1
|
Chen Y, Wu J, Zhao J, Yang H, Attaran Dovom H, Sivakumar M, Jiang G. A critical review of sulfide and methane control in urban sewer systems using nitrogen compounds. WATER RESEARCH 2025; 277:123314. [PMID: 40020350 DOI: 10.1016/j.watres.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Sewer gases, primarily hydrogen sulfide and methane, are detrimental to the wastewater infrastructure and environment by causing odour, corrosion, and greenhouse gas emissions. This article critically reviewed the dosing strategies, working mechanisms and effectiveness of widely used nitrogen compounds including nitrate, nitrite, free nitrous acid (FNA), free ammonia (FA), and organic silicon quaternary ammonium salt (QSA) in mitigating sewer emissions. Nitrate and nitrite play pivotal roles in increasing redox potentials and introducing microbial sulfide and methane oxidation. FNA and FA, known for their potent inhibitory and biocidal properties, effectively reduce sulfate reduction and methane production by disrupting cell membranes, altering intracellular pH, and blocking metabolic pathways. A systematic summary of the control effectiveness and associated change of microbial community were conducted based on different dosing strategies involving continuous or intermittent dosing patterns with constant, diurnal, dynamic and shock concentration profiles. Beyond their effectiveness in controlling emissions, nitrogen compounds like nitrite and FNA are effective in mitigating sewer concrete corrosion but also raise concerns about potential nitrous oxide (N2O) emissions. The innovative use of urine to produce FNA and FA may lead to a closed-loop strategy to achieve sustainable sewer emission control. This comprehensive review covering the dosing strategies, mechanisms, and effectiveness of nitrogen compounds will support the further development and optimal implementation.
Collapse
Affiliation(s)
- Yan Chen
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Jiangping Wu
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Jiawei Zhao
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Huizi Yang
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Hamed Attaran Dovom
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining, Environmental, and Architecture Engineering, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
2
|
Lemaire ON, Belhamri M, Wagner T. Structural and biochemical elucidation of class I hybrid cluster protein natively extracted from a marine methanogenic archaeon. Front Microbiol 2023; 14:1179204. [PMID: 37250035 PMCID: PMC10210160 DOI: 10.3389/fmicb.2023.1179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Whilst widespread in the microbial world, the hybrid cluster protein (HCP) has been paradoxically a long-time riddle for microbiologists. During three decades, numerous studies on a few model organisms unravelled its structure and dissected its metal-containing catalyst, but the physiological function of the enzyme remained elusive. Recent studies on bacteria point towards a nitric oxide reductase activity involved in resistance during nitrate and nitrite reduction as well as host infection. In this study, we isolated and characterised a naturally highly produced HCP class I from a marine methanogenic archaeon grown on ammonia. The crystal structures of the enzyme in a reduced and partially oxidised state, obtained at a resolution of 1.45 and 1.36-Å, respectively, offered a precise picture of the archaeal enzyme intimacy. There are striking similarities with the well-studied enzymes from Desulfovibrio species regarding sequence, kinetic parameters, structure, catalyst conformations, and internal channelling systems. The close phylogenetic relationship between the enzymes from Methanococcales and many Bacteria corroborates this similarity. Indeed, Methanococcales HCPs are closer to these bacterial homologues than to any other archaeal enzymes. The relatively high constitutive production of HCP in M. thermolithotrophicus, in the absence of a notable nitric oxide source, questions the physiological function of the enzyme in these ancient anaerobes.
Collapse
|
3
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Liu Y, Zhu Y, Wu D, Wang Z, Wang Y, Wang G, Zhou X, Sun H. Effect of free nitrous acid on nitritation process: Microbial community, inhibitory kinetics, and functional biomarker. BIORESOURCE TECHNOLOGY 2023; 371:128595. [PMID: 36634879 DOI: 10.1016/j.biortech.2023.128595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
This work comprehensively deciphered the effect of free nitrous acid (FNA) on the microbial community, inhibitory kinetics, and nitrifiers in nitritation process. Nitritation was first successfully achieved through selective inhibition of free ammonia (FA) on nitrite oxidizers (NOB). Then, batch tests clearly showed that FNA significantly inhibits the ammonia oxidation rate (rsu) and the growth rate (μ) of ammonia oxidizers (AOB), which was well described by the Hellinga model (KI = 0.222 mg·L-1). The structural equation model indicated that FNA was significantly and negatively associated with rsu, μ, Nitrosomonas, Commamons, Nitrospira, and Nitrotoga and positively correlated with Paracoccus. Furthermore, Nitrosomonas significantly drove the ammonia utilization and growth of AOB and was identified as the most important functional biomarker indicating the nitritation in response to FNA levels using random forest model. This study provides helpful information on the kinetics of the mechanism underlying the FNA inhibition on nitrification.
Collapse
Affiliation(s)
- Yucan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Daishun Wu
- Fujian Provincial Key Laboratory of Coastal Basin Environment, School of Marine and Biochemical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Zhaoyang Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
5
|
Abbew AW, Amadu AA, Qiu S, Champagne P, Adebayo I, Anifowose PO, Ge S. Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127916. [PMID: 36087656 DOI: 10.1016/j.biortech.2022.127916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Microalgal-bacterial consortium (MBC) constitutes a sustainable and efficient alternative to the conventional activated sludge process for wastewater treatment (WWT). Recently, integrating the MBC process with nitritation (i.e., shortcut MBC) has been proposed to achieve added benefits of reduced carbon and aeration requirements. In the shortcut MBC system, nitrite or free nitrous acid (FNA) accumulation exerts antimicrobial influences that disrupt the stable process performance. In this review, the formation and interactions that influence the performance of the MBC were firstly summarized. Then the influence of FNA on microalgal and bacterial monocultures and related mechanisms together with the knowledge gaps of FNA influence on the shortcut MBC were highlighted. Other challenges and future perspectives that impact the scale-up of the shortcut MBC for WWT were illustrated. A potential roadmap is proposed on how to maximize the stable operation of the shortcut MBC system for sustainable WWT and high-value biomass production.
Collapse
Affiliation(s)
- Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Pascale Champagne
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ismaeel Adebayo
- School of Chemical Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Peter Oluwaseun Anifowose
- School of Science, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
6
|
Jiang C, Wang X, Wang H, Xu S, Zhang W, Meng Q, Zhuang X. Achieving Partial Nitritation by Treating Sludge With Free Nitrous Acid: The Potential Role of Quorum Sensing. Front Microbiol 2022; 13:897566. [PMID: 35572707 PMCID: PMC9095614 DOI: 10.3389/fmicb.2022.897566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Partial nitritation is increasingly regarded as a promising biological nitrogen removal process owing to lower energy consumption and better nitrogen removal performance compared to the traditional nitrification process, especially for the treatment of low carbon wastewater. Regulating microbial community structure and function in sewage treatment systems, which are mainly determined by quorum sensing (QS), by free nitrous acid (FNA) to establish a partial nitritation process is an efficient and stable method. Plenty of research papers reported that QS systems ubiquitously existed in ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), and various novel nitrogen removal processes based on partial nitritation were successfully established using FNA. Although the probability that partial nitritation process might be achieved by the regulation of FNA on microbial community structure and function through the QS system was widely recognized and discussed, the potential role of QS in partial nitritation achievement by FNA and the regulation mechanism of FNA on QS system have not been reviewed. This article systematically reviewed the potential role of QS in the establishment of partial nitritation using FNA to regulate activated sludge flora based on the summary and analysis of the published literature for the first time, and future research directions were also proposed.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Shenzhen Shenshui Water Resources Consulting Co., Ltd., Shenzhen, China
| | - Qingjie Meng
- Shenzhen Shenshui Water Resources Consulting Co., Ltd., Shenzhen, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
|
8
|
Li Y, Wu S, Wang S, Zhao S, Zhuang X. Anaerobic degradation of xenobiotic organic contaminants (XOCs): The role of electron flow and potential enhancing strategies. J Environ Sci (China) 2021; 101:397-412. [PMID: 33334534 DOI: 10.1016/j.jes.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect - electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.
Collapse
Affiliation(s)
- Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Wei R, Hui C, Zhang Y, Jiang H, Zhao Y, Du L. Nitrogen removal characteristics and predicted conversion pathways of a heterotrophic nitrification-aerobic denitrification bacterium, Pseudomonas aeruginosa P-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7503-7514. [PMID: 33034853 DOI: 10.1007/s11356-020-11066-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, the heterotrophic nitrification-aerobic denitrification activity of Pseudomonas aeruginosa (P-1) strain was investigated, and the N transformation pathway was revealed. The highest removal rates of NH4+, NO3-, and NO2- (9.29, 6.12, and 3.72 mg L-1 h-1, respectively) by this strain were higher than those by most reported bacteria and were achieved when the carbon source was glucose, C/N ratio was 15, pH was 8, temperature was 30 °C, and shaking speed was 200 rpm. The removal order and characteristics of three N sources were investigated in Pseudomonas aeruginosa for the first time. The results revealed that P-1 preferentially nitrified NH4+ and only began to denitrify NO2- and NO3- when NH4+ was almost entirely depleted. Isotopic labeling of N sources revealed that P-1 uses both partial and complete nitrification/denitrification pathways that can operate either simultaneously or independently, depending on the availability of different types of N compounds, with N2 as the final gaseous product and virtually no NO2- accumulation. Moreover, the P-1 strain could convert various nitrogen compounds under high salinity (40 g L-1) and high concentrations of Cu2+, Zn2+, Cr6+, Pb2+, and Cd2+ (50 mg L-1). Therefore, P-1 could be used as an alternative of inorganic N-removal bacteria in practical applications.
Collapse
Affiliation(s)
- Ran Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Hui
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiping Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhua Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Lu J, Engelstädter J, Zhang S, Ding P, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. THE ISME JOURNAL 2020; 14:2179-2196. [PMID: 32424247 PMCID: PMC7367833 DOI: 10.1038/s41396-020-0679-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a serious global threat for public health. Considering the high abundance of cell-free DNA encoding antibiotic resistance genes (ARGs) in both clinical and environmental settings, natural transformation is an important horizontal gene transfer pathway to transmit antibiotic resistance. It is acknowledged that antibiotics are key drivers for disseminating antibiotic resistance, yet the contributions of non-antibiotic pharmaceuticals on transformation of ARGs are overlooked. In this study, we report that some commonly consumed non-antibiotic pharmaceuticals, at clinically and environmentally relevant concentrations, significantly facilitated the spread of antibiotic resistance through the uptake of exogenous ARGs. This included nonsteroidal anti-inflammatories, ibuprofen, naproxen, diclofenac, the lipid-lowering drug, gemfibrozil, and the β-blocker propranolol. Based on the results of flow cytometry, whole-genome RNA sequencing and proteomic analysis, the enhanced transformation of ARGs was affiliated with promoted bacterial competence, enhanced stress levels, over-produced reactive oxygen species and increased cell membrane permeability. In addition, a mathematical model was proposed and calibrated to predict the dynamics of transformation during exposure to non-antibiotic pharmaceuticals. Given the high consumption of non-antibiotic pharmaceuticals, these findings reveal new concerns regarding antibiotic resistance dissemination exacerbated by non-antibiotic pharmaceuticals.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pengbo Ding
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Duan H, Gao S, Li X, Ab Hamid NH, Jiang G, Zheng M, Bai X, Bond PL, Lu X, Chislett MM, Hu S, Ye L, Yuan Z. Improving wastewater management using free nitrous acid (FNA). WATER RESEARCH 2020; 171:115382. [PMID: 31855696 DOI: 10.1016/j.watres.2019.115382] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA), the protonated form of nitrite, has historically been an unwanted substance in wastewater systems due to its inhibition on a wide range of microorganisms. However, in recent years, advanced understanding of FNA inhibitory and biocidal effects on microorganisms has led to the development of a series of FNA-based applications that improve wastewater management practices. FNA has been used in sewer systems to control sewer corrosion and odor; in wastewater treatment to achieve carbon and energy efficient nitrogen removal; in sludge management to improve the sludge reduction and energy recovery; in membrane systems to address membrane fouling; and in wastewater algae systems to facilitate algae harvesting. This paper aims to comprehensively and critically review the current status of FNA-based applications in improving wastewater management. The underlying mechanisms of FNA inhibitory and biocidal effects are also reviewed and discussed. Knowledge gaps and current limitations of the FNA-based applications are identified; and perspectives on the development of FNA-based applications are discussed. We conclude that the FNA-based technologies have great potential for enhancing the performance of wastewater systems; however, further development and demonstration at larger scales are still required for their wider applications.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shuhong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xue Bai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariella M Chislett
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|