1
|
Oladoye PO, Wang K, Aguilar K, Liu G, Cai Y. Particles-involved photochemical processes: A review for the case of mercury reduction in relation to aquatic mercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172845. [PMID: 38685427 DOI: 10.1016/j.scitotenv.2024.172845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Mercury (Hg) is one of the toxic metals of global and environmental concern, with aquatic Hg cycling being central in determining the production of highly toxic methylmercury and the air-water Hg exchange influencing the long-range intercontinental atmospheric Hg transport. Both inorganic and organic forms of Hg can be bound by suspended particles, including inorganic minerals (in particular metal oxides/sulfides) and particulate organic matter. Photochemical transformation is a critical process in surface water, and the role of suspended particles in Hg redox photoreactions has increasingly emerged, albeit in limited studies in comparison to extensive studies on aqueous (homogeneous) photoreactions of Hg. The lack of understanding of what roles suspended particles play might result in inaccurate estimation of how Hg species transform and/or cycle in the environment. In view of this gap, this paper critically reviews and synthesizes information on the studies conducted on different natural surface waters with respect to the potential roles of suspended particles on Hg photo-redox reactions. It robustly discusses the various possible pathways and/or mechanisms of particle-mediated Hg (II) reduction, in enhancing or lowering the production of dissolved gaseous mercury. These processes include photo hole-electron pair formation and reactive oxygen species generation from particle excitation and their involvement in Hg photoreduction, in addition to the light attenuation effect of particles. This paper highlights the necessity of future studies exploiting these particles-mediated Hg photoreactions pathways and the implications of including these heterogeneous photoreactions (together with particulate elemental Hg species) on the air-water Hg exchange estimation.
Collapse
Affiliation(s)
- Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States.
| | - Kang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States
| | - Kate Aguilar
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States.
| |
Collapse
|
2
|
Crowther ER, Demers JD, Blum JD, Brooks SC, Johnson MW. Coupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organisms. Anal Bioanal Chem 2023; 415:759-774. [PMID: 36472636 DOI: 10.1007/s00216-022-04468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Isotope ratios of methylmercury (MeHg) within organisms can be used to identify sources of MeHg that have accumulated in food webs, but these isotopic compositions are masked in organisms at lower trophic levels by the presence of inorganic mercury (iHg). To facilitate measurement of MeHg isotope ratios in organisms, we developed a method of extracting and isolating MeHg from fish and aquatic invertebrates for compound-specific isotopic analysis involving nitric acid digestion, batch anion-exchange resin separation, and pre-concentration by purge and trap. Recovery of MeHg was quantified after each step in the procedure, and the average cumulative recovery of MeHg was 93.4 ± 2.9% (1 SD, n = 28) for biological reference materials and natural biota samples and 96.9 ± 1.8% (1 SD, n = 5) for aqueous MeHgCl standards. The amount of iHg impurities was also quantified after each step, and the average MeHg purity was 97.8 ± 4.3% (1 SD, n = 28) across all reference materials and natural biota samples after the final separation step. Measured MeHg isotopic compositions of reference materials agreed with literature values obtained using other MeHg separation techniques, and MeHg isotope ratios of aqueous standards, reference materials, and natural biota samples were reproducible. On average, the reproducibility associated with reference material process replicates (2 SD) was 0.10‰ for δ202MeHg and 0.04‰ for Δ199MeHg. This new method provides a streamlined, reliable technique that utilizes a single sample aliquot for MeHg concentration and isotopic analysis. This promotes a tight coupling between MeHg concentration, %MeHg, and Hg isotopic composition, which may be especially beneficial for studying complex food webs with multiple isotopically distinct sources of iHg and/or MeHg.
Collapse
Affiliation(s)
- Elizabeth R Crowther
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA.
| | - Jason D Demers
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Rd., Durham, NH, 03824-2600, USA
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
| | - Scott C Brooks
- Environmental Science Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831-6038, USA
| | - Marcus W Johnson
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
| |
Collapse
|
3
|
Huang S, Zhao Y, Lv S, Wang W, Wang W, Zhang Y, Huo Y, Sun X, Chen Y. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions. CHEMOSPHERE 2021; 272:129716. [PMID: 33601205 DOI: 10.1016/j.chemosphere.2021.129716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 05/24/2023]
Abstract
Isotope signatures of mercury (Hg) were determined for Hg fractions in seawater, sediments, porewaters, core sediments and fish from the Yundang Lagoon, Xiamen, China. Sequential extraction was used to extract Hg fractions in sediments and the purge-trap method was used to preconcentrate Hg in seawater. A large variation in mass dependent fractionation (δ202Hg: -2.50‰ to -0.36‰) was observed in the lagoon. Seawater and fish samples showed positive mass-independent fractionation (Δ199Hg: -0.06‰-0.45‰), while most of sediment and porewater samples displayed insignificant mass-independent fractionation (Δ199Hg: -0.10‰-0.07‰). Ancillary parameters (total organic carbon, sulfide, pH, Eh, water content and grain size) were also measured in the sediments to investigate correlations with Hg isotopes. Three sources (domestic sewage, sediments and atmospheric deposition) were identified as the main sources of Hg in the lagoon seawater. Photochemical reaction was the main process causing isotope fractionation in seawater. Through Hg partitioning and deposition, light isotopes were enriched from dissolved Hg to particulate Hg, then to sediments, and then to porewaters. Finally, Hg isotope signatures were used to identify the Hg sources and fractionation processes in core sediments from different depths. Our results demonstrate that Hg isotopes are powerful tools for tracing Hg sources and arriving at a better understanding of Hg biogeochemical cycling in the lagoon after long-term interventions.
Collapse
Affiliation(s)
- Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weiguo Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Hossain F. Contaminated aquatic sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1794-1804. [PMID: 33459448 DOI: 10.1002/wer.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 06/12/2023]
Abstract
Aquatic sediments are contaminated by different anthropogenic activities and natural deposition. This review manuscript has discussed on published manuscript in 2019 based on monitoring and identification of contaminants, GIS application and isotopic evaluation for monitoring of pollutants, physicochemical and biochemical fate and transport of the pollutants as well as remediation and toxicity analysis so that environmental and ecological impacts due to pollution can be minimized.
Collapse
Affiliation(s)
- Fahim Hossain
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Tsui MTK, Blum JD, Kwon SY. Review of stable mercury isotopes in ecology and biogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135386. [PMID: 31839301 DOI: 10.1016/j.scitotenv.2019.135386] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the advent of cold vapor-multicollector-inductively coupled plasma mass spectrometry (CV-MC-ICP-MS) in the past two decades, many research groups studying mercury (Hg) biogeochemistry have integrated stable Hg isotopes into their research. Currently, >200 studies using this technique have been published and this has greatly enhanced our understanding of the Hg biogeochemical cycle beyond what Hg concentration and speciation analyses alone can provide. These studies are largely divided into two groups: (i) controlled experiments investigating fractionation of Hg isotopes and refining tools of isotopic analyses, and (ii) studies of natural variations of Hg isotopes. It is now known that Hg isotopes undergo both mass dependent fractionation (MDF; reported as the ratio of mass 202Hg to 198Hg) and mass independent fractionation (MIF), with MIF occurring at odd masses (199Hg, 201Hg) to a larger magnitude and at even masses (200Hg, 204Hg) to a much smaller magnitude. The two types of MIF are controlled by different photochemical processes. The range of isotopic variations of MDF, odd-MIF, and even-MIF are now well documented in a diverse set of environmental samples, and researchers are continuing to explore how the field of Hg isotope biogeochemistry can be further developed and taken to the next level of understanding. One application that has received considerable attention is the use of Hg isotopes to examine the environmental controls on the production and degradation of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg. Since MeHg is efficiently assimilated and biomagnified along food chains, MeHg has the potential to be a robust ecological tracer. In this review, we give an updated overview of the field of Hg isotopes and focus on how Hg isotopes of MeHg can be used to address fundamental ecological questions, including energy transfer across ecosystem interfaces and as a tracer for animal movements.
Collapse
Affiliation(s)
- Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|