1
|
Thi Nguyen H, Choi W, Jeong S, Bae H, Oh S, Cho K. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134751. [PMID: 38820748 DOI: 10.1016/j.jhazmat.2024.134751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms. The disinfection efficiency increased with increasing the free chlorination concentration and exposure periods for both single- and multiple-species MP biofilms. The multiple-species MP biofilms were inactivated 1.3-6.0 times less than single-species MP biofilms. In addition, the PP-MP biofilms were more vulnerable to chlorination than the PS-MP biofilms. Morphology analysis verified that chlorination detached most MP biofilms, while a small part still remained. Interestingly, chlorination strongly changed the biofilm microbiome on MPs; the relative abundance of some microbes increased after the chlorination, suggesting they could be regarded as chlorine-resistant bacteria. Some potential pathogens were also remained on the MP particles after the chlorination. Notably, chlorination was effective in inactivating the MP biofilms. Further research should be performed to evaluate the impacts of residual MP biofilms on the environment.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seongpil Jeong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
3
|
Xu H, Zhang S, Wang F, Xie K, Liu G, Liu Y. AnCMBR-AFB-integrated process for the treatment of high nitrogen and phosphorus wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:199-211. [PMID: 38214995 PMCID: wst_2023_426 DOI: 10.2166/wst.2023.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Improving the nitrogen and phosphorus removal rates and efficiently controlling membrane fouling are the keys to fully exploiting the applicability of anaerobic membrane bioreactor (AnMBR) process in high-concentration wastewater treatment. To that purpose, an integrated reactor composed of an anaerobic ceramic membrane bioreactor and N anaerobic fluidized bed (AnCMBR-AFB) was built and pollutant removal efficiency, nitrogen and phosphorus recovery characteristics, and membrane pollution features of this integrated reactor were investigated. The results revealed that the integrated reactor had good pollutant removal efficiency, with turbidity, chromaticity, and UV254 average values of the effluent being 0.470 NTU, 0.011 A, and 0.057 cm-1, respectively, and the average CODCr removal rate was 80%. The nitrogen and phosphorus recoveries were significantly higher than the nitrogen and phosphorus removal rates of conventional AnMBR at 23.20 ± 1.17% and 43.34 ± 1.54%, respectively. Microscopic analysis revealed the formation of magnesium ammonium phosphate (MAP) crystals on the carrier's surface, and friction between the carrier and the membrane surface could delay membrane fouling while allowing the contaminated membrane surface to retain significant roughness. Membrane fouling was mostly brought on by amides and saturated hydrocarbons, and inorganic metal ions also played a role to some extent.
Collapse
Affiliation(s)
- Huayu Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China E-mail:
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | | | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Yutian Liu
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| |
Collapse
|
4
|
Dhiman S, Balakrishnan M, Naddeo V, Ahsan N. Performance of Anaerobic Membrane Bioreactor (AnMBR) with Sugarcane Bagasse Ash-based Ceramic Membrane treating Simulated Low-strength Municipal Wastewater: Effect of Operation Conditions. WATER, AIR, AND SOIL POLLUTION 2023; 234:141. [PMID: 36811124 PMCID: PMC9933834 DOI: 10.1007/s11270-023-06173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED This study assesses the performance of waste sugarcane bagasse ash (SBA)-based ceramic membrane in anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. The AnMBR was operated in sequential batch reactor (SBR) mode at hydraulic retention time (HRT) of 24 h, 18 h, and 10 h to understand the effect on organics removal and membrane performance. Feast-famine conditions were also examined to evaluate system performance under variable influent loadings. An average removal of >90% chemical oxygen demand (COD) was obtained at each HRT and starvation periods up to 96 days did not significantly affect removal efficiency. However, feast-famine conditions affected extracellular polymeric substances (EPS) production and consequently the membrane fouling. EPS production was high (135 mg/g MLVSS) when the system was restarted at 18 h HRT after shutdown (96 days) with corresponding high transmembrane pressure (TMP) build-up; however, the EPS content stabilized at ~60-80 mg/g MLVSS after a week of operation. Similar phenomenon of high EPS and high TMP was experienced after other shutdowns (94 and 48 days) as well. Permeate flux was 8.8±0.3, 11.2±0.1 and 18.4±3.4 L/m2 h at 24 h, 18 h and 10 h HRT, respectively. Filtration-relaxation (4 min - 1 min) and backflush (up to 4 times operating flux) helped control fouling rate. Surface deposits (that significantly attributed to fouling) could be effectively removed by physical cleaning, resulting in nearly complete flux recovery. Overall, SBR-AnMBR system equipped with waste-based ceramic membrane appears promising for treatment of low-strength wastewater with disruptions in feeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-023-06173-3.
Collapse
Affiliation(s)
- Sourbh Dhiman
- Department of Civil Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, 110025 India
| | - Malini Balakrishnan
- The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA Italy
| | - Naved Ahsan
- Department of Civil Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
5
|
Sivaprakash B, Rajamohan N, Reshmi A, Annadurai A, Varjani S. Applications of submerged and staged membrane systems for pollutant removal from effluents and mechanism studies - a review. CHEMOSPHERE 2022; 301:134747. [PMID: 35490749 DOI: 10.1016/j.chemosphere.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Membrane based filtration is one of the promising technologies for rehabilitation of wastewater streams for reuse and recycle. Many advancements have emerged with the use of novel materials and innovative integrated technologies. The present investigation focuses on the treatment methods based on submerged and stages systems of membranes for water purification. Ceramic, polymeric and mixed matrix type of membranes fabricated for specific type of effluents, their modification methods for accelerating the rejection efficiency, permeability, durability, stability and antifouling properties are detailed in this review. Graphene oxide is the most considered membrane material for adsorption purposes as it exhibits larger surface area, abundant functional groups contain oxygen and has good supply of ligands which is responsible in metal adsorption as it enhances electrostatic interaction by bonding metal ions with graphene oxide nanosheets. Energy derivation in terms of biogas production was also reported in some integrated methods. In many cases, embedded nanomaterial matrices yielded maximum efficiencies in both the submerged and staged operations. However, submerged type of membranes are reported more than the staged type due to simpler configuration with relatively lesser equipment, operational and maintenance issues. In treatment of a low strength wastewater, aluminum oxide based membrane in fluidized bed assembly was reported to yield promising results with reduced power requirement.
Collapse
Affiliation(s)
- Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Abitha Annadurai
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
6
|
Park S, Cho K, Lee T, Lee E, Bae H. Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153644. [PMID: 35122854 DOI: 10.1016/j.scitotenv.2022.153644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Partial nitritation (PN) is a bioprocess that is essential for developing cost-effective biological nitrogen removal processes. Understanding the abundant bacterial communities responsible for nitrification under salt stress conditions is important to achieve a stable PN system for treating saline wastewater. Therefore, in this study, we identified the core nitrifying communities and investigated their correlations with the process parameters in a nitrifying bioreactor that was used for treating saline high-strength ammonia wastewater. A PN system worked efficiently under saline conditions with varying operational factors, such as temperature, dissolved oxygen (DO), and alkalinity. Interestingly, the specific oxygen uptake rate (SOUR) became similar under salt-free and saline media after the salt adaption. Next generation sequencing results suggested that the inactivation of Nitrobacter winogradskyi was a key factor for the PN reaction under salt stress conditions. We also found that Nitrosomonas europaea, a freshwater type ammonia-oxidizing bacteria (AOB), was predominantly found under both salt-free and saline conditions, whereas other halotolerant or halophilic AOB species, including Nitrosomonas nitrosa and Nitrosomonas mobilis, became selectively abundant under saline conditions. This implies that adaptation (training of N. europaea) and selection (presence of N. nitrosa and N. mobilis) were simultaneously attributed to selective ammonia conversion for the PN reaction. The redundancy analysis showed that the salinity and ammonia loading rates were statistically significant process parameters that determined the nitrifying bacterial community, suggesting that these parameters drive the adaptation and selection of the core AOB species during the PN reaction. Furthermore, the correlation analysis revealed that the abundance of N. nitrosa and N. mobilis was critically correlated with the specific oxygen uptake rates in saline media containing ammonia.
Collapse
Affiliation(s)
- Suin Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Eunsu Lee
- R&D Center, POSCO E&C, 241, Incheon tower-daero, Yeonsu-gu, Incheon 22009, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Kim EJ, Park S, Adil S, Lee S, Cho K. Biogeochemical Alteration of an Aquifer Soil during In Situ Chemical Oxidation by Hydrogen Peroxide and Peroxymonosulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5301-5311. [PMID: 33755424 DOI: 10.1021/acs.est.0c06206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the effects of in situ chemical oxidation (ISCO) on the biogeochemical properties of an aquifer soil were evaluated. Microcosms packed with an aquifer soil were investigated for 4 months in two phases including oxidant exposure (phase I) and biostimulation involving acetate addition (phase II). The geochemical and microbial alterations from different concentrations (0.2 and 50 mM) of hydrogen peroxide (HP) and peroxymonosulfate (PMS) were assessed. The 50 mM PMS-treated sample exhibited the most significant geochemical changes, characterized by the decrease in pH and the presence of more crystalline phases. Microbial activity decreased for all ISCO-treated microcosms compared to the controls; particularly, the activity was severely inhibited at high PMS concentration exposure. The soil microbial community structures were shifted after the ISCO treatment, with the high PMS causing the most distinct changes. Microbes such as the Azotobacter chroococcum and Gerobacter spp. increased during phase II of the ISCO treatment, indicating these bacterial communities can promote organic degradation despite the oxidants exposure. The HP (low and high concentrations) and low concentration PMS exposure temporarily impacted the microbial activity, with recovery after some duration, whereas the microbial activity was less recovered after the high concentration PMS exposure. These results suggest that the use of HP and low concentration PMS are suitable ISCO strategies for aquifer soil bioattenuation.
Collapse
Affiliation(s)
- Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Saerom Park
- Urban Water Circulation Research Center, Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, Gyeonggi-do 10223, Republic of Korea
| | - Sawaira Adil
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Jeong D, Bae H. Insight into functionally active bacteria in nitrification following Na + and Mg 2+ exposure based on 16S rDNA and 16S rRNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143592. [PMID: 33277005 DOI: 10.1016/j.scitotenv.2020.143592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Despite increasing interests in osmotic membrane bioreactors, the information regarding the bacterial toxicity effects of reversely transported draw solute (RTDS) is limited. In this study, two representative draw solutes (NaCl and MgCl2) were used at different concentrations (0, 2.5, 5.0, 7.5 and 10.0 g/L) to evaluate their toxicity in a continuous nitrifying bioreactor. Notably, Mg2+ selectively inhibited the activity of ammonia-oxidizing bacteria (AOB), which decreased to 11.3% at 7.5 g-Mg2+/L. The rRNA-based analysis was more effective than the rDNA-based analysis to elucidate the relationship between active communities of nitrifying bacteria and the actual nitrifying performance. Nitrosomonas europaea, a representative AOB, was vulnerable to Mg2+ in comparison to Na+. In contrast, the dominant nitrite-oxidizing bacteria (NOB), Nitrobacter winogradskyi and Nitrolancea hollandica, maintained a relevant level of relative abundance for achieving nitrite oxidation after exposure to 10 g/L Na+ and Mg2+. This fundamental inhibition information of the draw solute can be applied to set the operational regime preventing the critical solute concentration in mixed liquor of nitrifying OMBRs.
Collapse
Affiliation(s)
- Dawoon Jeong
- Institute of Environmental Research, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Chen C, Sun M, Liu Z, Zhang J, Xiao K, Zhang X, Song G, Chang J, Liu G, Wang H, Huang X. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. WATER RESEARCH 2021; 189:116552. [PMID: 33166921 DOI: 10.1016/j.watres.2020.116552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5-15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5-35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingzhuang Sun
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiao Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xian Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangqing Song
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiang Chang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Guoliang Liu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Hao Wang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xia Huang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Hou L, Griswold N, Hu Z. Impact of decreasing hydraulic retention times on the specific affinity of methanogens and their community structures in an anaerobic membrane bioreactor process treating low strength wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140373. [PMID: 32758975 DOI: 10.1016/j.scitotenv.2020.140373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Maximum specific growth rate (μmax) and substrate saturation constant (Ks) are widely used in determining the growth of microorganisms. The ratio (μmax/Ks), also referred to as specific affinity, aA0, is a better parameter to assess the advantage in competition for substrates by bridging microbial growth and the kinetics of enzymatic substrate uptake, but is not well studied. This study investigated the effect of hydraulic retention time (HRT) on the aA0 of anaerobic sludge from an anaerobic membrane bioreactor (AnMBR), associated microbial communities and the overall wastewater treatment performance. The AnMBR was fed with acetate wastewater (~500 mg COD/L) and operated at fixed solids retention time (45 d) while HRT continued to decrease. There was no significant difference in Ks (ranging from 170 to 243 mg COD/L) at different HRTs. However, aA0 increased from (4.0 ± 0.2) × 10-4 to (4.9 ± 0.2) × 10-4 and to (6.5 ± 0.1) × 10-4 L/mg COD/d as HRT decreased from 24 h to 12 h and further to 6 h, respectively. This was accompanied by the increase in acetoclastic methanogens (mainly Methanosaeta) from 3.85 × 1010, 8.82 × 1010 to 1.05 × 1011 cells/L, respectively. The fraction of Methanosaeta in the anaerobic biomass increased from 33.67% to 61.08% as HRT decreased from 24 h to 6 h. Correspondingly, effluent quality was improved, as evidenced from the COD concentrations of 32 ± 6, 21 ± 4, and 13 ± 5 mg/L at the HRTs of 24 h, 12 h, and 6 h, respectively. The results confirm that microorganisms are able to adapt to growth conditions by adjusting their kinetic properties and suggest that short HRTs in the AnMBR favor the growth and accumulation of Methanosaeta with high specific affinity likely because they can compete for acetate at low concentrations by increasing substrate uptake rate and thus specific microbial growth rate.
Collapse
Affiliation(s)
- Liyuan Hou
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Nicholas Griswold
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
11
|
Zarei-Baygi A, Wang P, Harb M, Stadler LB, Smith AL. Membrane Fouling Inversely Impacts Intracellular and Extracellular Antibiotic Resistance Gene Abundances in the Effluent of an Anaerobic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12742-12751. [PMID: 32875793 DOI: 10.1021/acs.est.0c04787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) can significantly reduce the release of antibiotic resistance elements to the environment. The purpose of this study was to elucidate the role of membrane fouling layers (biofilms) in mitigating the release of intracellular and extracellular antibiotic resistance genes (iARGs and eARGs) from an AnMBR. The AnMBR was equipped with three membrane modules, each exhibiting a different level of fouling. Results showed that the absolute abundance of ARGs decreased gradually in the suspended biomass during operation of the AnMBR. Normalized abundances of targeted ARGs and intI1 were found to be significantly higher in the fouling layers compared to the suspended biomass, implying adsorption or an increased potential for horizontal gene transfer of ARGs in the biofilm. Effluent ARG data revealed that the highly fouled (HF) membrane significantly reduced the absolute abundance of eARGs. However, the HF membrane effluent concomitantly had the highest absolute abundance of iARGs. Nevertheless, total ARG abundance (sum of iARG and eARG) in the effluent of the AnMBR was not impacted by the extent of fouling. These results suggest a need for a combination of different treatment technologies to effectively prevent antibiotic resistance proliferation associated with these two ARG fractions.
Collapse
Affiliation(s)
- Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos 1102, Lebanon
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S Vermont Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Effects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature. MEMBRANES 2020; 10:membranes10090196. [PMID: 32825741 PMCID: PMC7559899 DOI: 10.3390/membranes10090196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. The soluble chemical oxygen demand (SCOD) removal was higher (89.6%) at 25 days SRT compared with 50 days (39.61%) and 100 days (34.3%) SRT. At 100 days SRT, more Bacteroidetes, Firmicutes, and Proteobacteria were present in the microbial community. At 25 days SRT, more Chloroflexi, Synergistetes, and Pastescibacteria emerged, contributing to the stable performance. The SRT of 25 days has resulted in a more stable microbial community compared with 50 days and 100 days SRT. Both bacterial and archaeal community diversities were higher at 25 days SRT, and the specific production of soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were higher at 25 days SRT as well. Consequently, the membrane flux was lower at 25 days SRT with the increased particle size and the enhanced SMPs and EPSs production. Fourier transform infrared spectroscopy analysis (FTIR) and three-dimensional excitation and emission matrix (3D-EEM) analysis showed that protein and SMPs were the major membrane foulants at all SRT stages. In this study, SRT at 25 days was favorable for the stable operation of an AnCMBR treating domestic wastewater at ambient temperature.
Collapse
|
13
|
Ebrahimi M, Schmidt AA, Kaplan C, Schmitz O, Czermak P. Innovative Optical-Sensing Technology for the Online Fouling Characterization of Silicon Carbide Membranes during the Treatment of Oily Water. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1161. [PMID: 32093210 PMCID: PMC7070966 DOI: 10.3390/s20041161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
The oil and gas industry generates a large volume of contaminated water (produced water) which must be processed to recover oil before discharge. Here, we evaluated the performance and fouling behavior of commercial ceramic silicon carbide membranes in the treatment of oily wastewaters. In this context, microfiltration and ultrafiltration ceramic membranes were used for the separation of oil during the treatment of tank dewatering produced water and oily model solutions, respectively. We also tested a new online oil-in-water sensor (OMD-32) based on the principle of light scattering for the continuous measurement of oil concentrations in order to optimize the main filtration process parameters that determine membrane performance: the transmembrane pressure and cross-flow velocity. Using the OMD-32 sensor, the oil content of the feed, concentrate and permeate streams was measured continuously and fell within the range 0.0-200 parts per million (ppm) with a resolution of 1.0 ppm. The ceramic membranes achieved an oil-recovery efficiency of up to 98% with less than 1.0 ppm residual oil in the permeate stream, meeting environmental regulations for discharge in most areas.
Collapse
Affiliation(s)
- Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (C.K.); (O.S.); (P.C.)
| | - Axel A. Schmidt
- Department R&D, DECKMA Hamburg GmbH, 22525 Hamburg, Germany;
| | - Cagatay Kaplan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (C.K.); (O.S.); (P.C.)
| | - Oliver Schmitz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (C.K.); (O.S.); (P.C.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (C.K.); (O.S.); (P.C.)
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, 35390 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, 35392 Giessen, Germany
| |
Collapse
|