and 1 g/L PDS, resulting in 86% NOR removal efficiency within 60 min at neutral pH and ambient temperature for an initial concentration of 50 mg/L, and 100% removal for initial concentrations of 10 mg/L and 20 mg/L under the same conditions. The activation energy of the reaction was calculated as 58.27 kJ/mol. Radical scavenging experiments identified sulfate (SO₄˙⁻) and hydroxyl (•OH) radicals as the dominant reactive species, but the SO₄˙⁻ played a larger role. Furthermore, the catalyst exhibited good reusability, maintaining 75% degradation efficiency after four cycles, and showed minimal metal leaching. The study also proposed a mechanism for PDS activation using XPS analysis and suggested NOR degradation pathways through LC-ESI-MS/MS analysis. Moreover, the NiFe-LDH@AC/PDS system demonstrated 84% NOR degradation and 55% COD removal in real treated wastewater. Results demonstrated that the NiFe-LDH@AC composite effectively activated PDS, achieving high NOR removal efficiency, making it a promising sustainable material for wastewater treatment.
Collapse
Affiliation(s)
- Adel Adly
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt.
| | - Mona M Galal
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Minerva E Matta
- Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
3
|
Zhao X, Xu H, Chen M, Chen Y, Kong X. Enhancement of norfloxacin degradation by citrate in S-nZVI@Ps system: Chelation and FeS layer. ENVIRONMENTAL RESEARCH 2024; 245:117981. [PMID: 38142729 DOI: 10.1016/j.envres.2023.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.
Collapse
Affiliation(s)
- Xuefang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Minzhang Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yong Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuqing Kong
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
4
|
Huang ST, Lei YQ, Guo PR, Zhang WX, Liang JY, Chen X, Xu JW, Diao ZH. Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: Reactivity, products and mechanism. CHEMOSPHERE 2023; 340:139899. [PMID: 37611769 DOI: 10.1016/j.chemosphere.2023.139899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
In this study, a green zero-valent iron-loaded carbon composite (ZVI-SCG) was synthesized using coffee grounds and FeCl3 solution through two-steps method, and the synthesized ZVI-SCG was used in the activation of peroxydisulfate (PDS) to degrade Levofloxacin (LEX). Results revealed that ZVI-SCG exhibited a great potential for LEX removal by adsorption and catalytic degradation in the ZVI-SCG/PDS system, and 99% of LEX was removed in the ZVI-SCG/PDS system within 60 min. ZVI-SCG/PDS system showed a high reactivity toward LEX degradation under realistic environmental conditions. Also, the ZVI-SCG/PDS system could effectively degrade several quinolone antibiotics including gatifloxacin, ciprofloxacin and LEX in single and simultaneous removal modes. A potential reaction mechanism of LEX degradation by ZVI-SCG/PDS system was proposed, SO4•-, HO•, O2•- and 1O2 involved in radical and non-radical pathways took part in catalytic degradation of LEX by ZVI-SCG/PDS system, but HO• might be the main reactive species for LEX degradation. The possible degradation pathway of LEX was also proposed based on the identified ten intermediate products, LEX degradation was successfully achieved through decarboxylation, opening ring and hydroxylation processes. The potential toxicity of LEX and its oxidation products decreased significantly after treatment. This study provides a promising strategy of water treatment for the antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Shi-Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong-Qian Lei
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China.
| | - Wen-Xuan Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Yi Liang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xie Chen
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Wei Xu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
5
|
He L, Zeng T, Yao F, Zhong Y, Tan C, Pi Z, Hou K, Chen S, Li X, Yang Q. Electrocatalytic reduction of nitrate by carbon encapsulated Cu-Fe electroactive nanocatalysts on Ni foam. J Colloid Interface Sci 2023; 634:440-449. [PMID: 36542973 DOI: 10.1016/j.jcis.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Electrocatalytic denitrification is an attractive and effective method for complete elimination of nitrate (NO3-). However, its application is limited by the activity and stability of the electrocatalyst. In this work, a novel bimetallic electrode was synthesized, in which N-doped graphitized carbon sealed with Cu and Fe nanoparticles and immobilized them on nickel foam (CuFe NPs@NC/NF) without any chemical binder. The immobilized Cu-Fe nanoparticles not only facilitated the adsorption of the reactant but also enhanced the electron transfer between the cathode and NO3-, thus promoting the electrochemical reduction of NO3-. Therefore, the as-prepared electrode exhibited enhanced electrocatalytic activity for NO3- reduction. The composite electrode with the Cu/Fe molar ratio of 1:2 achieved the highest NO3- removal (79.4 %) and the lowest energy consumption (0.0023 kW h mg-1). Furthermore, the composite electrode had a robust NO3- removal capacity under various conditions. Benefitting from the electrochlorination on the anode, this electrochemical system achieved nitrogen (N2) selectivity of 94.0 %. Moreover, CuFe NPs@NC/NF exhibited good stability after 15 cycles, which should be attributed to the graphitized carbon layer. This study confirmed that CuFe NPs@NC/NF electrode is a promising and inexpensive electrode with long-term stability for electrocatalytic denitrification.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Tianjing Zeng
- Hunan Ecological and Environmental Monitoring Center, Changsha, 410027, PR China
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
6
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Han X, Zhao Y, Zhao F, Wang F, Tian G, Liang J. Novel synthesis of nanoscale zero-valent iron from iron ore tailings and green tea for the removal of methylene blue. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Fan C, Wu S, Zheng X, Bei K, He S, Zhao M. Enhancement of cottonseed oil refining wastewater treatment by zero valent iron under sunlight irradiation and O2 bubbling. J Colloid Interface Sci 2022; 615:124-132. [DOI: 10.1016/j.jcis.2022.01.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
|
9
|
Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Pang S, Li N, Luo H, Luo X, Shen T, Yang Y, Jiang J. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment. Front Microbiol 2022; 13:895409. [PMID: 35572701 PMCID: PMC9100419 DOI: 10.3389/fmicb.2022.895409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fe-driven biological nitrogen removal (FeBNR) has become one of the main technologies in water pollution remediation due to its economy, safety and mild reaction conditions. This paper systematically summarizes abiotic and biotic reactions in the Fe and N cycles, including nitrate/nitrite-dependent anaerobic Fe(II) oxidation (NDAFO) and anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox). The biodiversity of iron-oxidizing microorganisms for nitrate/nitrite reduction and iron-reducing microorganisms for ammonium oxidation are reviewed. The effects of environmental factors, e.g., pH, redox potential, Fe species, extracellular electron shuttles and natural organic matter, on the FeBNR reaction rate are analyzed. Current application advances in natural and artificial wastewater treatment are introduced with some typical experimental and application cases. Autotrophic FeBNR can treat low-C/N wastewater and greatly benefit the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.
Collapse
Affiliation(s)
- Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, School of Municipal and Environmental Engineering, Ministry of Education, Jilin Jianzhu University, Changchun, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
- *Correspondence: Ning Li, ;
| | - Huan Luo
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tong Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
11
|
Prema P, Nguyen VH, Venkatachalam K, Murugan JM, Ali HM, Salem MZM, Ravindran B, Balaji P. Hexavalent chromium removal from aqueous solutions using biogenic iron nanoparticles: Kinetics and equilibrium study. ENVIRONMENTAL RESEARCH 2022; 205:112477. [PMID: 34863690 DOI: 10.1016/j.envres.2021.112477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Green mediated biosynthesis of iron oxide nanoparticles utilising Rosa indica flower petal extracts (RIFP-FeONPs) was used in this investigation. The RIFP-FeONPs were evaluated by the UV-Visible Spectroscopy, FTIR, SEM, EDX, XRD, Zeta potentials, and DLS, and been engaged than for the elimination of Cr (VI) from the contaminated environments. At 269 nm, the RIFP-FeONPs surface plasmon vibration bands were observed, which attributed to the Fe3+. XRD patterns of RIFP-FeONPs depicted the intense diffraction peak of face-centered cubic (fcc) iron at a 2θ value of 45.33° from the (311) lattice plane indisputably revealed that the particles are constituted of pure iron. The fabricated nanomaterials are spherical and polydisperse with a diameter of 70-120 nm, and various agglomeration clusters are attributable to intermolecular interaction. Zeta potential measurement and particle size distribution of RIFP-FeONPs showed a mean average size of 115.5 ± 29 nm and a polydispersity index (PDI) of 0.420. The study aims to analyse the appropriateness of RIFP-FeONPs for removing hexavalent chromium from the aqueous environment and the application of adsorption isotherm and statistical models in the experiment. The sorption of Cr (VI) on RIFP-FeONPs was observed to fit well with the isothermal models (R2 = 0.98). The linear correlation between processing parameters and time demonstrated that the adsorption efficiency of Cr (VI) well correlated with the pseudo-first order kinetic model and isothermal adsorption with the Langmuir and Freundlich isothermal models, so that the RIFP-FeONPs could be a prospective nanosorbent for hexavalent chromium removal from industrial waste.
Collapse
Affiliation(s)
- P Prema
- Department of Zoology, VHN Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, 84000, Thailand
| | - J M Murugan
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| | - Hayssam M Ali
- Department of Botany and Microbiology College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Z M Salem
- Department of Forestry and Wood Technology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India.
| |
Collapse
|
12
|
Diao ZH, Jin JC, Zou MY, Liu H, Qin JQ, Zhou XH, Qian W, Guo PR, Kong LJ, Chu W. Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling with persulfate: Synergistic effect, products and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liu X, Wei J, Hou L, Zhu Y, Wu Y, Xing L, Zhang Y, Li J. Feasibility of nanoscale zerovalent iron-loaded sediment-based biochar (nZVI-SBC) for simultaneous removal of nitrate and phosphate: high selectivity toward dinitrogen and synergistic mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37448-37458. [PMID: 33715122 DOI: 10.1007/s11356-021-13322-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In the process of water treatment, excessive nitrogen and phosphorus pollutants are of great concern. Therefore, we prepared nanoscale zerovalent iron loaded on sediment-based biochar (nZVI-SBC) to conduct nitrate and phosphate removal at the same time. The characterization demonstrated that nZVI-SBC was successfully synthesized, which had obvious advantages for larger specific surface area and better dispersion compared with pure nZVI. The batch experiments indicated that the best loading ratio of nZVI to SBC and optimum dosage for nitrate and phosphate were 1:1and 2 g L-1, respectively. Their removal by nZVI-SBC was an acid-driven process. Anoxic environment was more conducive to the reduction of nitrate while the phosphate removal was fond of oxygen environment. A total of 77.78% of nitrate and 99.21% of phosphate have been successfully removed, mainly depending on reduction and complexation mechanism, respectively. Moreover, nZVI-SBC had higher N2 selectivity and produced less ammonium than nZVI. The interaction between nitrate and phosphate was studied to manifest that they had different degrees of inhibition during the removal of the other. Our research indicated that nZVI-SBC has great potential for remediation of nitrogen and phosphorus polluted water.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China.
| | - Liangang Hou
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Yuhan Zhu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Yaodong Wu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Luyi Xing
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Yifei Zhang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang district, Beijing, 100124, China
| |
Collapse
|
14
|
Guo Z, Bai G, Huang B, Cai N, Guo P, Chen L. Preparation and application of a novel biochar-supported red mud catalyst:Active sites and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124802. [PMID: 33370698 DOI: 10.1016/j.jhazmat.2020.124802] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
A novel catalyst RM-BC(HP) was synthesized by hydrothermal treatment and pyrolysis (800 ℃) using red mud and coconut shells. Influence of different preparation conditions on catalyst performance was explored. SEM showed that RM-BC(HP) was porous and RM was successfully loaded on the outside surface and inside the pores of BC. XRD revealed that Fe2O3 in RM was reduced to Fe0 and Fe3O4 in the pyrolysis process, in which pyrolysis temperature and addition ratio of coconut shells were critical. TGA-MS, FT-IR and XPS were also applied to character the catalyst. 100% of AO7 was removed within 30 min with conditions of 2 mM PS, 50 mg/L AO7 and 0.5 g/L RM-BC(HP), and the Fe leaching was negligible. High removal rate was obtained in tap, river, and lake water. RM-BC(HP)/PS system also exhibited excellent degradation performance for other dyes (MB, MG and RhB) and antibiotics (TC, OTC and CTC). The mechanism studies demonstrated that PS was mainly activated by Fe0 and Fe2+ in RM-BC(HP) to produce different radicals, then 1O2 was generated by the reactions among these radicals to degrade AO7. Finally, nine intermediate products of AO7 were identified by FT-ICR-MS and a probable degradation pathway was proposed.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Ge Bai
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510000, China; College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Bing Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Nan Cai
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Pengran Guo
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510000, China.
| | - Liang Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
15
|
Eltaweil AS, El-Tawil AM, Abd El-Monaem EM, El-Subruiti GM. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS OMEGA 2021; 6:6348-6360. [PMID: 33718725 PMCID: PMC7948244 DOI: 10.1021/acsomega.0c06251] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 05/12/2023]
Abstract
A zero valent iron-loaded nano-bentonite intercalated carboxymethyl chitosan (nZVI@nBent-CMC) composite was fabricated and characterized by FT-IR, TEM, TEM-EDX, XRD, BET surface area, and zeta potential measurements. The as-fabricated nZVI@nBent-CMC composite exhibited excellent removal efficiency for both anionic Congo red (CR) dye and cationic crystal violet (CV) dye. The maximum uptake capacities of CR and CV onto the nZVI@nBent-CMC composite were found to be 884.95 and 505.05 mg/g, respectively. The adsorption process of both dyes well fitted with the Langmuir isotherm model and pseudo-second order kinetic model. Thermodynamic data clarified that the adsorptions of both CR and CV onto the nZVI@nBent-CMC composite are spontaneous processes. Moreover, the adsorption of CR onto the nZVI@nBent-CMC composite was found to be an exothermic process while that of CV is an endothermic process. The nZVI@nBent-CMC composite also exhibited excellent reusability for both studied dyes without noticeable loss in the removal efficiency, suggesting its validity to remove both anionic and cationic dyes from wastewater.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ashraf M. El-Tawil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| |
Collapse
|
16
|
Azeez NA, Dash SS, Gummadi SN, Deepa VS. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. CHEMOSPHERE 2021; 266:129204. [PMID: 33310359 DOI: 10.1016/j.chemosphere.2020.129204] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
The inexorable industrialization and modern agricultural practices to meet the needs of the increasing population have polluted the environment with toxic heavy metals such as Cr(VI), Cu2+, Cd2+, Pb2+, and Zn2+. Among the hazardous heavy metal(loid)s contamination in agricultural soil, water, and air, hexavalent chromium [Cr(VI)] is the most virulent carcinogen. The metallurgic industries, tanneries, paint manufacturing, petroleum refineries are among various such human activities that discharge Cr(VI) into the environment. Various methods have been employed to reduce the concentration of Cr(VI) contamination with nano and bioremediation being the recent advancement to achieve recovery at low cost and higher efficiency. Bioremediation is the process of using biological sources such as plant extracts, microorganisms, and algae to reduce the heavy metals while the nano-remediation uses nanoparticles to adsorb heavy metals. In this review, we discuss the various activities that liberate Cr(VI). We then discuss the various conventional, nano-remediation, and bioremediation methods to keep Cr(VI) concentration in check and further discuss their efficiencies. We also discuss the mechanism of nano-remediation techniques for better insight into the process.
Collapse
Affiliation(s)
- Nazeer Abdul Azeez
- Department of Biotechnology, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638401, India.
| | - Swati Sucharita Dash
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Applied and Industrial Microbiology Laboratory, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Sathyanarayana Naidu Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Applied and Industrial Microbiology Laboratory, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Vijaykumar Sudarshana Deepa
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh, 534 101, India.
| |
Collapse
|
17
|
Li G, Huang S, Zhu N, Yuan H, Ge D. Near-infrared responsive upconversion glass-ceramic@BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123981. [PMID: 33265020 DOI: 10.1016/j.jhazmat.2020.123981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
An efficient luminous and electronic energy transmission BiOBr based near-infrared (NIR) responsive heterojunction photocatalyst was successfully fabricated through growing BiOBr nanosheets on the superficial layer of the SrF2-Bi2O3-B2O3/Yb3+,Tb3+ (SBBF) upconversion glass-ceramic (GC) via a facile in-situ etching GC method (FIEG). A high norfloxacin (NOR) degradation rate of 56% was obtained under 180 min NIR light irradiation for the NIR GC photocatalyst (SBBF/BiOBr-10), and it possesses much enhanced photocatalytic activity compared with that of pure BiOBr under UV-vis-NIR light irradiation. Wherein six intermediate products were identified in the NOR photodegradation process and the possible degradation pathways were proposed. B3+, Yb3+ and Tb3+ ions in GC can be doped into BiOBr layer during the FIEG process. The core-shell structure of the GC@BiOBr heterojunction photocatalyst is in favor of increasing charge transport and reducing the recombination rate of excited carriers, and it efficiently harvests NIR photons to emit UV and visible light upconversion emissions, which can be utilized during the photocatalysis process. The photocatalyst can be facilely regenerated via HBr etching again, moreover, the low-cost and less time requirement promote the possibility of large-scale fabrication of the efficient photocatalysts.
Collapse
Affiliation(s)
- Guobiao Li
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shouqiang Huang
- Jiangsu Key Laboratory of E-waste Recycling, School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
18
|
Diao ZH, Chu W. FeS 2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142155. [PMID: 33254865 DOI: 10.1016/j.scitotenv.2020.142155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, bentonite-supported nZVI (B-nZVI) was used as a catalyst to activate H2O2 for atrazine (ATZ) degradation in the presence of FeS2. Results indicated that ATZ degradation by B-nZVI/H2O2 process was significantly enhanced when FeS2 was introduced, and nearly 98% of ATZ was degraded by B-nZVI/FeS2/H2O2 process within 60 min under the optimum conditions. ATZ degradation of B-nZVI/FeS2/H2O2 process was much higher than the sum of B-nZVI and FeS2/H2O2 processes. The presence of HCO3-, PO43- and F- exhibited significant negative effects on the ATZ degradation, whereas both Cu2+ and Ni2+ exhibited positive effects on that. Both citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) with lower concentration enhanced ATZ degradation rate, but significant suppression effects on that with higher concentration. The degradation of ATZ and 2,4-Dichlorophenol (2,4-DCP) could be simultaneously achieved in B-nZVI/FeS2/H2O2 process under certain conditions. High soluble Fe2+ induced an excellent decomposition of H2O2 by B-nZVI and FeS2. OH was dominant radical, and contributed to nearly 86% of the overall ATZ removal. A total of five intermediate products of ATZ were identified, and ATZ degradation was achieved via de-alkylation and hydroxylation processes. An enhanced reaction mechanism for ATZ degradation by B-nZVI/FeS2/H2O2 process was proposed, and B-nZVI/FeS2/H2O2 process exhibited an excellect catalytic performance within four successive runs.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Hong Kong Polytechnic University, Hong Kong; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Guangzhou 510225, China.
| | - Wei Chu
- Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
19
|
Diao ZH, Yan L, Dong FX, Chen ZL, Guo PR, Qian W, Zhang WX, Liang JY, Huang ST, Chu W. Ultrasound-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS 2 system from aqueous solutions: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111518. [PMID: 33113397 DOI: 10.1016/j.jenvman.2020.111518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Nowadays, nanoscale zero valent iron (nZVI) has been extensively applied for the decontamination of various pollutants, but passivation of nZVI severely affects its reactivity in use. In this study, ultrasound (US)-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI (AMD-nZVI) coupling with FeS2 system was systematically examined. Results show that the presence of FeS2 and US induced a synergistic enhancement of Cr(VI) removal by AMD-nZVI. Nearly 98% of Cr(VI) removal was achieved by AMD-nZVI/FeS2/US process within 60 min under optimal reaction conditions. Several coexisting substances with lower concentration including Pb(II), Ni(II), bisphenol A (BPA) and 2,4-diclorophenol (2,4-DCP) could be effectively removed in simultaneous manner with Cr(VI) removal. The inhibitory order of water matrix species on Cr(VI) removal was NO3- > PO43- > HCO3- > Ca2+ > Mg2+ > Cl-, and a serious suppression effect was induced by humic acid (HA). Addition of ethylene diamine tetra-acetic acid (EDTA) and citric acid (CA) could enhance Cr(VI) removal rate. An enhanced reaction mechanism was proposed, which involved the regeneration of more Fe2+ and H+ by AMD-nZVI/FeS2/US process, leading to the reduction of Cr(VI) by AMD-nZVI and FeS2 into Cr(III) species inculding Cr2O3 and Cr(OH)3. This study well demonstrates that AMD-nZVI/FeS2/US process is considered as a potential candidate for the remediation of Cr(VI) in real wasterwater.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Hong Kong Polytechnic University, Hong Kong; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Guangzhou, 510225, China.
| | - Liu Yan
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Fu-Xin Dong
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi-Liang Chen
- South China Institute of Environmental Sciences, Guangzhou, 510635, China
| | - Peng-Ran Guo
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution, Guangdong Institute of Analysis, Guangzhou, 510070, China
| | - Wei Qian
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wen-Xuan Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Yi Liang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shi-Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wei Chu
- Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
20
|
Diao ZH, Dong FX, Yan L, Chen ZL, Guo PR, Xia XJ, Chu W. A new insight on enhanced Pb(II) removal by sludge biochar catalyst coupling with ultrasound irradiation and its synergism with phenol removal. CHEMOSPHERE 2021; 263:128287. [PMID: 33297231 DOI: 10.1016/j.chemosphere.2020.128287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
The applicability of sludge biochar catalyst (SBC) coupling with ultrasound (US) irradiation for the simultaneous removal of Pb(II) and phenol was firstly investigated in this study. Results indicate that Pb(II) removal of SBC/US process was superior to that of SBC without US. The inhibitory order of the coexisting anions on Pb(II) removal was PO43- > HCO3- > NO3- > F- > SO42- > Cl-. Also, several coexisting metals ions inculding Cr(VI), Ni(II) and Cu(II) could be removed in a simultaneous manner with Pb(II). A high removal performance of Pb(II) by SBC/US process and its synergism with phenol oxidation had been successfully achieved. The simultaneous removal efficiencies of Pb(II) and phenol were high up to 95% within 60 min at optimum reaction conditions. Four kinds of Pb species inculding Pb0, PbCO3, PbO and Pb(OH)2 were formed during the reaction, whereas five kinds of transformation compounds of phenol such as 1,4-benzoquinone, acetic acid, formic acid, maleic acid and propionic acid were detected. Both HO and O2- contributed to the oxidation of phenol by SBC/US process, but HO was dominant radical. A reaction mechanism for the synergistic removal of Pb(II) and phenol by SBC/US process involving in four stages-namely adsorption, precipitation, reduction and Fenton-like oxidation processes was proposed. This study demonstrates that SBC/US process could be considered as a potential candidate for the remediation of real wastewaters containing Pb(II) and phenol.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Hong Kong Polytechnic University, Hong Kong; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Guangzhou, 510225, China.
| | - Fu-Xin Dong
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Liu Yan
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi-Liang Chen
- South China Institute of Environmental Sciences, Guangzhou, 510635, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, 510070, China
| | - Xiao-Jie Xia
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wei Chu
- Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
21
|
Wang W, Wang K, Xu L, Li Y, Niu J. Raney nickel coupled nascent hydrogen as a novel strategy for enhanced reduction of nitrate and nitrite. CHEMOSPHERE 2021; 263:128187. [PMID: 33297153 DOI: 10.1016/j.chemosphere.2020.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Raney nickel (R-Ni) is a cost-effective hydrogenation catalyst, and nascent hydrogen (Nas-H2) generated in situ on the cathode trends to more reactive than commercial hydrogen (Com-H2). In the present work, nitrate and nitrite (NOX-) reduction via R-Ni/Nas-H2 catalytic system was investigated. The results show that hydrogenation of NOX- (C0 = 3.0 mM) follows pseudo-first-order reaction kinetics with kinetic constants of 5.18 × 10-2 min-1 (NO3-) and 6.46 × 10-2 min-1 (NO2-). The saturation demand for Nas-H2 is only 0.8 mL min-1 at a fixed R-Ni dosage of 1.0 g L-1. The experiments reveal that both Nas-H2 and hydrogen adatoms (Hads∗) can drive the reduction of NOX-. The improved reduction ratios of NOX- are attributed to two aspects: (1) the micro/nano-sized Nas-H2 bubbles exhibits increased reactivity due to the fine dispersion of the hydrogen molecules; (2) the alkaline environment formed by the cathode positively maintain R-Ni activity, thus, Nas-H2 bubbles were more readily activated to generate powerful Hads∗. The results give insight into NOX- hydrogenation via introducing fine hydrogen resource, and can develop an efficient catalytic hydrogenation technique without noble metals.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
22
|
Yao Y, Mi N, He C, He H, Zhang Y, Zhang Y, Yin L, Li J, Yang S, Li S, Ni L. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Pasinszki T, Krebsz M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E917. [PMID: 32397461 PMCID: PMC7279245 DOI: 10.3390/nano10050917] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Present and past anthropogenic pollution of the hydrosphere and lithosphere is a growing concern around the world for sustainable development and human health. Current industrial activity, abandoned contaminated plants and mining sites, and even everyday life is a pollution source for our environment. There is therefore a crucial need to clean industrial and municipal effluents and remediate contaminated soil and groundwater. Nanosized zero-valent iron (nZVI) is an emerging material in these fields due to its high reactivity and expected low impact on the environment due to iron's high abundance in the earth crust. Currently, there is an intensive research to test the effectiveness of nZVI in contaminant removal processes from water and soil and to modify properties of this material in order to fulfill specific application requirements. The number of laboratory tests, field applications, and investigations for the environmental impact are strongly increasing. The aim of the present review is to provide an overview of the current knowledge about the catalytic activity, reactivity and efficiency of nZVI in removing toxic organic and inorganic materials from water, wastewater, and soil and groundwater, as well as its toxic effect for microorganisms and plants.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Department of Chemistry, School of Pure Sciences, College of Engineering, Science and Technology, Fiji National University, Suva P.O. Box 7222, Fiji;
| | | |
Collapse
|
24
|
Li B, Wei D, Li Z, Zhou Y, Li Y, Huang C, Long J, Huang H, Tie B, Lei M. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: Adsorption and redox transformation. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122091. [PMID: 31972529 DOI: 10.1016/j.jhazmat.2020.122091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.
Collapse
Affiliation(s)
- Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Dongning Wei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Zhuoqing Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yimin Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Yongjie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Changhong Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Jiumei Long
- College of Life Sciences & Environment, Hengyang Normal University, Hengyang, 421008, PR China
| | - HongLi Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Baiqing Tie
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha, 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
25
|
Diao ZH, Dong FX, Yan L, Chen ZL, Qian W, Kong LJ, Zhang ZW, Zhang T, Tao XQ, Du JJ, Jiang D, Chu W. Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: Reactivity and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121385. [PMID: 31606253 DOI: 10.1016/j.jhazmat.2019.121385] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Recently, clean-up of resistant organic compounds has attracted growing attention. In this study, a novel heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate (BC/PS/US) process was firstly developed for the degradation of bisphenol A (BPA) in water. The results revealed that BC/PS/US process could successfully achieve a positively synergistic effect between sonochemistry and catalytic chemistry on the degradation of BPA compared to its corresponding comparative process. Nearly 98% of BPA could be degraded within 80 min at optimum reaction conditions. The coexisting substances including Cl-, SO42- and NO3- had no obvious inhibition on the BPA degradation, whereas HCO3- and humic acid (HA) had significant inhibition effects on that. PS decomposition of BC/PS/US process was superior to that of BC/PS or US/PS process. Both SO4- and HO participated in the degradation of BPA, but SO4- was predominant radical in the BC/PS/US process. A possible pathway of BPA degradation was proposed, and the BPA molecule was attacked by SO4- and degraded into five kinds of intermediate products through hydroxylation and demethylation processes. This study helps to comprehend the application of sludge biochar catalyst as a persulfate activator for the degradation of organic compounds under ultrasound irradiation, and provides a new strategy in wastewater treatment.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Civil and Environment Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Fu-Xin Dong
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liu Yan
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi-Liang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Guangzhou 510635, China
| | - Wei Qian
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | | | - Zai-Wang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Tao Zhang
- Guangdong Environmental Monitoring Center, Guangzhou 510045, China
| | - Xue-Qin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian-Jun Du
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan Jiang
- Research Resources Center, South China Normal University, Guangzhou 510631, China
| | - Wei Chu
- Department of Civil and Environment Engineering, Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
26
|
Li H, Zhu F, He S. The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron /persulfate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109540. [PMID: 31400721 DOI: 10.1016/j.ecoenv.2019.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Biochar supported nano zero-valent iron (BC-nZVI) synthesized through liquid phase reduction method was used to activate persulfate (PS) for the removal of decabromodiphenyl ether (BDE209) in the soil. The morphology, structure and composition of BC-nZVI were determined by SEM, XRD, XPS and FTIR. Batch experiments were carried out to investigate the effect of different factors, such as the molar ratio of PS to BC-nZVI, pH value of PS solution and reaction temperature, on the degradation efficiency of BDE209. Results showed that when the molar ratio of PS/BC-nZVI was 3:1, pH value was 3, reaction temperature was 40 °C, 82.06% of BDE209 could be removed within 240 min. The process fitted pseudo-first-order kinetics model well and the apparent activation energy (Ea) was 48.92 kJ mol-1, indicating that the process was controlled by surface reaction. The quenching experiments showed that ·SO4- was predominate radical species in the degradation process in acid and neutral condition. However, ·OH played more important role in alkaline condition. GC-MS was used to determine the reaction products for inferring the degradation pathway of BDE209 in soil by BC-nZVI/PS system.
Collapse
Affiliation(s)
- Haihong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Siying He
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
27
|
Reactive Transport and Removal of Nutrients and Pesticides in Engineered Porous Media. WATER 2019. [DOI: 10.3390/w11071316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural nonpoint pollution has been recognized as a primary source of nutrients and pesticides that contaminate surface water and groundwater. Reactive materials have great potential to remove nutrients and pesticides from agricultural drainage water. In this study, we investigated the reactive transport and removal of coexisting nitrate, phosphate, and three pesticides (tricyclazole, isoprothiolane, and malathion) by iron filings and natural ore limestone through column experiments under saturated flow conditions. Breakthrough results showed that 45.0% and 35.8% of nitrate were removed by iron filings and limestone during transport, with average removal capacities of 2670 mg/kg and 1400 mg/kg, respectively. The removal of nitrate was mainly due to microbial denitrification especially after 131–154 pore volumes (≈30 d), whereas reduction to ammonia dominated nitrate removal in iron filings during early phase (i.e., <21.7 d). The results showed that 68.2% and 17.6% of phosphate were removed by iron filings and limestone, with average removal capacities of 416.1 mg/kg and 155.2 mg/kg, respectively. Mineral surface analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM) coupled with energy-dispersive X-ray analysis (EDX) suggested that ligand exchange, chemical precipitation, and electrostatic attraction were responsible for phosphate removal. Chemical sorption was the main mechanism that caused removals of 91.6–100% of malathion and ≈27% of isoprothiolane in iron filings and limestone. However, only 22.0% and 1.1% of tricycalzole were removed by iron filings and limestone, respectively, suggesting that the removal might be relevant to the nonpolarity of tricyclazole. This study demonstrates the great potential of industrial wastes for concurrent removal of nutrients and pesticides under flow conditions.
Collapse
|