1
|
Soriano Y, Gimeno-García E, Campo J, Hernández-Crespo C, Andreu V, Picó Y. Exploring organic and inorganic contaminant histories in sediment cores across the anthropocene: Accounting for site/area dependent factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134168. [PMID: 38603905 DOI: 10.1016/j.jhazmat.2024.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Sedimentary records help chronologically identify anthropogenic contamination in environmental systems. This study analysed dated sediment cores from L'Albufera Lake (Valencia, Spain), to assess the occurrence of heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), perfluoroalkyl substances (PFASs), organophosphorus flame retardants (OPFRs), pesticides and pharmaceuticals and personal care products (PPCPs). The results evidence the continuing vertical presence of all types of contaminants in this location. The sediment age was difficult to establish. However, the presence of shells together with an historical estimation and the knowledge of sedimentary rates could help. HMs contents are higher in the upper layer reflecting the most recent increase of the industrial and agricultural practices in the area since the middle 20th century. Higher availability index of these HMs in the upper sediment layers is associated with point and diffuse contamination sources in the area. PAHs and OPFRs were homogeneous distributed through the sediments with few exceptions such as phenanthrene in the North and fluoranthene in the South. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were detected throughout the sediment core while short-chain PFASs (except perfluoropentanoic acid (PFPeA)) were detected only in the top layer. Pesticides and PPCPs showed appreciable down-core mobility. The vertical concentration profiles of organic contaminants did not exhibit a clear trend with depth, then, it is difficult to develop a direct relationship between sediment age and contaminant concentrations, and to elucidate the historical trend of contamination based on dated sediment core. Consequently, linking contaminant occurrence in sediments directly to their historical use is somewhat speculative at least in the conditions of L'Albufera Lake.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain.
| | - Eugenia Gimeno-García
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Julián Campo
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Carmen Hernández-Crespo
- Water and Environmental Engineering University Research Institute (IIAMA), Polytechnic Universitat Politècnica de València, Valencia, Spain
| | - Vicente Andreu
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Valencia, Spain
| |
Collapse
|
2
|
Feng H, Xu X, Peng P, Yang C, Zou H, Chen C, Zhang Y. Sorption and desorption of epiandrosterone and cortisol on sewage sludge: Comparison to aquatic sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121663. [PMID: 37085099 DOI: 10.1016/j.envpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Steroids have aroused global concern due to their potent endocrine-disrupting effects. Androgens and glucocorticoids are the most abundant species in sewage; however, our understanding of their fate and risks from the source to environmental sinks remains elusive. This study compared the sorption-desorption characteristics of epiandrosterone (EADR) and cortisol (CRL) in sewage sludge and aquatic sediment, and the surface and molecular interactions were tentatively investigated through infrared spectroscopy and the fluorescence excitation-emission matrix. The results showed that the sorption capacities of EADR and CRL in the sludge were 4015 L/kg and 81.17 L/kg, respectively, which are much larger than those in the sediment (EADR: 78.77 L/kg, CRL: 6.39 L/kg); 0.02%-1.2% of EADR and 0.2%-14.5% of CRL could be desorbed from sludge, while the desorption ratios were even lower in the sediment. The high organic content in the sludge might contribute to the larger sorption capacities, while the weak interaction between steroids and organic matter could lead to larger desorption potential. The sediment contained more mineral content and featured a larger specific surface area, which could be responsible for the greater desorption hysteresis for EADR and CRL. These results will help to better understand the potential risk of sewage sludge-associated steroids and their distribution in sediment-water systems.
Collapse
Affiliation(s)
- Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peng Peng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, 510535, China
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Felipe LPG, Peralta-Zamora PG, Silva BJGD. Photocatalytic degradation of bisphenol-A (BPA) over titanium dioxide, and determination of its by-products by HF-LPME/GC-MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:107-115. [PMID: 36772930 DOI: 10.1080/10934529.2023.2173923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this work, analytical strategies were developed based on the technique of hollow fiber liquid-phase microextraction and chromatographic methods (LC-UV and GC/MS). These methods allowed the identification of the main Bisphenol-A by-products applying heterogeneous photocatalysis in water samples. BPA degradation in this study was in the order of 90%, and the conditions used in the HF-LPME were optimized through 23 factorial design (6 cm fiber length, stirring speed of 750 rpm, and an extraction time of 30 min). Using a HF-LPME/GC-MS analytical strategy, it was possible to identify six by-products of BPA photodegradation, two of which have not been reported in the literature so far. This knowledge was quite important since the degradation can lead to the formation of more toxic and persistent by-products than the BPA. With the Toxtree software, three degradation products were found to be persistent to the environment, in addition to BPA; however, in 360 minutes of reaction, chromatographic peaks of the precursors were not identified, suggesting that there may have been a total degradation of these compounds. The results showed a great application potential of a miniaturized extraction technique to extract and pre-concentrate the degradation products of emerging contaminants.
Collapse
|
4
|
Chamizo-Ampudia A, Getino L, Luengo JM, Olivera ER. Isolation of Environmental Bacteria Able to Degrade Sterols and/or Bile Acids: Determination of Cholesterol Oxidase and Several Hydroxysteroid Dehydrogenase Activities in Rhodococcus, Gordonia, and Pseudomonas putida. Methods Mol Biol 2023; 2704:25-42. [PMID: 37642836 DOI: 10.1007/978-1-0716-3385-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Interest about the isolation and characterization of steroid-catabolizing bacteria has increased over time due to the massive release of these recalcitrant compounds and their deleterious effects or their biotransformation derivatives as endocrine disruptors for wildlife, as well as their potential use in biotechnological approaches for the synthesis of pharmacological compounds. Thus, in this chapter, an isolation protocol to select environmental bacteria able to degrade sterols, bile acids, and androgens is shown. Moreover, procedures for the determination of cholesterol oxidase or different hydroxysteroid dehydrogenase activities in Pseudomonas putida DOC21, Rhodococcus sp. HE24.12, Gordonia sp. HE24.4J and Gordonia sp. HE24.3 are also detailed.
Collapse
Affiliation(s)
- Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Luis Getino
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | - José M Luengo
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Elias R Olivera
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
5
|
Kadhim MM, Alomar TS, Hachim SK, Abdullaha SA, Zedan Taban T, AlMasoud N. Aluminium carbide nano-sheet as a promising adsorbent for removal of carbendazim. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Peris A, Barbieri MV, Postigo C, Rambla-Alegre M, López de Alda M, Eljarrat E. Pesticides in sediments of the Ebro River Delta cultivated area (NE Spain): Occurrence and risk assessment for aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119239. [PMID: 35398158 DOI: 10.1016/j.envpol.2022.119239] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Intense agricultural activities are performed in the Ebro River Delta (NE Spain) with extensive use of pesticides. Medium to highly polar pesticides have not been studied intensively in sediments despite its larger use in the recent years. This work aimed at assessing the occurrence of 69 pesticides, including medium to highly polar compounds, in sediments collected from drainage and irrigation channels of the Ebro River Delta during the main rice growing season. In addition, an environmental risk assessment was performed to evaluate the potential adverse effects to sediment-dwelling organisms with the risk quotient approach. A total of 24 pesticides were detected in sediments with bentazone and cypermethrin exhibiting high detection frequencies (79%) as well as high mean concentration levels (61.9 and 81.8 ng g-1 dw, respectively). Overall, the Alfacs bay, in the South of the delta, presented higher pesticide contamination than the Fangar bay, in the North. A similar pesticide distribution profile was observed in both bays, with oxadiazoles, organochlorines, pyrethroids, benzothiazinones and organophosphates as major, predominant classes. The presence of oxadiazon, pendimethalin and thifensulfuron methyl in the sediments may pose a moderate risk to sediment-dwelling organisms while bentazone, chlorpyrifos, and cypermethrin exhibited a potential high risk. Thus, the importance of the inclusion of medium to highly polar pesticides in the analysis of sediments is emphasized since some polar pesticides such as bentazone, imidacloprid, and thifensulfuron-methyl have been detected at concentrations that may pose a risk to aquatic organisms. Moreover, the co-occurrence of pesticides may potentially pose a high risk to sediment-dwelling organisms in 13 out of the 14 investigated locations. Finally, it could be concluded that the risk derived from the presence of pesticides in sediments must be assessed since some pesticides not detected at concerning levels in water, may pose a moderate/high risk in the sediments.
Collapse
Affiliation(s)
- A Peris
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M V Barbieri
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - C Postigo
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M Rambla-Alegre
- Institute of Agriculture and Food Research and Technology (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de La Ràpita, Tarragona, 43540, Spain
| | - M López de Alda
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - E Eljarrat
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
7
|
Guo X, Feng C, Bi Z, Islam A, Cai Y. Toxicity effects of ciprofloxacin on biochemical parameters, histological characteristics, and behaviors of Corbicula fluminea in different substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23700-23711. [PMID: 34811616 DOI: 10.1007/s11356-021-17509-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic toxicity and antibiotic resistance have become significant challenges to human health. However, the potential ecotoxicity of sediment-associated antibiotics remains unknown. In this study, biochemical responses, histological changes, and behavioral responses of Corbicula fluminea exposed to sediment-associated ciprofloxacin (CIP) were systemically investigated. Special attention was paid to the influence of different substrate types. Biochemical analyses revealed that the balance of the antioxidant system was disrupted, eventually leading to oxidative damage to the gills and digestive gland with increasing CIP concentration. Severe histopathological changes appeared along with the oxidative damage. An enlargement of the tubule lumen and thinning of the epithelium in the digestive gland were observed under exposure to high CIP concentrations (0.5 and 2.5 μg/g CIP). In a behavioral assay, the filtration rate of C. fluminea in high concentration exposure groups was clearly inhibited. Moreover, from the integrated biomarker response (IBR) index, the toxicity response gradients of the digestive gland (no substrate--NOS > Sand > Sand and kaolinite clay-- SKC > Sand, kaolinite clay, and organic matter--SCO) and gills (NOS > SCO > SKC > Sand) were different among substrate exposure groups. The most serious histopathological damage and highest siphoning inhibition were observed in the NOS group. The changes in the morphological structure of digestive gland cells in C. fluminea were similar in the other three substrate groups. The inhibition of the filtration rate in the higher concentration groups decreased in the order Sand > SKC > SCO.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhe Bi
- National Institute of Metrology, Beijing, 100029, China
| | - Akhtar Islam
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous impact of natural and anthropogenic organic and inorganic substances continuously released into the environment requires a better understanding of the chemical status of aquatic ecosystems. Water contamination monitoring studies were performed for different classes of substances in different regions of the world. Reliable analytical methods and exposure assessment are the basis of a better management of water resources. Our research comprised publications from 2010 regarding the Lower Danube and North West Black Sea region, considering regulated and unregulated persistent and emerging pollutants. The frequently reported ones were: pharmaceuticals (carbamazepine, diclofenac, sulfamethoxazole, and trimethoprim), pesticides (atrazine, carbendazim, and metolachlor), endocrine disruptors—bisphenol A and estrone, polycyclic aromatic hydrocarbons, organochlorinated pesticides, and heavy metals (Cd, Zn, Pb, Hg, Cu, Cr). Seasonal variations were reported for both organic and inorganic contaminants. Microbial pollution was also a subject of the present review.
Collapse
|
9
|
Culicov OA, Trtić-Petrović T, Balvanović R, Petković A, Ražić S. Spatial distribution of multielements including lanthanides in sediments of Iron Gate I Reservoir in the Danube River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44877-44889. [PMID: 33851297 PMCID: PMC8364546 DOI: 10.1007/s11356-021-13752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Recent studies show that lanthanides (Ln) are becoming emerging pollutants due to their wide application in new technologies, but their environmental fate, transport, and possible accumulation are still relatively unknown. This study aims to determine major and trace elements including Ln in the Danube River sediment which either belong or close to the Iron Gate Reservoir. The Iron Gate Reservoir is characterized by accumulation of sediments as an effect of building hydropower dam Iron Gate I. The surface sediments were collected on the Danube River-1141 to 864 km and three tributaries along this waterway. Two samples of deep sediments were used for comparison. The results indicate the significant upward enrichment of Zn, Sb, Cr, Nd, and Dy in sediments belongs to the Iron Gate Reservoir. The sample 4-Smed is labelled as a hot spot of contamination with Zn, Cr, As, Sb, Nd, and Dy. Also, a trend of increasing concentration in the time period from 1995 to 2016 was found for elements Zn, Cr, and Ni in sediment samples in the Iron Gate Reservoir. Chemometric analysis shows the grouping of sample sites into clusters characterized by the following properties: (i) increased concentration of all measured elements (samples within the Iron Gate Reservoir); (ii) increased Cu concentration (11-Pek); and (iii) lower concentrations of the measured elements (deep sediments). The data presented hereby contribute to the monitoring of pollution of the River Danube sediments and give the first view of Ln profile in the studied sediments.
Collapse
Affiliation(s)
- Otilia Ana Culicov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russian Federation
- National Institute for R&D in Electrical Engineering ICPE-CA, Bucharest, Romania
| | - Tatjana Trtić-Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia.
| | - Roman Balvanović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia
| | - Anđelka Petković
- "JaroslavČerni" Institute for the Development of Water Resources, Belgrade, Serbia
| | - Slavica Ražić
- Faculty of Pharmacy - Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Influence of Business-Operational Performances and Company Size on CO2 Emissions Decrease-Case of Serbian Road Transport Companies. SUSTAINABILITY 2021. [DOI: 10.3390/su13158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This research includes the analysis and comparison of long-term values of key business parameters of profit-oriented companies in Serbia, which are engaged in road transport of cargo or passengers. This paper takes into account the decreasing emissions of CO2 and its relation to the size of business (in terms of transported cargo or number of passengers), and thus by the company’s business success (income, profit). In the empirical part of this research—ecological, operational, and business factors were analyzed on a sample of road carriers from Serbia, i.e., the most common type of organized transport of people or physical goods. Key difference was made between large and small companies engaged in transport activities, followed by difference between those companies which have business activities only in Serbia, or engage also in international activities in the Balkan region (or in the rest of world). The main goal of this paper is to determine statistically significant differences between transport companies in terms of key performance indicators, depending on whether they operate only domestically or abroad. In relation to company size, this paper examined the sustainability of operations in the case of the largest transport companies, which represent half of the total transport activity in the country (by number of people transported or the amount of transported cargo), compared to all small carriers with less than 50 employees. Future research involves extending this sample of road transport companies to all Balkan countries, which have not yet become a part of the European Union and including additional operational as well as environmental indicators that are not conventionally measured during vehicle inspections.
Collapse
|
11
|
Cardoso-Vera JD, Elizalde-Velázquez GA, Islas-Flores H, Mejía-García A, Ortega-Olvera JM, Gómez-Oliván LM. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145487. [PMID: 33736324 DOI: 10.1016/j.scitotenv.2021.145487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Mario Ortega-Olvera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
12
|
López-García E, Mastroianni N, Ponsà-Borau N, Barceló D, Postigo C, López de Alda M. Drugs of abuse and their metabolites in river sediments: Analysis, occurrence in four Spanish river basins and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123312. [PMID: 32653784 DOI: 10.1016/j.jhazmat.2020.123312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The environmental impact produced by the presence of drugs of abuse in sediments has been scarcely studied to date, even though many of them may adsorb onto particulate matter due to their physical-chemical properties. This study presents an analytical method for the determination of 20 drugs of abuse and metabolites in sediments. The validated method was satisfactory in terms of linearity (r2 >0.99), recovery (90-135 %), repeatability (relative standard deviations <15 %), sensitivity (limits of quantification <2.1 ng/g d.w, except for cannabinoids), and matrix effects (ionization suppression <40 %). The method was applied to the analysis of 144 sediments collected in four Spanish river basins. Cocaine, methadone, and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) were the most ubiquitous compounds (detection frequencies>36 %), whereas cannabinol, Δ9-tetrahydrocannabinol (THC), and methadone were the most abundant compounds (up to 44, 37, and 33 ng/g d.w, respectively). The presence of EDDP, THC, and methadone in the sediments of 28 locations may pose a risk to sediment-dwelling organisms. To the author`s knowledge, this is the most extensive study conducted so far on the occurrence of drugs of abuse in sediments, and the first time that sediment-water distribution coefficients for EDDP, methadone, MDMA, and diazepam are reported from field observations.
Collapse
Affiliation(s)
- Ester López-García
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Nicola Mastroianni
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Damià Barceló
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Catalan Institute for Water Research, H2O Buiding, Scientific and Technological Park of the University of Grona, Emili Grahit 101, 17003, Girona, Spain
| | - Cristina Postigo
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Miren López de Alda
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
13
|
Blank do Amaral AM, Kuhn de Moura L, de Pellegrin D, Guerra LJ, Cerezer FO, Saibt N, Prestes OD, Zanella R, Loro VL, Clasen B. Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115168. [PMID: 32693306 DOI: 10.1016/j.envpol.2020.115168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Reservoirs are lentic man-made waterbodies resulting from river damming processes. Pollutants coming from adjacent areas can accumulate in the water and sediment of these modified freshwater environments. Fish are often found in reservoirs occupying several trophic niches. Biochemical biomarkers are early warning signals of environmental disturbance to an organism. It is essential to understand how pollutants, abiotic variables and biochemical biomarker responses behave throughout the seasons to implement biomonitoring programs. Loricariichthys anus and Geophagus brasiliensis were collected, and abiotic variables were seasonally measured for one year, at six sampling sites in Passo Real reservoir, in a subtropical region of Southern Brazil. Biochemical biomarkers were analyzed in four tissues of both fish species, as well as metal and pesticide concentrations in the reservoir's water and sediment. Redundancy analysis (RDA) was carried out to find the temporal relationship between biomarkers and environmental variables. RDA has clearly shown the separation of seasons for both species. Azoxystrobin, simazine and propoxur were the pesticides mostly contributing to the variation, whereas metals had lesser contribution to it. Seasonality appears to be the main factor explaining biomarkers' variability. PERMANOVA has confirmed the effect of temperature and dissolved oxygen on biomarkers of both fish species. Thus, it is hard to differentiate if the fluctuation in biomarkers' responses only reflects the normal state of organisms or it is a biological consequence from negative effects of fish exposure to several types of pollution (sewage, pesticides, and fertilizers) entering this aquatic system. In this study, to circumvent the seasonality issue on biomonitoring, the analysis of biomarkers on these fish should not be carried out in organs directly affected by temperature (such as liver and gills), or during reproduction periods (mainly in Spring).
Collapse
Affiliation(s)
- Aline Monique Blank do Amaral
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil; Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Letícia Kuhn de Moura
- Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Dionatan de Pellegrin
- Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Luciana Joner Guerra
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil.
| | - Felipe Osmari Cerezer
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Nathália Saibt
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Osmar Damian Prestes
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Renato Zanella
- Laboratório de Análises de Resíduos de Pesticidas (LARP), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Barbara Clasen
- Universidade Estadual do Rio Grande do Sul, Departamento de Ciências Ambientais, Porto Alegre, 90010-191, RS, Brazil.
| |
Collapse
|
14
|
Rizzi V, Gubitosa J, Fini P, Romita R, Agostiano A, Nuzzo S, Cosma P. Commercial bentonite clay as low-cost and recyclable “natural” adsorbent for the Carbendazim removal/recover from water: Overview on the adsorption process and preliminary photodegradation considerations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Marshall AHL, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1741-1750. [PMID: 32762100 DOI: 10.1002/wer.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A review of 79 papers published in 2019 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, antibiotics, anthelmintics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Antibiotics in Agroecosystems, Pharmaceutical Fate and Occurrence, Anthelmintics and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings Newer classes of contaminants include human and veterinary pharmaceuticals Research in nanomaterials show that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - David A Cassada
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Saptashati Biswas
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Arindam Malakar
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Oxford, MS, USA
| | | | | |
Collapse
|
16
|
Jaglal K. Contaminated aquatic sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1826-1832. [PMID: 32860296 DOI: 10.1002/wer.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The remediation of contaminated aquatic sediments requires a range of expertise from assessment (investigation, risk evaluations, modeling, and remedy selection) to design and construction. Research in 2019 has added to knowledge on optimizing the use of passive samplers for assessing chemical concentrations in sediment porewater. The porewater and black carbon appear to be better predictors of contaminant bioaccumulation than total organic carbon alone. This has led to better characterization of potential risk at sediment sites. Tools to identify and model sources of chemicals have been developed and used particularly for some metals, polynuclear aromatic hydrocarbons and polychlorinated biphenyls. There is great emphasis on beneficially using dredged sediment, treating it as a resource rather than a waste. Amendments used in sediment caps continue to be refined including the use of activated carbon within the caps and by itself. A technique involving 16S rRNA has been established as a means of identifying microbiological composition that naturally degrade contaminants. © 2020 Water Environment Federation PRACTITIONER POINTS: Sediment capping technology continues to advance Sampling and testing methods continue to be refined Natural processes such as biodegradation are being better understood Beneficial use of dredged sediment continue to be emphasized.
Collapse
|
17
|
Determination of malathion's toxic effect on Lens culinaris Medik cell cycle. Heliyon 2020; 6:e04846. [PMID: 32954032 PMCID: PMC7486440 DOI: 10.1016/j.heliyon.2020.e04846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine the toxic effect of malathion pesticide on root growth, cell division and the chromosomal abnormalities frequency using the L. culinaris test. Initially, the lentil seeds were subjected to different doses of malathion (0.0 0.5, 1, 2.5, 5, 10, 15, 20, 25 and 30 mgL-1) and during 24, 48, and 72 h, the root length was measured. Subsequently, at 72h, the mitotic index, mitotic inhibition, and cellular abnormalities were calculated for all treatments. According to the obtained results, it was visualized that the root growth was inversely proportional to the concentration of malathion at all times of exposure. After 72h of exposure, the lowest values of the mitotic index and inhibition were presented at malathion concentrations 20, 25 and 30 mgL-1. Additionally, micronuclei cell abnormalities, metaphase sticky chromosomes, split chromosomes, nuclear lesions, irregular anaphase, anaphase bridges, binucleated cells, absence of nucleus and telophase bridge were observed. Finally, Malathion induced mitodepressive and cytotoxic effects in the meristematic cells of the L. culinaris root tip. A high frequency of abnormality was found in the micronuclei, which represented an indicator of a high degree of toxicity at the cellular level.
Collapse
|
18
|
Yang X, Lin H, Dai X, Zhang Z, Gong B, Hu Z, Jiang X, Li Y. Sorption, transport, and transformation of natural and synthetic progestins in soil-water systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121482. [PMID: 31668762 DOI: 10.1016/j.jhazmat.2019.121482] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/22/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Natural and synthetic progestins are emerging endocrine disruptors that can be transported from livestock farms and agricultural fields to receiving waters via surface runoff. The transformation of progestins during transport is expected to affect the efficiencies of runoff management systems. Therefore, this study explored the sorption, transport, and transformation of progesterone, norethisterone acetate, medroxyprogesterone acetate, cyproterone acetate, dydrogesterone, and norethisterone in agricultural soil-water systems. The sorption coefficients and retardation factors (R) were positively correlated with the progestin hydrophobicities, indicating that hydrophobic interactions dominated the sorption and transport processes. During transport, dydrogesterone and progesterone were transformed into 9-10 products. The breakthrough curves of the parents and products exhibited periodical patterns over extended times. Specifically, the R values of the parents and products were positively correlated with chromatographic retention times (hydrophobicities) when the products were generated before transport. In contrast, a negative correlation (R2 = 0.75-0.88) was observed when products were successively generated during transport, indicating that the transformation kinetics changed the retardation of these solutes in the columns. These observations also demonstrated that the transport potential estimates based on traditional metrics of steroid hydrophobicity are not always accurate and that runoff management measures are less effective for metastable progestins.
Collapse
Affiliation(s)
- Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiong Dai
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Beini Gong
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiuping Jiang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
19
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|