1
|
Tams L, Paton E, Kluge B. Urban tree drought stress: Sap flow measurements, model validation, and water management simulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177221. [PMID: 39490832 DOI: 10.1016/j.scitotenv.2024.177221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Urban street trees face increasing drought stress due to climate change and continuous urban development, making effective water management strategies essential. This study monitored the transpiration and soil moisture dynamics of five urban Tilia cordata trees in Berlin over two consecutive years to understand their transpiration responses under varying urban conditions. The collected data were used to validate the URbanTRee model, which was then applied to simulate different passive irrigation scenarios (system-to-catchment ratios ≤ 1:3) and assess their effectiveness in mitigating drought stress. The URbanTRee model successfully captured seasonal variations in transpiration and soil moisture, identifying all major drought stress periods in 2022, although underestimations were observed towards the end of the season. At the hourly scale, the model reasonably depicted reductions in transpiration during shaded hours on clear-sky days (measured by 55-66 %; modelled by 35-60 %), but overestimations of modelled ETa during hours with partial shading or air temperatures above 30 °C suggest room for improvement. The scenario analysis further demonstrated that, depending on catchment type and tree water demand, system-to-catchment ratios of 1:1-1:2 can substantially decrease, but not fully eliminate drought stress for young urban trees in dry years. These findings highlight the importance of considering site-specific conditions and the limitations of passive irrigation when planning sustainable water management strategies for young urban trees.
Collapse
Affiliation(s)
- Laura Tams
- Technische Universität Berlin, Institute of Ecology, Berlin, Germany.
| | - Eva Paton
- Technische Universität Berlin, Institute of Ecology, Berlin, Germany
| | - Björn Kluge
- Technische Universität Berlin, Institute of Ecology, Berlin, Germany
| |
Collapse
|
2
|
Han W, Zheng J, Guan J, Liu Y, Liu L, Han C, Li J, Li C, Tian R, Mao X. A greater negative impact of future climate change on vegetation in Central Asia: Evidence from trajectory/pattern analysis. ENVIRONMENTAL RESEARCH 2024; 262:119898. [PMID: 39222727 DOI: 10.1016/j.envres.2024.119898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
In the context of global warming, vegetation changes exhibit various patterns, yet previous studies have focused primarily on monotonic changes, often overlooking the complexity and diversity of multiple change processes. Therefore, it is crucial to further explore vegetation dynamics and diverse change trajectories in this region under future climate scenarios to obtain a more comprehensive understanding of local ecosystem evolution. In this study, we established an integrated machine learning prediction framework and a vegetation change trajectory recognition framework to predict the dynamics of vegetation in Central Asia under future climate change scenarios and identify its change trajectories, thus revealing the potential impacts of future climate change on vegetation in the region. The findings suggest that various future climate scenarios will negatively affect most vegetation in Central Asia, with vegetation change intensity increasing with increasing emission trajectories. Analyses of different time scales and trend variations consistently revealed more pronounced downward trends. Vegetation change trajectory analysis revealed that most vegetation has undergone nonlinear and dramatic changes, with negative changes outnumbering positive changes and curve changes outnumbering abrupt changes. Under the highest emission scenario (SSP5-8.5), the abrupt vegetation changes and curve changes are 1.7 times and 1.3 times greater, respectively, than those under the SSP1-2.6 scenario. When transitioning from lower emission pathways (SSP1-2.6, SSP2-4.5) to higher emission pathways (SSP3-7.0, SSP5-8.5), the vegetation change trajectories shift from neutral and negative curve changes to abrupt negative changes. Across climate scenarios, the key climate factors influencing vegetation changes are mostly evapotranspiration and soil moisture, with temperature and relative humidity exerting relatively minor effects. Our study reveals the negative response of vegetation in Central Asia to climate change from the perspective of vegetation dynamics and change trajectories, providing a scientific basis for the development of effective ecological protection and climate adaptation strategies.
Collapse
Affiliation(s)
- Wanqiang Han
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China.
| | - Jingyun Guan
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China; College of Tourism, Xinjiang University of Finance & Economics, Urumqi, 830012, China
| | - Yujia Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Liang Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Chuqiao Han
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Jianhao Li
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Congren Li
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Ruikang Tian
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Xurui Mao
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
3
|
Hanley PA, Livesley SJ, Fletcher TD, Grey V, Szota C. Stormwater retention performance of tree integrated infiltration trenches designed for suburban streetscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176634. [PMID: 39357759 DOI: 10.1016/j.scitotenv.2024.176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The volume of stormwater generated by streetscapes in cities is a primary driver of urban stream degradation. Large infiltration trenches can be integrated into streetscapes to potentially retain large volumes of runoff and increase growth rates of nearby trees. To test this, a field study was conducted where three structural soil infiltration trenches receiving runoff (12 m long, 0.6 m wide and 0.6 deep) were installed alongside a carpark in Melbourne, Australia, with sizing determined by space constraints in a typical streetscape. The three structural soil trenches had raised outflow drainage, which created internal water storage for runoff received from a carpark. To separate the effects on tree growth of i) the presence of structural soil from ii) passive irrigation into the structural soil, three structural soil trenches (6 m long, 0.6 m wide and 0.6 deep) not receiving runoff and without outflow drainage were also installed. Runoff capture, exfiltration, outflow and tree growth was monitored over 19 months. Only one system performed close to the design intent and retained 18 % of runoff, due to slow soil exfiltration rates (<0.1 mm h-1). Compacted soil generated pervious-area runoff that filled the structural soil trenches not receiving impervious-area runoff from the carpark. Tree growth near these structural soil trenches was poor (59 % relative growth) compared with trees receiving runoff from the carpark (112 % relative growth), due to a lack of drainage, emphasising the need for drainage of stormwater systems in heavy textured soils to promote tree growth. This study highlights that options for creating storage for stormwater in streetscapes have the potential to meet local runoff infiltration targets. However, meeting local runoff volume reduction targets will require alternative ways to reduce surface runoff.
Collapse
Affiliation(s)
- Paul A Hanley
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia.
| | - Stephen J Livesley
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia
| | - Tim D Fletcher
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia
| | - Vaughn Grey
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia
| | - Christopher Szota
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia
| |
Collapse
|
4
|
Pattnaik N, Honold M, Franceschi E, Moser-Reischl A, Rötzer T, Pretzsch H, Pauleit S, Rahman MA. Growth and cooling potential of urban trees across different levels of imperviousness. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121242. [PMID: 38810461 DOI: 10.1016/j.jenvman.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Nayanesh Pattnaik
- Strategic Landscape Planning and Management, School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 6, 85354, Freising, Germany.
| | - Martin Honold
- Forest Growth and Yield Science, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Eleonora Franceschi
- Forest Growth and Yield Science, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Astrid Moser-Reischl
- Strategic Landscape Planning and Management, School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 6, 85354, Freising, Germany; Forest Growth and Yield Science, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Thomas Rötzer
- Forest Growth and Yield Science, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany; Sustainable Forest Management Research Institute IuFOR, University Valladolid, Spain
| | - Stephan Pauleit
- Strategic Landscape Planning and Management, School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 6, 85354, Freising, Germany
| | - Mohammad A Rahman
- Strategic Landscape Planning and Management, School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 6, 85354, Freising, Germany; The University of Melbourne, Burnley, Victoria, Australia
| |
Collapse
|
5
|
Guo Y, Chen WY. Monitoring tree canopy dynamics across heterogeneous urban habitats: A longitudinal study using multi-source remote sensing data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120542. [PMID: 38492424 DOI: 10.1016/j.jenvman.2024.120542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Urban trees have attracted increasing attention to serve as a green prescription for addressing various challenges facing human society like climate change and environmental deterioration. However, without healthy growth of urban trees, they cannot service any environmental, social, and economic benefits in a sustainable manner. By monitoring the canopy development, the tree growth dynamics in different urban habitats can be detected and appropriate management approaches can be executed. Using the Kowloon Peninsula, Hong Kong, as a case, this study explores how remote sensing data can help monitor and understand the impacts of heterogeneous urban habitats on tree canopy dynamics. Four algorithms based on WorldView-2 satellite image are compared to optimize the canopy segmentation. Then the individual tree canopy is integrated with Sentinel-2 satellite data to obtain canopy growth dynamics for each season from 2016 to 2020. Three indicators are applied to reflect tree canopy status, including the fluorescence correction vegetation index (FCVI, tracking leaf chlorophyll density), the soil adjusted total vegetation index (SATVI, measuring the density of woody branches and twigs), and the normalised difference phenology index (NDPI, capturing canopy water content). And four heterogeneous habitats where urban trees stand are specified. The results revealed that urban trees show varying canopy growth status, in a descending order from natural terrains, parks, residential lands, to road verges, suggesting that urban habitats curtail trees' growth significantly. Additionally, two super-typhoons in 2017 and 2018, respectively, caused serious damages to tree canopy. Relevant resiliency of tree varies, echoing the sequence of canopy growth status with those in road verges the least resilient. This study shows how remote sensing data can be used to provide a better understanding of long-term tree canopy dynamics across large-scale heterogeneous urban habitats, which is key to monitoring and maintaining the health and growth of urban trees.
Collapse
Affiliation(s)
- Yasong Guo
- Department of Geography, The University of Hong Kong, Hong Kong, China
| | - Wendy Y Chen
- Department of Geography, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Yazdi H, Shu Q, Rötzer T, Petzold F, Ludwig F. A multilayered urban tree dataset of point clouds, quantitative structure and graph models. Sci Data 2024; 11:28. [PMID: 38177188 PMCID: PMC10767077 DOI: 10.1038/s41597-023-02873-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The significance of urban trees in promoting human health and well-being has been amplified by urbanization and the climate change effects. Simultaneously, advancements in remote sensing techniques have enhanced the opportunities for studying urban trees. The TreeML-Data has been compiled to support these efforts. It consists of labelled point clouds of 40 scanning projects of streets in Munich, 3,755 leaf-off (scans in winter) point clouds of individual trees, quantitative structure models (QSM), tree structure measurements, and tree graph structure models of these trees. The dataset offers valuable data for generating and evaluating models in various scientific disciplines, which include remote sensing, computer vision, machine learning, urban forestry, urban ecosystem, green architecture, and graph analysis. To ensure its quality, the tree structure measurements and QSM have been crosschecked. For instance, the tree diameter at breast height (DBH) in the sample dataset exhibits a deviation of approximately 1.5 cm (4.3%) when compared to manual measurements. In conclusion, the quality checks confirm its reliability for subsequent studies when compared to manual measurements.
Collapse
Affiliation(s)
- Hadi Yazdi
- School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany.
| | - Qiguan Shu
- School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany
| | - Thomas Rötzer
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Frank Petzold
- School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany
| | - Ferdinand Ludwig
- School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany
| |
Collapse
|
7
|
Fini A, Vigevani I, Corsini D, Wężyk P, Bajorek-Zydroń K, Failla O, Cagnolati E, Mielczarek L, Comin S, Gibin M, Pasquinelli A, Ferrini F, Viskanic P. CO 2-assimilation, sequestration, and storage by urban woody species growing in parks and along streets in two climatic zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166198. [PMID: 37567288 DOI: 10.1016/j.scitotenv.2023.166198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Using two cities, Rimini (Italy, Cfa climate) and Krakow (Poland, Cfb), as living laboratories, this research aimed at measuring in situ the capacity of 15 woody species to assimilate, sequester, and store CO2. About 1712 trees of the selected species were identified in parks or along streets of the two cities, and their age, DBH, height, and crown radius were measured. The volume of trunk and branches was measured using a terrestrial LiDAR. The true Leaf Area Index was calculated by correcting transmittance measurements conducted using a plant-canopy-analyser for leaf angle distribution, woody area index, and clumping. Dendrometric traits were fitted using age or DBH as independent variable to obtain site- and species-specific allometric equations. Instantaneous and daily net CO2-assimilation per unit leaf area was measured using an infra-red gas-analyser on full-sun and shaded leaves and upscaled to the unit crown-projection area and to the whole tree using both a big-leaf and a multilayer approach. Results showed that species differed for net CO2-assimilation per unit leaf area, leaf area index, and for the contribution of shaded leaves to overall canopy carbon gain, which yielded significant differences among species in net CO2-assimilation per unit crown-projection-area (AcpaML(d)). AcpaML(d) was underestimated by 6-30 % when calculated using the big-leaf, compared to the multilayer model. While maximizing AcpaML(d) can maximize CO2-assimilation for a given canopy cover, species which matched high AcpaML(d) and massive canopy spread, such as mature Platanus x acerifolia and Quercus robur, provided higher CO2-assimilation (Atree) at the individual tree scale. Land use (park or street), did not consistently affect CO2-assimilation per unit leaf or crown-projection area, although Atree can decline in response to specific management practices (e.g. heavy pruning). CO2-storage and sequestration, in general, showed a similar pattern as Atree, although the ratio between CO2-sequestration and CO2-assimilation decreased at increasing DBH.
Collapse
Affiliation(s)
- Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy.
| | - Irene Vigevani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence 50144, Italy; University School for Advanced Studies IUSS Pavia, Pavia 27100, Italy
| | - Denise Corsini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence 50144, Italy
| | - Piotr Wężyk
- ProGea 4D sp. z o.o., ul. Pachońskiego 9, Kraków 31-223, Poland; Department of Forest Resource Management, Faculty of Forestry, University of Agriculture in Kraków, Kraków 31-120, Poland
| | | | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | | | - Lukasz Mielczarek
- Zarząd Zieleni Miejskiej w Krakowie (ZZM), ul. Reymonta 20, Kraków 30-059, Poland
| | - Sebastien Comin
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | - Marco Gibin
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | | | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence 50144, Italy; National Biodiversity Future Center, Italy
| | - Paolo Viskanic
- R3 GIS S.r.l. NOI Techpark, D1, Via Ipazia 2, Bolzano 39100, Italy
| |
Collapse
|
8
|
Gao X, Zhao B, Chen Z, Song W, Li Z, Wang X. The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics. BIOLOGY 2023; 12:1373. [PMID: 37997972 PMCID: PMC10669791 DOI: 10.3390/biology12111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
In the context of the intensification of global urbanization, how urbanization (urban heat island effect and air pollution) affects urban tree growth is not fully understood. In this paper, the radial growth and xylem anatomical characteristics of three different tree species (Quercus mongolica, Fraxinus mandshurica, and Pinus sylvestris var. mongolica) in urban and rural areas of Harbin were compared by means of tree-ring anatomy. The results showed that there were significant differences in the growth of both broadleaf trees and conifers between urban and rural areas. The vessel number, cumulative area of vessels, and theoretical hydraulic conductivity of all tree species in rural areas were higher than those in urban areas, indicating that urbanization may have the effect of slowing down growth. However, broadleaf trees in urban areas had higher vessel density and a greater percentage of a conductive area within xylem and theoretical xylem-specific hydraulic conductivity. The thickness of cell walls and cell wall reinforcement index of P. sylvestris var. mongolica were strongly reduced by air pollution, implying that it may be more sensitive to urbanization. Compared to Q. mongolica, F. mandshurica showed less sensitivity to urbanization. Warming and drying climate in Harbin may be an important factor affecting tree growth.
Collapse
Affiliation(s)
- Xiaohui Gao
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Binqing Zhao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zecheng Chen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Song
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaochun Wang
- Aulin College, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Shu Q, Ludwig F. A circuit analogy based girth growth model for living architecture design. J R Soc Interface 2023; 20:20230168. [PMID: 37221863 PMCID: PMC10206466 DOI: 10.1098/rsif.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Architecture with and from living trees (Baubotanik) is a promising approach to sustainable, climate-adapted construction. Shaping and grafting allows one to create resilient structures that combine the ecological performance and aesthetics of trees with the functions of buildings. In order to design and engineer such living structures, it is necessary to predict the growth of different tree segments, especially when trunks, branches or roots are bent and jointed into a complex inosculated network. To address this, we have developed a tool to forecast the relative girth growth of different segments in such structures based on topological skeletons, the pipe model theory and circuit analogy. We have validated our results with a set of (scaled) photographs of inosculated tree structures of the so-called 'Tree Circus', covering over 80 years of their growth. Our model has proven to predict the relative girth growth with sufficient accuracy for conceptual design purposes. So far, it does not allow the simulation of absolute growth in circumference over the course of time that is necessary to predict quantitative technical aspects, such as mechanical performance at a given time. We conclude by briefly outlining how this could be addressed in future research.
Collapse
Affiliation(s)
- Qiguan Shu
- Green Technologies in Landscape Architecture, School of Engineering and Design, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
| | - Ferdinand Ludwig
- Green Technologies in Landscape Architecture, School of Engineering and Design, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
| |
Collapse
|
10
|
Mylo MD, Ludwig F, Rahman MA, Shu Q, Fleckenstein C, Speck T, Speck O. Conjoining Trees for the Provision of Living Architecture in Future Cities: A Long-Term Inosculation Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1385. [PMID: 36987073 PMCID: PMC10058916 DOI: 10.3390/plants12061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Faced with the environmental challenges posed by climate change, architects are creating nature-based solutions for urban areas, such as transforming living trees into artificial architectural structures. In this study, we have analyzed stem pairs of five tree species conjoined for more than eight years by measuring the stem diameters below and above the resulting inosculation and by calculating the respective diameter ratio. Our statistical analyses reveal that Platanus × hispanica and Salix alba stems do not differ significantly in diameter below inosculation. However, in contrast to P. × hispanica, the diameters of the conjoined stems above inosculation differ significantly in S. alba. We provide a binary decision tree based on diameter comparisons above and below inosculation as a straightforward tool for identifying the likelihood of full inosculation with water exchange. Moreover, we have compared branch junctions and inosculations by means of anatomical analyses, micro-computed tomography, and 3D reconstructions showing similarities in the formation of common annual rings that increase the capacity for water exchange. Due to the highly irregular cell arrangement in the center of the inosculations, cells cannot be assigned clearly to either of the stems. In contrast, cells in the center of branch junctions can always be attributed to one of the branches.
Collapse
Affiliation(s)
- Max D. Mylo
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
- Department of Microsystems Engineering—IMTEK, University of Freiburg, D-79110 Freiburg, Germany
| | - Ferdinand Ludwig
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Mohammad A. Rahman
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technical University of Munich, D-85354 Freising, Germany
| | - Qiguan Shu
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Christoph Fleckenstein
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Thomas Speck
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
11
|
Zhang M, Ni Y, Li M. Evaluation of the growth, adaption, and ecosystem services of two potentially-introduced urban tree species in Guangzhou under drought stress. Sci Rep 2023; 13:3563. [PMID: 36864292 PMCID: PMC9981607 DOI: 10.1038/s41598-023-30782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Under rapid urbanization and agglomeration of population, cities are facing various environmental challenges. As urban forests play a crucial role in mitigating native environmental problems and providing ecosystem services, cities might enhance their urban forest construction through multiple approaches, of which the introduction of exotic tree species could be an effective way. Under the background of constructing a high-quality forest city, Guangzhou was considering introducing a series of exotic tree species to improve the local urban greening, among which Tilia cordata Mill. and Tilia tomentosa Moench became the potential objects. As Guangzhou was reported to experience higher temperatures with less precipitation and face drought events with increasing frequency and intensity, whether the two tree species could survive in the dry environment required to be investigated profoundly. Thus, we launched a drought-simulation experiment and measured their above- and below-ground growth in 2020. In addition, their ecosystem services were also simulated and evaluated for their future adaption. Furthermore, a congeneric native tree species Tilia miqueliana Maxim was also measured in the same experiment as a comparison. Our results showed that Tilia miqueliana exhibited moderate patterns of growth and advantages in evapotranspiration and cooling. Besides, its investment in root development at horizontal level could account for its special strategy against drought stress. Tilia tomentosa's vigorous root growth could be the most positive behavior of coping with water deficit, which explained its maintenance of carbon fixation and implied a well adaption. Tilia cordata showed a complete decrease in above- and below-ground growth, especially for its fine root biomass. In addition, its ecosystem services were significantly reduced, reflecting a comprehensive failure when it faced a long-term scarcity of water. Therefore, it was necessary to supply sufficient water and under-ground space for their living in Guangzhou, especially for Tilia cordata. In the future, long-time observation of their growth under different stresses can be practical approaches to amplify their multiple ecosystem services.
Collapse
Affiliation(s)
- Muhan Zhang
- Anhui Institute of Modern Agricultural Engineering, Hefei, China
| | - Yuan Ni
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China.
| | - Mingwei Li
- Anhui Institute of Modern Agricultural Engineering, Hefei, China
| |
Collapse
|
12
|
Rahman MA, Pawijit Y, Xu C, Moser-Reischl A, Pretzsch H, Rötzer T, Pauleit S. A comparative analysis of urban forests for storm-water management. Sci Rep 2023; 13:1451. [PMID: 36702865 PMCID: PMC9879978 DOI: 10.1038/s41598-023-28629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Large-scale urban growth has modified the hydrological cycle of our cities, causing greater and faster runoff. Urban forests (UF), i.e. the stock of trees and shrubs, can substantially reduce runoff; still, how climate, tree functional types influence rainfall partitioning into uptake and runoff is mostly unknown. We analyzed 92 published studies to investigate: interception (I), transpiration (T), soil infiltration (IR) and the subsequent reduction in runoff. Trees showed the best runoff protection compared to other land uses. Within functional types, conifers provided better protection on an annual scale through higher I and T but broadleaved species provided better IR. Regarding tree traits, leaf area index (LAI) showed a positive influence for both I and T. For every unit of LAI increment, additional 5% rainfall partition through T (3%) and I (2%) can be predicted. Overall, runoff was significantly lower under mixed species stands. Increase of conifer stock to 30% in climate zones with significant winter precipitation and to 20% in areas of no dry season can reduce runoff to an additional 4%. The study presented an overview of UF potential to partition rainfall, which might help to select species and land uses in different climate zones for better storm-water management.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354, Freising, Germany.
| | - Yanin Pawijit
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354, Freising, Germany
| | - Chao Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Daxue Road 1, Dongguan, 523808, China
| | - Astrid Moser-Reischl
- Forest Growth and Yield Science, School of Life Sciences, Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, School of Life Sciences, Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Thomas Rötzer
- Forest Growth and Yield Science, School of Life Sciences, Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Stephan Pauleit
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354, Freising, Germany
| |
Collapse
|
13
|
Rodríguez-Santamaría K, Zafra-Mejía CA, Rondón-Quintana HA. Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review. BIOSENSORS 2022; 12:812. [PMID: 36290949 PMCID: PMC9599504 DOI: 10.3390/bios12100812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Urban trees provide different ecosystem benefits, such as improving air quality due to the retention of atmospheric particulate matter (PM) on their leaves. The main objective of this paper was to study, through a systematic literature review, the leaf macro-morphological traits (LMTs) most used for the selection of urban trees as air pollution biomonitors. A citation frequency index was used in scientific databases, where the importance associated with each variable was organized by quartiles (Q). The results suggest that the most biomonitored air pollutants by the LMTs of urban trees were PM between 1-100 µm (Q1 = 0.760), followed by O3 (Q2 = 0.586), PM2.5 (Q2 = 0.504), and PM10 (Q3 = 0.423). PM was probably the most effective air pollutant for studying and evaluating urban air quality in the context of tree LMTs. PM2.5 was the fraction most used in these studies. The LMTs most used for PM monitoring were leaf area (Q1) and specific leaf area (Q4). These LMTs were frequently used for their easy measurement and quantification. In urban areas, it was suggested that leaf area was directly related to the amount of PM retained on tree leaves. The PM retained on tree leaves was also used to study other f associated urban air pollutants associated (e.g., heavy metals and hydrocarbons).
Collapse
Affiliation(s)
- Karen Rodríguez-Santamaría
- Grupo de Investigación INDESOS, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Carrera 5 Este #15-82, Bogotá DC E-111711, Colombia
| | - Carlos Alfonso Zafra-Mejía
- Grupo de Investigación en Ingeniería Ambiental—GIIAUD, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Carrera 5 Este #15-82, Bogotá DC E-111711, Colombia
| | - Hugo Alexander Rondón-Quintana
- Ingeniería Topográfica, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Carrera 5 Este #15-82, Bogotá DC E-111711, Colombia
| |
Collapse
|
14
|
Crown Shapes of Urban Trees-Their Dependences on Tree Species, Tree Age and Local Environment, and Effects on Ecosystem Services. FORESTS 2022. [DOI: 10.3390/f13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crown shapes of common European urban tree species differ from tree species to tree species and are modified by the age of a tree and its local environment. A tree’s crown shape has a great influence on the crown volume and thus on the ecosystem service provision of a tree such as the shade area or the shade density. We used the data of 3852 tree individuals from eight German cities and the crown shape data of 528 trees for the species Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Fraxinus excelsior, Platanus × acerifolia, Robinia pseudoacacia and Tilia cordata to analyze tree structural dimensions and the crown volume and shade dependency on a tree’s crown shapes. Ovoid (57% of all tree individuals) and spherical (24%) crown shapes were mostly observed. However, columnar shape was observed for light-demanding R. pseudoacacia in close proximity of objects. The greatest shade areas were measured for spherical shape and the highest shade density for ovoid shape. Logistic regression analysis showed significant effects of age and distance to objects on crown shapes. Significant probability of crown shapes was found for different tree species, e.g., A. hippocastanum strongly showed half-ellipsoid crown shapes.
Collapse
|
15
|
Effects of Climate and Drought on Stem Diameter Growth of Urban Tree Species. FORESTS 2022. [DOI: 10.3390/f13050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Urbanization and climate change are two inevitable megatrends of this century. Knowledge about the growth responses of urban trees to climate is of utmost importance towards future management of green infrastructure with the aim of a sustainable provision of the environmental ecosystem services. Using tree-ring records, this study analyzed growth response to climate by stem diameter at breast height (DBH) of 1178 trees in seven large cities worldwide, including Aesculus hippocastanum L. in Munich; Platanus × hispanica Münchh. in Paris; Quercus nigra L. in Houston; Quercus robur L. in Cape Town; Robinia pseudoacacia L. in Santiago de Chile, Munich, and Würzburg; and Tilia cordata Mill. in Berlin, Munich, and Würzburg. Climate was characterized following the de Martonne aridity index (DMI). Overall, trees showed an 8.3% lower DBH under arid than humid climate at the age of 100. Drought-tolerant tree species were overall not affected by climate. However, R. pseudoacacia showed a lower diameter when growing in semi-dry than humid climate. In contrast, drought-sensitive tree species were negatively affected by arid climate. Moreover, the effect of drought years on annual diameter increment was assessed. P. × hispanica and R. pseudoacacia appeared as the most drought-resistant species. The highest sensitivity to drought was detected in T. cordata and Q. robur. A. hippocastanum and Q. nigra showed a lower diameter growth during drought events, followed by a fast recovery. This study’s findings may contribute to a better understanding of urban tree growth reactions to climate, aiming for sustainable planning and management of urban trees.
Collapse
|
16
|
Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 2022; 12:671. [PMID: 35027622 PMCID: PMC8758735 DOI: 10.1038/s41598-021-04669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
Green infrastructure (GI) has emerged as a feasible strategy for promoting adaptive capacities of cities to climate change by alleviating urban heat island (UHI) and thus heat stress for humans. However, GI can also intensify the winter cold stress. To understand the extent of UHI within a city as well as the link between outdoor thermal stress both diurnally and seasonally, we carried out an empirical study in Würzburg, Germany from 2018 to 2020. At sub-urban sites, relative humidity and wind speed (WS) was considerably higher and air temperature (AT) lower compared to the inner city sites. Mean AT of inner city sites were higher by 1.3 °C during summer and 5 °C during winter compared to sub-urban sites. The magnitude followed the spatial land use patterns, in particular the amount of buildings. Consequently, out of 97 hot days (AT > 30 °C) in 3 years, 9 days above the extreme threshold of wet bulb globe temperature of 35 °C were recorded at a centre location compared to none at a sub-urban site. Extreme heat stress could be halved with 30-40% cover of greenspaces including grass lawns, green roofs, and green walls with little compromise in increasing winter cold stress.
Collapse
|
17
|
Schneider C, Neuwirth B, Schneider S, Balanzategui D, Elsholz S, Fenner D, Meier F, Heinrich I. Using the dendro-climatological signal of urban trees as a measure of urbanization and urban heat island. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractUsing dendroclimatological techniques this study investigates whether inner city tree-ring width (TRW) chronologies from eight tree species (ash, beech, fir, larch, lime, sessile and pedunculate oak, and pine) are suitable to examine the urban heat island of Berlin, Germany. Climate-growth relationships were analyzed for 18 sites along a gradient of increasing urbanization covering Berlin and surrounding rural areas. As a proxy for defining urban heat island intensities at each site, we applied urbanization parameters such as building fraction, impervious surfaces, and green areas. The response of TRW to monthly and seasonal air temperature, precipitation, aridity, and daily air-temperature ranges were used to identify climate-growth relationships. Trees from urban sites were found to be more sensitive to climate compared to trees in the surrounding hinterland. Ring width of the deciduous species, especially ash, beech, and oak, showed a high sensitivity to summer heat and drought at urban locations (summer signal), whereas conifer species were found suitable for the analysis of the urban heat island in late winter and early spring (winter signal).The summer and winter signals were strongest in tree-ring chronologies when the urban heat island intensities were based on an area of about 200 m to 3000 m centered over the tree locations, and thus reflect the urban climate at the scale of city quarters. For the summer signal, the sensitivity of deciduous tree species to climate increased with urbanity.These results indicate that urban trees can be used for climate response analyses and open new pathways to trace the evolution of urban climate change and more specifically the urban heat island, both in time and space.
Collapse
|
18
|
Meo SA, Almutairi FJ, Abukhalaf AA, Usmani AM. Effect of Green Space Environment on Air Pollutants PM2.5, PM10, CO, O 3, and Incidence and Mortality of SARS-CoV-2 in Highly Green and Less-Green Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413151. [PMID: 34948761 PMCID: PMC8700925 DOI: 10.3390/ijerph182413151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, over half of the global population is living in urban areas. The metropolitan areas are highly populated and environmentally non-green regions on the planet. In green space regions, plants, grass, and green vegetation prevent soil erosion, absorb air pollutants, provide fresh and clean air, and minimize the burden of diseases. Presently, the entire world is facing a turmoil situation due to the COVID-19 pandemic. This study investigates the effect of the green space environment on air pollutants particulate matter PM2.5, PM10, carbon monoxide (CO), ozone (O3), incidence and mortality of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in environmentally highly green and less-green countries. We randomly selected 17 countries based on the Environmental Performance Index (EPI) data. The 60% of the EPI score is based on seven categories: "biodiversity and habitat, ecosystem, fisheries, climate change, pollution emissions, agriculture, and water resources". However, 40% of the score is based on four categories: "air quality, sanitation and drinking water, heavy metals, and waste management". The air pollutants and SARS-CoV-2 cases and deaths were recorded from 25 January 2020, to 11 July 2021. The air pollutants "PM2.5, PM10, CO, and O3" were recorded from the metrological websites, Air Quality Index-AQI, 2021. The COVID-19 daily cases and deaths were obtained from the World Health Organization. The result reveals that air pollutants mean values for PM2.5 110.73 ± 1.09 vs. 31.35 ± 0.29; PM10 80.43 ± 1.11 vs. 17.78 ± 0.15; CO 7.92 ± 0.14 vs. 2.35 ± 0.03 were significantly decreased (p < 0.0001) in environmentally highly green space countries compared to less-green countries. Moreover, SARS-CoV-2 cases 15,713.61 ± 702.42 vs. 3445.59 ± 108.09; and deaths 297.56 ± 11.27 vs. 72.54 ± 2.61 were also significantly decreased in highly green countries compared to less-green countries. The green environment positively impacts human wellbeing. The policymakers must implement policies to keep the living areas, surroundings, towns, and cities clean and green to minimize air pollution and combat the present pandemic of COVID-19.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
- Correspondence: or
| | - Faris Jamal Almutairi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
| | - Abdulelah Adnan Abukhalaf
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (F.J.A.); (A.A.A.)
| | - Adnan Mahmood Usmani
- Diabetic Unit, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| |
Collapse
|
19
|
Ecosystem Services Provided by Urban Forests in the Southern Caucasus Region: A Modeling Study in Tbilisi, Georgia. CLIMATE 2021. [DOI: 10.3390/cli9110157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All cities globally are growing considerably as they are experiencing an intensive urbanization process that leads to high soil consumption and pollution of environmental components. For this reason, cities are required to adopt measures to reduce these impacts and tree planting has been suggested as a cost-effective strategy. In our study, we implemented for the first time in a Southern Caucasus city the i-Tree Eco model to quantify the main ecosystem services provided by urban forests. Trees in two parks in Tbilisi, EXPO Park (694 trees) and RED Park (1030 trees), have been measured, and a model simulation was performed for the year 2018. These green infrastructures store large amounts of carbon in their woody tissues (198.4 t for EXPO Park and 126.5 t for RED Park) and each year they sequester 4.6 and 4.7 t of CO2 for EXPO Park and RED Park. They also remove 119.6 and 90.3 kg of pollutants (CO, NO2, O3, PM2.5, SO2), and reduce water runoff of 269.5 and 200.5 m3, respectively. This analysis highlights the key role of urban forests in improving the environmental sustainability of the city of Tbilisi and provides important decision support for tree species selection in this geographic area.
Collapse
|
20
|
Pace R, De Fino F, Rahman MA, Pauleit S, Nowak DJ, Grote R. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:277-289. [PMID: 33070207 PMCID: PMC7822804 DOI: 10.1007/s00484-020-02030-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone). In conclusion, the presented model has demonstrated its ability to quantify two major ecosystem services (temperature mitigation and air pollution removal) consistently in dependence on meteorological and site conditions.
Collapse
Affiliation(s)
- Rocco Pace
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany.
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy.
| | - Francesco De Fino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Mohammad A Rahman
- Chair for Strategic Landscape Planning and Management, School of Life Sciences Weihenstephan, Technische Universität München, Munich, Germany
| | - Stephan Pauleit
- Chair for Strategic Landscape Planning and Management, School of Life Sciences Weihenstephan, Technische Universität München, Munich, Germany
| | - David J Nowak
- USDA Forest Service, Northern Research Station, Syracuse, NY, USA
| | - Rüdiger Grote
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| |
Collapse
|
21
|
Xu S, Wang Y, Zhang W, Li B, Du Z, He X, Chen W, Zhang Y, Li Y, Li M, Schaub M. Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115289. [PMID: 33190075 DOI: 10.1016/j.envpol.2020.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric warming and increasing tropospheric ozone (O3) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O3 (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba 'Berolinensis' seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O3 concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba 'Berolinensis' to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Collapse
Affiliation(s)
- Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- College of Environment, Shenyang University, 110044, China
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Zhong Du
- School of Land and Resources, China West Normal University, Nanchong, 637009, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yue Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Maihe Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland
| |
Collapse
|
22
|
The Impact of Climate Variations on the Structure of Ground Beetle (Coleoptera: Carabidae) Assemblage in Forests and Wetlands. FORESTS 2020. [DOI: 10.3390/f11101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied the effect of climate variations on the structure of the assemblage of ground beetles (Coleoptera: Carabidae) in a wetland and surrounding watershed forest. We analyzed the changes in the structure of the assemblage of ground beetles provoked by a two-year dry period against the background of studies carried out during the two-year wet period. Aridization influenced the structure of the assemblage of ground beetles more in wetlands than in forests. It was shown that despite the stabilizing effect of the forest on the structure of assemblages of terrestrial arthropods, the two-year dry period had a negative impact on the assemblage of ground beetles in the studied area. The Simpson dominance index of 4.9 during the wet season increased to 7.2 during the drought period. Although the total number of species during the dry period did not significantly decrease in comparison with the wet period—from 30 to 27 species—changes occurred in the trophic structure: during the drought period, the number of predators decreased. It is concluded that the resistance of forest habitats to climate aridization is somewhat exaggerated and, very likely, the structure of the community of arthropods in forests will change significantly.
Collapse
|
23
|
Abstract
It is known that the urban environment amplifies the effects of climate change, sometimes with disastrous consequences that put people at risk. These aspects can be affected by urban vegetation and planting design but, while there are thousands of papers related to the effects of climate change, a relatively limited number of them are directly aimed at investigating the role of vegetation as a mitigating factor in the urban context. This paper focuses on reviewing the research on the role of urban vegetation in alleviating the adverse conditions of the urban environment in order to provide some practical guidelines to be applied by city planners. Through an analysis of the documents found in Scopus, Web of Science, and Google Scholar using urban vegetation and climate change-related keywords we selected five major issues related to the urban environment: (1) particulate matter, (2) gaseous pollution, (3) noise pollution, (4) water runoff, (5) urban heat island effect. The analysis of existing knowledge reported here indicates that the roles of urban vegetation on the adverse effect of climate change could not be simply deemed positive or negative, because the role of urban green is also strongly linked to the structure, composition, and distribution of vegetation, as well as to the criteria used for management. Therefore, it could help to better understand the roles of urban green as a complex system and provide the foundation for future studies.
Collapse
|
24
|
Effect of pavement and water deficit on biomass allocation and whole-tree transpiration in two contrasting urban tree species. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00953-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
How Do Tilia Cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services? FORESTS 2019. [DOI: 10.3390/f10080676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the context of climate change, drought is likely to become more frequent and more severe in urban areas. Urban trees are considered to play an important role in fixing carbon, improving air quality, reducing noise and providing other ecosystem services. However, data on the response of urban trees to climate change, particularly to drought, as well as the relationship between their below- and above-ground processes in this context, are still limited, which prevents a comprehensive understanding of the role of urban trees in ameliorating some of the adverse effects of climate change and their ability to cope with it. To investigate whole-plant responses to water shortages, we studied the growth of Tilia cordata Greenspire, a commonly planted urban tree, including development of its roots and stem diameter, leaf parameters and the harvested biomass. Our results showed that this cultivar was susceptible to drought and had reduced biomass in all three compartments: branch (30.7%), stem (16.7%) and coarse roots (45.2%). The decrease in the root:shoot ratio under drought suggested that more carbon was invested in the above-ground biomass. The development of fine roots and the loss of coarse root biomass showed that T. cordata Greenspire prioritised the growth of fine roots within the root system. The CityTree model’s simulation showed that the ability of this cultivar to provide ecosystem services, including cooling and CO2 fixation, was severely reduced. For use in harsh and dry urban environments, we recommend that urban managers take into account the capacity of trees to adapt to drought stress and provide sufficient rooting space, especially vertically, to help trees cope with drought.
Collapse
|