1
|
Chen S, Liu W, Parsons D, Du T. Optimized irrigation and fertilization can mitigate negative CO 2 impacts on seed yield and vigor of hybrid maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175951. [PMID: 39226973 DOI: 10.1016/j.scitotenv.2024.175951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/03/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Seed yield and vigor of hybrid maize determine the planting, yield, and quality of maize, and consequently affect food, nutrition, and livelihood security; however, the response of seed yield and vigor to climate change is still unclear. We established an optimization-simulation framework consisting of a water‑nitrogen crop production function, a seed vigor and a gridded process-based model to optimize irrigation and nitrogen fertilization management, and used it to evaluate seed yield and vigor in major seed production locations of China, the USA, and Mexico. This framework could reflect the influence of water and nitrogen inputs at different stages on seed yield and vigor considering the spatio-temporal variability of climate and soil properties. Projected seed yield and vigor decreased by 5.8-9.0 % without adaptation by the 2050s, due to the 1.3-5.8 % decrease in seed number and seed protein concentration. Seed yield was positively correlated with CO2 and negatively correlated with temperature, while seed vigor depended on the response of components of seed vigor to climatic factors. Under optimized management, the direct positive effects of temperature on seed protein concentration and CO2 on seed number were strengthened, and the direct negative effects of temperature on seed number and CO2 on seed protein concentration were weakened, which mitigated the reductions in both seed yield and vigor. Elevated CO2 was projected to exacerbate the 2.6 % seed vigor reduction and mitigate the 2.9 % seed yield loss without adaptation, while optimized management could increase seed yield by 4.1 % and mitigate the 2.2 % seed vigor reduction in the Hexi Corridor of China, and decrease the seed yield and vigor reduction by 2.4-5.8 % in the USA and Mexico. Optimized management can strengthen the positive and mitigate the negative effects of climate change on irrigated hybrid maize and inform high-yield and high-quality seed production globally.
Collapse
Affiliation(s)
- Shichao Chen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Wenfeng Liu
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - David Parsons
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Taisheng Du
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Geng X, Sun S, Hu X, Chen X, Li Y, Cao J, Feng H, Wei Y. Protocol to study the photosynthetic response of maize to the CO 2-temperature coupling effect at ear stage using a specialized designed gradient. STAR Protoc 2024; 5:103124. [PMID: 38870017 PMCID: PMC11222950 DOI: 10.1016/j.xpro.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Global warming will change the photosynthesis and transpiration of plants greatly and ultimately affect water use efficiency (WUE). Here, we present a protocol to investigate the response of maize WUE to the coupling effect of CO2 and temperature at ear stage using a specialized designed gradient. We describe steps for plant culture, parameter measurements, model fitting, and statistical analysis. This protocol holds potential for studying the response of WUE and CO2 adaptation across various plant species. For complete details on the use and execution of this protocol, please refer to Sun et al.1.
Collapse
Affiliation(s)
- Xiaoru Geng
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Sicong Sun
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xinquan Hu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xiaoxiao Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanzheng Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jun Cao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Hao Feng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsheng Wei
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Roy S, Kapoor R, Mathur P. Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. PLANT & CELL PHYSIOLOGY 2024; 65:4-19. [PMID: 37935412 DOI: 10.1093/pcp/pcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Climate change has universally affected the whole ecosystem in a unified manner and is known to have improbable effects on agricultural productivity and food security. Carbon dioxide (CO2) and temperature are the major environmental factors that have been shown to increase sharply during the last century and are directly responsible for affecting plant growth and development. A number of previous investigations have deliberated the positive effects of elevated CO2 on plant growth and development of various C3 crops, while detrimental effects of enhanced temperature on different crop plants like rice, wheat, maize and legumes are generally observed. A combined effect of elevated CO2 and temperature has yet to be studied in great detail; therefore, this review attempts to delineate the interactive effects of enhanced CO2 and temperature on plant growth, development, physiological and molecular responses. Elevated CO2 maintains leaf photosynthesis rate, respiration, transpiration and stomatal conductance in the presence of elevated temperature and sustains plant growth and productivity in the presence of both these environmental factors. Concomitantly, their interaction also affects the nutritional quality of seeds and leads to alterations in the composition of secondary metabolites. Elevated CO2 and temperature modulate phytohormone concentration in plants, and due to this fact, both environmental factors have substantial effects on abiotic and biotic stresses. Elevated CO2 and temperature have been shown to have mitigating effects on plants in the presence of other abiotic stress agents like drought and salinity, while no such pattern has been observed in the presence of biotic stress agents. This review focuses on the interactive effects of enhanced CO2 and temperature on different plants and is the first of its kind to deliver their combined responses in such detail.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| |
Collapse
|
4
|
Sun S, Hu X, Wei Y, Chen X, Li Y, Cao J. Response of WUE of maize at ear stage to the coupling effect of CO 2 and temperature. Heliyon 2024; 10:e23646. [PMID: 38223702 PMCID: PMC10784164 DOI: 10.1016/j.heliyon.2023.e23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024] Open
Abstract
In the face of global warming, the photosynthesis and transpiration of plants will change greatly, which will ultimately affect the water use efficiency (WUE) of plants. In order to study the coupling effects of CO2 and temperature on WUE of maize at ear stage, 'Zhengdan 958' was taken as the research object, and 5 temperatures (20 °C, 25 °C, 30 °C, 35 °C and 40 °C) and 11 CO2 concentration (400, 300, 200, 150, 100, 50, 400, 400, 600, 800 and 1000 μmol mol-1) were set to measure the parameters such as net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) of single leaves. The response of WUE (Pn/Tr) to CO2 and temperature was evaluated by a CO2 response model. The results show that at the same temperature, Pn and WUE increased with CO2 level, while Tr decreased as CO2 level increases; at the same CO2 concentration, Pn and Tr were both positively correlated with temperature, while WUE decreased with the increase of temperature. The maximum value of WUE was obtained when the CO2 concentration was 1000 μmol mol-1 and the temperature was 20.0 °C. The results suggest that global warming will not improve WUE of maize, which will bring more severe challenges to water-saving agriculture and food security.
Collapse
Affiliation(s)
- Sicong Sun
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinquan Hu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yongsheng Wei
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Xiaoxiao Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yanzheng Li
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Jun Cao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
5
|
Vaghar M, Eshghizadeh HR, Ehsanzadeh P. Elevated atmospheric CO 2 concentration mitigates salt damages to safflower: Evidence from physiological and biochemical examinations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108242. [PMID: 38070243 DOI: 10.1016/j.plaphy.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
The physiological and biochemical responses of salt-stressed safflower to elevated CO2 remain inadequately known. This study investigated the interactive effects of high CO2 concentration (700 ± 50 vs. 400 ± 50 μmol mol-1) and salinity stress levels (0.4, 6, and 12 dS m-1, NaCl) on growth and physiological properties of four safflower (Carthamus tinctorius L.) genotypes, under open chamber conditions. Results showed that the effects of CO2 on biomass of shoot and grains depend on salt stress and plant genotype. Elevated CO2 conditions increased shoot dry weight under moderate salinity stress and decreased it under severe stress. The increased CO2 concentration also increased the safflower genotypes' relative water content and their K+/Na + concentrations. Also enriched CO2 increased total carotenoid levels in safflower genotypes and improved membrane stability index by reducing H2O2 levels. In addition, increased CO2 level led to an increase in seed oil content, under both saline and non-saline conditions. This effect was particularly pronounced under severe saline conditions. Under conditions of high CO2 and salinity, the Koseh genotype exhibited higher grain weight and seed oil content than other genotypes. This advantage is due to the higher relative water content, maximum quantum efficiency of photosystem II (Fv/Fm), and K+/Na+, as well as the lower Na+ and H2O2 concentrations. Results indicate that the high CO2 level mitigated the destructive effect of salinity on safflower growth by reducing Na + uptake and increasing the Fv/Fm, total soluble carbohydrates, and membrane stability index. This finding can be used in safflower breeding programs to develop cultivars that can thrive in arid regions with changing climatic conditions.
Collapse
Affiliation(s)
- M Vaghar
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - H R Eshghizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - P Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
6
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Liu C, Shi S, Wang T, Gong W, Xu L, Shi Z, Du J, Qu F. Analysis of Net Primary Productivity Variation and Quantitative Assessment of Driving Forces-A Case Study of the Yangtze River Basin. PLANTS (BASEL, SWITZERLAND) 2023; 12:3412. [PMID: 37836151 PMCID: PMC10574783 DOI: 10.3390/plants12193412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Net primary productivity (NPP) can indirectly reflect vegetation's capacity for CO2 fixation, but its spatiotemporal dynamics are subject to alterations to some extent due to the influences of climate change and human activities. In this study, NPP is used as an indicator to investigate vegetarian carbon ability changes in the vital ecosystems of the Yangtze River Basin (YRB) in China. We also explored the NPP responses to climate change and human activities. We conducted a comprehensive analysis of the temporal dynamics and spatial variations in NPP within the YRB ecosystems from 2003 to 2020. Furthermore, we employed residual analysis to quantitatively assess the contributions of climate factors and human activities to NPP changes. The research findings are as follows: (1) Over the 18-year period, the average NPP within the basin amounted to 543.95 gC/m2, displaying a noticeable fluctuating upward trend with a growth rate of approximately 3.1 gC/m2; (2) The areas exhibiting an increasing trend in NPP account for 82.55% of the total study area. Regions with relatively high stability in the basin covered 62.36% of the total area, while areas with low stability accounted for 2.22%, mainly situated in the Hengduan Mountains of the western Sichuan Plateau; (3) NPP improvement was jointly driven by human activities and climate change, with human activities contributing more significantly to NPP growth. Specifically, the contributions were 65.39% in total, with human activities contributing 59.28% and climate change contributing 40.01%. This study provides an objective assessment of the contributions of human activities and climate change to vegetation productivity, offering crucial insights for future ecosystem development and environmental planning.
Collapse
Affiliation(s)
- Chenxi Liu
- Electronic Information School, Wuhan University, Wuhan 430072, China; (C.L.)
| | - Shuo Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China; (C.L.)
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
- Perception and Effectiveness Assessment for Carbon-Neutrality Efforts, Engineering Research Center of Ministry of Education, Wuhan 430079, China
| | - Tong Wang
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
| | - Wei Gong
- Electronic Information School, Wuhan University, Wuhan 430072, China; (C.L.)
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
- Perception and Effectiveness Assessment for Carbon-Neutrality Efforts, Engineering Research Center of Ministry of Education, Wuhan 430079, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Lu Xu
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
| | - Zixi Shi
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
| | - Jie Du
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
| | - Fangfang Qu
- State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China
| |
Collapse
|
8
|
Approbato AU, Contin DR, Dias de Oliveira EA, Habermann E, Cela J, Pintó-Marijuan M, Munné-Bosch S, Martinez CA. Adjustments in photosynthetic pigments, PS II photochemistry and photoprotection in a tropical C4 forage plant exposed to warming and elevated [CO 2]. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:345-360. [PMID: 36463636 DOI: 10.1016/j.plaphy.2022.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Global climate change will impact crops and grasslands, affecting growth and yield. However, is not clear how the combination of warming and increased atmospheric carbon dioxide concentrations ([CO2]) will affect the photosystem II (PSII) photochemistry and the photosynthetic tissue photoinhibition and photoprotection on tropical forages. Here, we evaluated the effects of elevated [CO2] (∼600 μmol mol-1) and warming (+2 °C increase temperature) on the photochemistry of photosystem II and the photoprotection strategies of a tropical C4 forage Panicum maximum Jacq. grown in a Trop-T-FACE facility under well-watered conditions without nutrient limitation. Analysis of the maximum photochemical efficiency of PSII (Fv/Fm), the effective PSII quantum yield Y(II), the quantum yield of regulated energy dissipation Y(NPQ), the quantum yield of non-regulated energy dissipation Y(NO), and the malondialdehyde (MDA) contents in leaves revealed that the photosynthetic apparatus of plants did not suffer photoinhibitory damage, and plants did not increase lipid peroxidation in response to warming and [CO2] enrichment. Plants under warming treatment showed a 12% higher chlorophyll contents and a 58% decrease in α-tocopherol contents. In contrast, carotenoid composition (zeaxanthin and β-carotene) and ascorbate levels were not altered by elevated [CO2] and warming. The elevated temperature increased both net photosynthesis rate and aboveground biomass but elevated [CO2] increased only net photosynthesis. Adjustments in chlorophyll, de-epoxidation state of the xanthophylls cycle, and tocopherol contents suggest leaves of P. maximum can acclimate to 2 °C warmer temperature and elevated [CO2] when plants are grown with enough water and nutrients during tropical autumn-winter season.
Collapse
Affiliation(s)
- Andressa Uehara Approbato
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniele Ribeiro Contin
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | | | - Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Jana Cela
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Carlos Alberto Martinez
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Chandio AA, Akram W, Sargani GR, Twumasi MA, Ahmad F. Assessing the impacts of meteorological factors on soybean production in China: What role can agricultural subsidy play? ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Quantifying the Contributions of Climate Change and Human Activities to Maize Yield Dynamics at Multiple Timescales. WATER 2022. [DOI: 10.3390/w14121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Under a changing environment, the effect of climate change and human activities on maize yield is vital for ensuring food security and efficient socio-economic development. The time series of maize yield is generally non-stationary and contains different frequency components, such as long- and short-term oscillations. Nevertheless, there is no adequate understanding of the relative importance of climate change. In addition, human activities on maize yield at multiple timescales remain unclear, which help in further improving maize yield prediction. Based on the ensemble empirical mode decomposition method (EEMD), the method of dependent variable variance decomposition (DVVD) and the Sen-slope method, the effect of climate change including growing-season precipitation and temperature (i.e., GSP, GEP, CDD, GST, GSMAT, and GSMT) and human activities including effective irrigation area (EIA) and the consumption of chemical fertilizers (CCF) on maize yield were explored at multiple timescales during 1979–2015. The Heilongjiang Province, a highly important maize production area in China, was selected as a case study. The results of this work indicate the following: (1) The original maize yield series was divided into 3.1-, 7.4-, 18.5-, and 37-year timescale oscillations and a residual series with an increasing trend, where the 3.1-year timescale (IMF1), the 18.5-year timescale (IMF3), and the increasing trend (R) were dominant; (2) the original sequence was mainly affected by human activities; (3) climate change and human activities had different effects on maize yield at different timescales: The short-term oscillation (IMF1) of maize yield was primarily affected by climate change. However, human activities dominated the mid- and long-term oscillations (IMF3 and R) of maize yield. This study sheds new insight into multiple timescale analysis of the role of climate and human activities on maize yield dynamics.
Collapse
|
11
|
Elevated Atmospheric CO2 Concentration Influences the Rooting Habits of Winter-Wheat (Triticum aestivum L.) Varieties. SUSTAINABILITY 2022. [DOI: 10.3390/su14063304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intensity and the frequency of extreme drought are increasing worldwide. An elevated atmospheric CO2 concentration could counterbalance the negative impacts of water shortage; however, wheat genotypes show high variability in terms of CO2 reactions. The development of the root system is a key parameter of abiotic stress resistance. In our study, biomass and grain production, as well as the root growth of three winter-wheat varieties were examined under optimum watering and simulated drought stress in a combination with ambient and elevated atmospheric CO2 concentrations. The root growth was monitored by a CI-600 in situ root imager and the photos were analyzed by RootSnap software. As a result of the water shortage, the yield-related parameters decreased, but the most substantial yield reduction was first detected in Mv Karizma. The water shortage influenced the depth of the intensive root development, while under water-limited conditions, the root formation occurred in the deeper soil layers. The most intensive root development was observed until the heading, and the maximum root length was recorded at the beginning of the heading. The period of root development took longer under elevated CO2 concentration. The elevated CO2 concentration induced an accelerated root development in almost every soil layer, but generally, the CO2 fertilization induced in the root length of all genotypes and under each treatment.
Collapse
|
12
|
Nutritional quality in response to elevated CO2 concentration in foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Jayawardena DM, Heckathorn SA, Boldt JK. A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate. AOB PLANTS 2021; 13:plab031. [PMID: 34285792 PMCID: PMC8286714 DOI: 10.1093/aobpla/plab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/21/2021] [Indexed: 05/31/2023]
Abstract
Elevated CO2 (eCO2) and high temperatures are known to affect plant nitrogen (N) metabolism. Though the combined effects of eCO2 and chronic warming on plant N relations have been studied in some detail, a comprehensive statistical review on this topic is lacking. This meta-analysis examined the effects of eCO2 plus warming on shoot and root %N, tissue protein concentration (root, shoot and grain) and N-uptake rate. In the analyses, the eCO2 treatment was categorized into two classes (<300 or ≥300 ppm above ambient or control), the temperature treatment was categorized into three classes (<1.5, 1.5-5 and >5 °C above ambient or control), plant species were categorized based on growth form and functional group and CO2 treatment technique was also investigated. Elevated CO2 alone or in combination with warming reduced shoot %N (more so at ≥300 vs. <300 ppm above ambient CO2), while root %N was significantly reduced only by eCO2; warming alone often increased shoot %N, but mostly did not affect root %N. Decreased shoot %N with eCO2 alone or eCO2 plus warming was greater for woody and non-woody dicots than for grasses, and for legumes than non-legumes. Though root N-uptake rate was unaffected by eCO2, eCO2 plus warming decreased N-uptake rate, while warming alone increased it. Similar to %N, protein concentration decreased with eCO2 in shoots and grain (but not roots), increased with warming in grain and decreased with eCO2 and warming in grain. In summary, any benefits of warming to plant N status and root N-uptake rate will generally be offset by negative effects of eCO2. Hence, concomitant increases in CO2 and temperature are likely to negate or decrease the nutritional quality of plant tissue consumed as food by decreasing shoot %N and shoot and/or grain protein concentration, caused, at least in part, by decreased root N-uptake rate.
Collapse
Affiliation(s)
| | - Scott A Heckathorn
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jennifer K Boldt
- Agricultural Research Service, United States Department of Agriculture, Toledo, OH 43606, USA
| |
Collapse
|
14
|
Jing L, Chen C, Lu Q, Wang Y, Zhu J, Lai S, Wang Y, Yang L. How do elevated atmosphere CO 2 and temperature alter the physiochemical properties of starch granules and rice taste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142592. [PMID: 33071134 DOI: 10.1016/j.scitotenv.2020.142592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 (EC) and temperature (ET) strongly affect agricultural production, but the mechanism through which EC and/or ET influence starch granules and their relationship to cooked rice taste remain largely unknown. Therefore, a field experiment using a popular japonica cultivar grown in a temperature/free-air CO2 enrichment environment was conducted to investigate the responses of volume and fine structure of starch granules and their formation physiology to EC (+200 ppm) and/or ET (+1 °C) in 2015-2016. EC markedly enhanced the activity of soluble-starch synthase and granule-bound starch synthase by 28.0% and 27.9% respectively, thereby increasing the long chains and the volume of starch granules. However, EC decreased the activity of starch-branch enzyme by 7.5% possibly via the pathway of ethylene signalling (EC prominently decreased the ethylene evolution rate of rice grains by 28.8%), resulting in a remarkable decrease in α-1'6 glucosidic bonds and significant increase in the iodine-binding capacity and double helix in starch molecules. These EC-induced changes in morphology and fine structure of starch granules synergistically altered the thermal properties of rice flour and eventually improved the cohesiveness and taste of cooked rice, as suggested by the significant relationships between them. ET partially offset the beneficial EC effects in most cases. However, few remarkable CO2 × temperature or CO2 × year effects were detected, indicating that the effects of EC on starch granules and rice taste less varied with meteorological conditions. These findings have important implications on rice palatability and for the development of adaptive strategies in the starch industry in future environment.
Collapse
Affiliation(s)
- Liquan Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Shangkun Lai
- Suqian Institute, Jiangsu Academy of Agricultural Sciences, Suqian 223800, Jiangsu, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lianxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
15
|
Miao S, Qiao Y, Jin J, Wang Y, Tang C. Greater variation of bacterial community structure in soybean- than maize-grown Mollisol soils in responses to seven-year elevated CO 2 and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142836. [PMID: 33160664 DOI: 10.1016/j.scitotenv.2020.142836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Changes in rhizodeposits of crops under elevated CO2 (eCO2) and elevated temperature (eT) may substantially impact on soil microbial community, which in turn affects soil carbon and nutrient cycling. However, the responses of soil bacterial community to long-term eCO2 and eT are not fully understood. A seven-year field experiment using open-top chambers was carried out with soybean (Glycine max L. Merr.) and maize (Zea mays L.) grown in a Mollisol soil under ambient CO2 (380 ppm), eT (2.1 °C increase in air temperature) and eTeCO2 (elevated temperature plus elevated CO2, 2.1 °C increase in air temperature and 700 ppm CO2). Soil DNA was extracted for Illumina MiSeq sequencing. The principal coordinate analysis showed that changes of bacterial community structure due to eT and eTeCO2 were greater in soybean- than maize-grown soils. The eT increased the relative abundances of Gaiella and Bacillus in Actinobacteria and Firmicutes, but decreased those of Nocardioides and H16 in Actinobacteria and Proteobacteria, respectively. The magnitudes of responses of seven genera sensitive to eT varied between soybean- and maize-grown soils. The eTeCO2 decreased the relative abundance of Bacillus and increased those of Gaiella, Streptomyces and Mizugakiibacter. The abundances of Gaiella, Gemmatimonas, and Mizugakiibacter under eTeCO2 were higher in soybean- than maize-grown soils. The redundancy analysis showed that soil organic C, moisture, nitrate, microbial biomass N and Olsen-P significantly affected soil bacterial community composition. All these results indicate that long-term eT increased the abundance of bacterial community and shifted their composition compared to the ambient control. In addition, the bacterial community composition under eTeCO2 was more stable in maize- than soybean-grown soils. The study suggests that warming and crop species may interactively affect the stability of bacterial community linking to the sustainability of soil eco-function in future cropping systems.
Collapse
Affiliation(s)
- Shujie Miao
- School of Applied Meteorology, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Yunfa Qiao
- School of Applied Meteorology, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Jian Jin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, Vic 3086, Australia.
| | - Yanhong Wang
- Experimental Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, Vic 3086, Australia
| |
Collapse
|
16
|
Guo Z, Zhuang M, Yang L, Li Y, Wu S, Chen S. Differentiated mineral nutrient management in two bamboo species under elevated CO 2 environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111600. [PMID: 33160742 DOI: 10.1016/j.jenvman.2020.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrients play a critical role in maintaining plant growth, but are vulnerable to climate change, such as elevated atmospheric carbon dioxide (CO2) concentrations. Previous studies reported that impact of elevated CO2 concentrations on plant growth vary among plant species, which may affect differential mineral nutrient cycling among plant species. However, little is known about how increasing CO2 concentrations affect mineral nutrient uptake and allocation in bamboo species. Using open top chambers (OTCs), we investigated the effects of elevated CO2 concentrations on three key mineral nutrients (iron (Fe), calcium (Ca), and magnesium (Mg)) in two mature bamboo species (Phyllostachys edulis and Oligostachyum lubricum). Results showed increased leaf and root biomass under elevated CO2 concentrations (P. edulis: 30.24% and 10.94%; O. lubricum: 24.47% and 13.84%, respectively). Conversely, elevated CO2 concentrations had negligible effects on the biomass of other bamboo organs (e.g., branches and culms). To a certain extent, elevated CO2 concentrations also caused nutrient variation among the various organs of these two species. For Ph. edulis, elevated CO2 concentrations increased mineral content (Fe, Ca, and Mg) in and allocation to leaves while it decreased Fe and Mg allocation to roots. By contrast, elevated CO2 concentrations only increased mineral content in and allocation to O. lubricum leaves and decreased Mg to its roots. Results confirmed that elevated CO2 concentrations resulted in differential mineral nutrient uptake and allocation response between these two species. Understanding such differences is critical to the sustainable nutrient management of bamboo ecosystems under increasing CO2 concentrations.
Collapse
Affiliation(s)
- Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Minghao Zhuang
- College of Resource and Environment Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agriculture University, Beijing, 10094, China.
| | - Liting Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Yingchun Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Shuo Wu
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050061, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| |
Collapse
|
17
|
From Cardoon Lignocellulosic Biomass to Bio-1,4 Butanediol: An Integrated Biorefinery Model. Processes (Basel) 2020. [DOI: 10.3390/pr8121585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biorefineries are novel, productive models that are aimed at producing biobased alternatives to many fossil-based products. Biomass supply and overall energy consumptions are important issues determining the overall biorefinery sustainability. Low-profit lands appear to be a potential option for the sustainable production of raw materials without competition with the food chain. Cardoon particularly matches these characteristics, thanks to the rapid growth and the economy of the cultivation and harvesting steps. An integrated biorefinery processing 60 kton/y cardoon lignocellulosic biomass for the production of 1,4-butanediol (bio-BDO) is presented and discussed in this work. After designing the biorefinery flowsheet, the mass and energy balances were calculated. The results indicated that the energy recovery system has been designed to almost completely cover the entire energy requirement of the BDO production process. Despite the lower supply of electricity, the energy recovery system can cover around 78% of the total electricity demand. Instead, the thermal energy recovery system was able to satisfy the overall demand of the sugar production process entirely, while BDO purification columns require high-pressure steam. The thermal energy recovery system can cover around 83% of the total thermal demand. Finally, a cradle-to-gate simplified environmental assessment was conducted in order to evaluate the environmental impact of the process in terms of carbon footprint. The carbon footprint value calculated for the entire production process of BDO was 2.82 kgCO2eq/kgBDO. The cultivation phase accounted for 1.94 kgCO2eq/kgBDO, the transport had very little impact, only for 0.067 kgCO2eq/kgBDO, while the biorefinery phase contributes for 0.813 kgCO2eq/kgBDO.
Collapse
|
18
|
Ma Y, Wu Y, Song X. Seasonal responses of maize growth and water use to elevated CO 2 based on a coupled device with climate chamber and weighing lysimeters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140344. [PMID: 32603943 DOI: 10.1016/j.scitotenv.2020.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The increase in atmosphere carbon dioxide (CO2) concentrations has been the most important environmental change experienced by agricultural systems. It is still uncertain whether grain yield of the global food crop of maize will remain unchanged under a future elevated CO2 (eCO2) environment. A coupled device with climate chamber and weighing lysimeters was developed to explore the water-related yield responses of maize to eCO2. Two experiments were conducted via this device under eCO2 (700 ppm) and current CO2 (400 ppm) concentrations. Seasonal changes in multiple growth indicators and related hydrological processes were compared between these two experiments. The results showed that the eCO2 effects were not significant on several indicators, i.e., the leaf carbon (C) content, nitrogen (N) content, chlorophyll content, C/N ratio, net photosynthesis rate, and leaf area index over the entire growing season (p > 0.05). Nevertheless, the transpiration rate (Tr) significantly reduced during the seedling to filling stages but notably increased at the maturity stage due to eCO2 (p < 0.05). Significant reduction in crop height (mean of 15.9%, p < 0.05) associated with notable increases in stem diameter (mean of 14.9%, p < 0.05) were found throughout the growing season. Dry matter per corncob at the final harvest decreased slightly under eCO2 (mean of 7.7 g, p > 0.05). Soil water storage was not significantly conserved by the decline of Tr except during the filling stage. Soil evaporation was likely promoted by eCO2 that the total evapotranspiration changed little (1.2%) over the entire growing season. Although the leaf water use efficiency increased significantly at every growth stage (mean of 27.3%, p < 0.05), the grain yield and water productivity were not improved noticeably by eCO2. This study could provide significant insight into predicting future crop yield and hydrological changes under climate change.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yali Wu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100021, China
| | - Xianfang Song
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Maurya VK, Gupta SK, Sharma M, Majumder B, Deeba F, Pandey N, Pandey V. Proteomic changes may lead to yield alteration in maize under carbon dioxide enriched condition. 3 Biotech 2020; 10:203. [PMID: 32328402 PMCID: PMC7160224 DOI: 10.1007/s13205-020-02189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022] Open
Abstract
In the present study, the effect of elevated CO2 on growth, physiology, yield and proteome was studied on two maize (Zea mays L.) varieties grown under Free-air CO2 enrichment. Growth in high CO2 (530 ppm) did not affect either photosynthesis or pigment contents in both varieties. Reduced MDA content, antioxidant and antioxidative enzymes levels were observed in both varieties in response to high CO2. PEHM-5 accumulated more biomass than SMH-3031 under eCO2. PEHM-5 also had more seed starch and total soluble sugar than SMH-3031. However, SMH-3031 had increased number of seed per cob than PEHM-5. Interestingly, thousand seed weight was significantly increased in PEHM-5 only, while it was decreased in SMH-3031 under eCO2. We observed increased seed size in PEHM-5, while the size of the SMH-3031 seeds remained unaltered. Leaf proteomics revealed more abundance of proteins related to Calvin cycle, protein synthesis assembly and degradation, defense and redox homeostasis in PEHM-5 that contributed to better growth and yield in elevated CO2. While in SMH-3031 leaf, proteins related to Calvin cycle, defense and redox homeostasis were less abundant in elevated CO2 resulting in average growth and yield. The results showed a differential response of two maize varieties to eCO2.
Collapse
Affiliation(s)
- Vivek K. Maurya
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Sunil K. Gupta
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
20
|
Li Y, Yu Z, Yang S, Wang G, Liu X, Wang C, Xie Z, Jin J. Impact of elevated CO 2 on C:N:P ratio among soybean cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133784. [PMID: 31756809 DOI: 10.1016/j.scitotenv.2019.133784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 concentration (eCO2) exerts significant influence on nutrient requirement in plant. The investigation of C:N:P ratios in major cropping soils is important for managing nutrient balance and maximizing their use efficiency in future farming systems. This study aimed to examine the effect of eCO2 on the C:N:P ratios in different plant parts among soybean cultivars. Twenty-four soybean cultivars were planted in open top chambers at two CO2 concentrations (390 and 550 ppm) and sampled at the initial pod filling stage (R5) and the full maturity stage (R8). The C, N and P concentrations in root, stem, leaf and seed were determined. Elevated CO2 decreased the N concentrations in stem (-5.1%) and leaf (-3.2%) at R5, and in root (-24%), stem (-25%) and seed (-6.2%) at R8, resulting in a significant decrease of C:N ratio in the corresponding parts. The P concentration was significantly increased in root (6.0%), stem (7.9%) and leaf (16%) at R5, and in root (2.6%), stem (29%) and seed (16%) at R8 across 24 cultivars, leading to a decrease in the C:P ratio. Elevated CO2 significantly decreased the N:P ratio in root (-4.5%), stem (-12%) and leaf (-17%) at R5, and in root (-26%), stem (-57%) and seed (-22%) at R8. Furthermore, the response of C:N:P ratios to eCO2 varied greatly among soybean cultivars leading to significant CO2 × cultivar interactions. Nitrogen, but not P was the limiting factor for the soybean plants grown in Mollisols under eCO2. The considerable variation in the C:N:P ratios among cultivars in response to eCO2 indicates a potential improvement in soybean adaptability to climate change via selection new cultivars. Cultivars SN22 and ZH4 that did not considerably altered the C:N and C:P ratios in response to eCO2 are likely the optimal genomes in soybean breeding programs for eCO2 adaption.
Collapse
Affiliation(s)
- Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Songchao Yang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Chunyu Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhihuang Xie
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
21
|
Growth and Nutritional Responses of Bean and Soybean Genotypes to Elevated CO 2 in a Controlled Environment. PLANTS 2019; 8:plants8110465. [PMID: 31671712 PMCID: PMC6918337 DOI: 10.3390/plants8110465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
In the current situation of a constant increase in the atmospheric CO2 concentration, there is a potential risk of decreased nutritional value and food crop quality. Therefore, selecting strong-responsive varieties to elevated CO2 (eCO2) conditions in terms of yield and nutritional quality is an important decision for improving crop productivity under future CO2 conditions. Using bean and soybean varieties of contrasting responses to eCO2 and different origins, we assessed the effects of eCO2 (800 ppm) in a controlled environment on the yield performance and the concentration of protein, fat, and mineral elements in seeds. The range of seed yield responses to eCO2 was −11.0 to 32.7% (average change of 5%) in beans and −23.8 to 39.6% (average change of 7.1%) in soybeans. There was a significant correlation between seed yield enhancement and aboveground biomass, seed number, and pod number per plant. At maturity, eCO2 increased seed protein concentration in beans, while it did not affect soybean. Lipid concentration was not affected by eCO2 in either legume species. Compared with ambient CO2 (aCO2), the concentrations of manganese (Mn), iron (Fe), and potassium (K) decreased significantly, magnesium (Mg) increased, while zinc (Zn), phosphorus (P), and calcium (Ca) were not changed under eCO2 in bean seeds. However, in soybean, Mn and K concentrations decreased significantly, Ca increased, and Zn, Fe, P, and Mg concentrations were not significantly affected by eCO2 conditions. Our results suggest that intraspecific variation in seed yield improvement and reduced sensitivity to mineral losses might be suitable parameters for breeders to begin selecting lines that maximize yield and nutrition under eCO2.
Collapse
|