1
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
2
|
Simpson J, Simpson BS, Gerber C. Effect of secondary and tertiary wastewater treatment methods on opioids and the subsequent environmental impact of effluent and biosolids. CHEMOSPHERE 2024; 364:143307. [PMID: 39260597 DOI: 10.1016/j.chemosphere.2024.143307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Opioids are widely distributed, potent prescription analgesics that are known to be diverted for illicit use. Their prevalence of use is reflected by high concentrations of parent compounds and/or metabolites found in samples collected from wastewater treatment plants. Given that treatment byproducts enter the environment through several routes, the consequences of insufficient removal by treatment methods include unwanted environmental exposure and potential to disrupt ecosystems. Activated sludge treatment has been widely investigated for a large suite of prescription opioids but the same cannot be said for UV and chlorination. Additionally, the biosolid cycle of opioids has been overlooked previously. This study aimed to determine the extent to which secondary and tertiary wastewater treatment methods remove opioids from influent, and the associated environmental exposure for those persistent, as well as the fate of opioids in biosolids. Membrane bioreactor treatment proved effective for natural and semi-synthetic opioids while the effect of UV treatment was negligible. Chlorination was the most effective treatment method resulting in effluent with concentrations below theoretical predicted no-effect concentration. Biosolids are not subjected to any additional biological or chemical treatment after membrane bioreactor treatment and the levels detected in biosolid used as fertiliser had several opioids at potentially hazardous concentrations, indicated by a QSAR theoretical model. This data indicates a potential issue regarding the treatment process of biosolids and reliance on chlorination for effluent treatment that should be investigated in other treatment plants.
Collapse
Affiliation(s)
- Jamie Simpson
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bradley Scott Simpson
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
3
|
Kang Z, Duan L, Zahmatkesh S. Optimizing removal of antiretroviral drugs from tertiary wastewater using chlorination and AI-based prediction with response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172931. [PMID: 38703847 DOI: 10.1016/j.scitotenv.2024.172931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Chemical and pharmaceutical chemicals found in water sources create substantial risks to human health and the environment. The presence of pharmaceutical contaminants in water can cause antibiotic resistance development, toxicity to aquatic organisms, and endocrine disruption. Hence, the elimination of chemicals and other contaminants from wastewater prior to its release is a burgeoning concern in the domains of engineering and science. The use of treatment technologies in wastewater treatment plants can remove pharmaceutical contaminants through the oxidation process. However, many traditional wastewater treatment plants lack the advanced monitoring tools required to detect low concentrations of pharmaceuticals. Without the ability to detect these compounds, it's challenging to treat them effectively. The goal of this study was to use Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) algorithms to model and improve how Nevirapine and Efavirenz break down in different chlorination conditions. The RSM analysis revealed statistically significant models (F-values: Nevirapine, pH-t: 108.15, T-t: 76.55, ICC-t: 110.84), indicating a strong correlation between operational parameters (pH, temperature, and initial chlorine concentration) and degradation behavior. The ANN model accurately predicted the degradation of both Nevirapine and Efavirenz under various chlorination conditions, as confirmed by analyzing actual-predicted graphs, residual plots, and Mean Squared Error (MSE) values. The ANN model using ICC-t achieved the highest MOD value of 31.31 % for Nevirapine. The ANN model based on ICC-t yielded a maximum MOD value of 16.06 % for Efavirenz. These findings provide valuable insights into optimizing chlorination processes for better removal of these pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Lian Duan
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing 100700, China; Department of Pediatric Surgery, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico; Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Zhao J, Lu J, Zhao H, Yan Y, Dong H. In five wastewater treatment plants in Xinjiang, China: Removal processes for illicit drugs, their occurrence in receiving river waters, and ecological risk assessment. CHEMOSPHERE 2023; 339:139668. [PMID: 37517667 DOI: 10.1016/j.chemosphere.2023.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Residues of illicit drugs are frequently detected in wastewater, but data on their removal efficiency by wastewater treatment plants (WWTPs) and the ecological risks to the aquatic environment are lacking in this study. The research evaluates the residues, mass load, drug removal efficiency, and risk assessment of illicit drugs in WWTPs and aquatic environments (lakes) in Xinjiang, China. Initially, the concentration (incidence) and mass load of 10 selected illicit drugs were analyzed through wastewater analysis. The detected substances included methamphetamine (METH), morphine (MOR), 3,4-methylenedioxy methamphetamine (MDMA), methadone (MTD), cocaine (COC), benzoylecgonine (BE), ketamine (KET), and codeine (COD), with concentrations ranging from 0.11 ± 0.01 ng/L (methadone) to 48.26 ± 25.05 ng/L (morphine). Notably, morphine (59.74 ± 5.82 g/day) and methamphetamine (41.81 ± 4.91 g/day) contributed significantly to the WWTPs. Next, the drug removal efficiency by different sewage treatment processes was ranked as follows: Anaerobic-Oxic (A/O) combined Membrane Bio-Reactor (MBR) treatment process > Oxidation ditch treatment process > Anaerobic-Anoxic-Oxic (A2/O) treatment process > Anaerobic-Anoxic-Oxic combined Membrane Bio-Reactor treatment process. Finally, the research reviewed the concentration and toxicity assessments of these substances in the aquatic environment (lakes). The results indicated that Lake1 presented a medium risk level concerning the impact of illicit drugs on the aquatic environment, whereas the other lakes exhibited a low risk level. As a result, it is recommended to conduct long-term monitoring and source analysis of illicit drugs, specifically in Lake1, for further investigation. In conclusion, to enhance the understanding of the effects of illicit drugs on the environment, future research should expand the list of target analytes.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Haijun Zhao
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832003, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
6
|
Verovšek T, Šuštarič A, Laimou-Geraniou M, Krizman-Matasic I, Prosen H, Eleršek T, Kramarič Zidar V, Mislej V, Mišmaš B, Stražar M, Levstek M, Cimrmančič B, Lukšič S, Uranjek N, Kozlovič-Bobič T, Kosjek T, Kocman D, Heath D, Heath E. Removal of residues of psychoactive substances during wastewater treatment, their occurrence in receiving river waters and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161257. [PMID: 36608822 DOI: 10.1016/j.scitotenv.2022.161257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychoactive substances (licit drugs, medications of abuse and illicit drugs) are constantly introduced into the aquatic environment, where they have the potential to affect non-target organisms. In this study, 17 drug residues of psychoactive substances were determined in wastewater influent, effluent and in receiving rivers of six Slovene municipal wastewater treatment plants employing different treatment technologies. Variations in removal efficiencies (REs) during spring, summer and winter were explored, and ecotoxic effects were evaluated using in silico (Ecological Structure-Activity Relationships software-ECOSAR) and in vivo (algal growth inhibition test) methods. Drug residues were detected in influent and effluent in the ng/L to μg/L range. In receiving rivers, biomarkers were in the ng/L range, and there was good agreement between measured and predicted concentrations. On average, REs were highest for nicotine, 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH), cocaine residues, and amphetamine (>90 %) and lowest for methadone residues (<30 %). REs were comparable between treatments involving activated sludge and membrane bioreactors, while the moving biofilm bed reactor (MBBR) removed cotinine, cocaine, and benzoylecgonine to a lesser extent. Accordingly, higher levels of nicotine and cocaine residues were detected in river water receiving MBBR discharge. Although there were seasonal variations in REs and levels of drug residues in receiving rivers, no general pattern could be observed. No significant inhibition of algal growth (Chlamydomonas reinhardtii) was observed for the tested compounds (1 mg/L) during 72 h and 240 h of exposure, although effects on aquatic plants were predicted in silico. In addition, environmental risk assessment revealed that levels of nicotine, methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), morphine, and 3,4-methylenedioxymethamphetamine (MDMA) pose a risk to aquatic organisms. Since nicotine and EDDP can have acute and chronic effects, the authors support regular monitoring of receiving surface waters, followed up by regulatory actions.
Collapse
Affiliation(s)
- Taja Verovšek
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ariana Šuštarič
- Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Maria Laimou-Geraniou
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | | | - Helena Prosen
- Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- National Institute of biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | - Vesna Mislej
- JP Vodovod Kanalizacija Snaga, d.o.o., Vodovodna cesta 90, 1000 Ljubljana, Slovenia
| | - Boštjan Mišmaš
- JP Vodovod Kanalizacija Snaga, d.o.o., Vodovodna cesta 90, 1000 Ljubljana, Slovenia
| | - Marjeta Stražar
- JP Central Wastewater Treatment Plant Domžale-Kamnik, d.o.o., Študljanska 91, 1230 Domžale, Slovenia
| | - Marjetka Levstek
- JP Central Wastewater Treatment Plant Domžale-Kamnik, d.o.o., Študljanska 91, 1230 Domžale, Slovenia
| | | | - Simon Lukšič
- Komunala Novo mesto, d.o.o., Podbevškova ulica 12, 8000 Novo mesto, Slovenia
| | - Nataša Uranjek
- Komunalno podjetje Velenje, d.o.o., Koroška cesta 37/b, 3320 Velenje, Slovenia
| | | | - Tina Kosjek
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - David Kocman
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - David Heath
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Tang T, Chen W, Li L, Cao S. Design of experiments (DoE) to develop and to optimize extraction of psychoactive substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1601-1609. [PMID: 36896683 DOI: 10.1039/d3ay00059a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of experiments (DoE) method was employed to optimize the adsorption processes of seven psychoactive substances in magnetic solid phase extraction. Fe3O4/GO/ZIF-8 was utilized as an adsorbent for the efficient extraction of psychoactive substances from environmental water samples. The analytes were ephedrine, methylephedrine, amphetamine, methamphetamine, morphine, papaverine, and thebaine, which were determined by ultrahigh performance liquid chromatography-tandem mass spectrometry. Plackett-Burman design was employed to identify the significant factors responsible for adsorption, and Box-Behnken design was used for further optimization to obtain the optimum values for each variable. The predicted and experimental values were found to be in good agreement. The coefficient of determination (R2) values of 0.9500-0.9976 indicated that the model was significant. The linear ranges were 1-100 ng mL-1, and the correlation coefficient was good (r2 ≥ 0.995). The EF with values of about 2.5 was obtained with recoveries in the range of 74.92-94.47%. The limits of detection (LOD) and limits of quantification (LOQ) were 0.086-0.353 ng mL-1 and 0.286-1.175 ng mL-1, respectively. The intra-day and inter-day RSDs were in the range of 0.17-1.87% and 0.06-2.21%, respectively. By using the DoE method, the errors associated with inferring the influence and interaction between various factors can be reduced. The combination of MSPE and DoE improves the recovery, precision, and simultaneous detectability of the target analytes. It has a high potential for psychoactive substance analysis in environmental water.
Collapse
Affiliation(s)
- Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China.
- Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China
| |
Collapse
|
8
|
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Balachandar R, Karmegam N. Origin, transport and ecological risk assessment of illicit drugs in the environment - A review. CHEMOSPHERE 2023; 311:137091. [PMID: 36356815 DOI: 10.1016/j.chemosphere.2022.137091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Illicit drugs are a novel group of emerging pollutants. A growing global environmental load and ecological risk is created by the ongoing release of these toxins into the environment. Conventional water processing plants fail to completely remove drugs of abuse from both surface water and wastewater. The origin, environmental fate and ecological repercussions of illicit drugs, despite their detection in surface waterways around the world, are not well understood. In this review, illicit drug detections in potable water, surface water and wastewater globally have been studied during the past 15 years in order to establish a baseline for future years. The most common drugs with abuse potential detected in different sources of potable and surface water were methadone (0.12-22.7 ng/L), cocaine (0.05-506.6 ng/L), benzoylecgonine (0.07-1019 ng/L), amphetamine (1.4-342.6 ng/L), and codeine (0.002-42 ng/L). The bulk of research only looked at a small number of drugs of abuse, indicating that despite widespread use, a large spectrum of these intoxicants has yet to be detected. This review focuses on the origin of illicit drug contaminants in water bodies, air, and soil, their persistence in the environment, and the typical concentrations at which they occur in the environment. The impact of these drugs on aquatic organisms like Elliptio complanata mussels, crayfish and zebrafish has also been reviewed.
Collapse
Affiliation(s)
- R Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam, 686 518, Kerala, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105. Tamil Nadu, India.
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Chennai, 602 025, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
9
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
10
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
11
|
Lin Q, Zhang J, Yin L, Zuo W, Li L, Tian Y. Insight investigation of the on-site activated sludge reduction induced by metabolic uncoupler: Effects of 2,6-dichlorophenol on soluble microbial products, microbial activity, and environmental impact. CHEMOSPHERE 2022; 286:131575. [PMID: 34325264 DOI: 10.1016/j.chemosphere.2021.131575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Metabolic uncoupling technology was one of the methods widely used to on-site control the production of excess sludge in wastewater treatment processes. However, the uncoupler effects on soluble microbial products (SMP), microbial activity, and environment impact have few been reported. This study showed that sludge yield was reduced by 33.3% at 2,6-dichlorophenol (2,6-DCP) concentrations of 10 mg/L. The addition of 2,6-DCP also reduced the content of polysaccharide and protein in SMP, and the three-dimension excitation emission matrix (3D-EEM) suggested that the fluorescence intensities of humic acid-like, fulvic acid-like, and tryptophan protein-like substances decreased, proving that 2,6-DCP addition will weaken the interaction between microorganisms and the environmental matrix. Moreover, 2,6-DCP addition will change the microbial morphology and community of activated sludge. The active or respiring bacteria portion was lessened, and sludge flocs become dispersed, but it will not affect its settling performance. Surprisingly, 2,6-DCP has certain biodegradability and could be used as an environmentally friendly metabolic uncoupler under low-concentration dosing conditions. This study systematically evaluated the effect of 2,6-DCP on sludge production, SMP contents, microbial morphology, microbial community, demonstrating the environmental impact and application feasibility in the wastewater treatment systems.
Collapse
Affiliation(s)
- QingYuan Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Linlin Yin
- National Engineering Research Center of Urban Water Resources, Harbin, 150090, PR China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Silori R, Tauseef SM. A Review of the Occurrence of Pharmaceutical Compounds as Emerging Contaminants in Treated Wastewater and Aquatic Environments. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211119142030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, pharmaceutical compounds have emerged as potential contaminants in
the aquatic matrices of the environment. High production, consumption, and limited removal
through conventional treatment processes/wastewater treatment plants (WWTPs) are the major
causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments
worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated
wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review
provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.
Collapse
Affiliation(s)
- Rahul Silori
- HSE and Civil Engineering Department, UPES, Dehradun, 248001, Uttarakhand, India
| | | |
Collapse
|
13
|
Pandopulos AJ, Simpson BS, Bade R, O'Brien JW, Yadav MK, White JM, Gerber C. A method and its application to determine the amount of cannabinoids in sewage sludge and biosolids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59652-59664. [PMID: 34143389 DOI: 10.1007/s11356-021-14921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Xenobiotic cannabinoids (phyto and synthetic) are highly lipophilic compounds and have been shown to accumulate within the particulate fraction of wastewater. Limited research has been conducted to investigate the occurrence of cannabinoids in sewage sludge and/or biosolids. The analysis of excreted cannabinoids from sewage sludge or biosolids can provide information about community health, as well as potentially long-term environmental impacts. In this study, a liquid-liquid extraction method was developed for the extraction and detection method for 50 cannabinoids by liquid chromatography-mass spectrometry, including the cannabis urinary biomarker 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and a variety of different generation synthetic cannabinoids and their respective metabolites. Method validation assessed criteria including linearity, selectivity, recovery, and matrix effects. The method was applied to samples collected from a conventional activated sludge reactor treatment facility from various stages of the treatment process. Three cannabinoids were abundant in primary sludge including THC, THC-COOH, and CBD, where THC was the most ubiquitous with concentrations up to 3200 μg kg-1. Only THC and THC-COOH were detectable in aged biosolids. The detection of some cannabinoids in biosolids demonstrated that these compounds are stable throughout the treatment process.
Collapse
Affiliation(s)
- Aaron J Pandopulos
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Bradley S Simpson
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Richard Bade
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Meena K Yadav
- Allwater, Adelaide Services Alliance, 77 Wakefield Street, Adelaide, 5000, Australia
| | - Jason M White
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Cobus Gerber
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
14
|
Sapula SA, Whittall JJ, Pandopulos AJ, Gerber C, Venter H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147270. [PMID: 33940413 PMCID: PMC8086323 DOI: 10.1016/j.scitotenv.2021.147270] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 04/15/2023]
Abstract
Wastewater-based epidemiology is currently being utilized to monitor the dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on a population scale. The detection of SARS-CoV-2 in wastewater is highly influenced by methodologies used for its isolation, concentration and RNA extraction. Although various viral concentration methods are currently employed, including polyethylene glycol (PEG) precipitation, adsorption-extraction, ultracentrifugation and ultrafiltration, to our knowledge, none of these methods have been standardized for use with a variety of wastewater matrices and/or different kits for RNA extraction and quantification. To address this, wastewater with different physical characteristics was seeded with gamma-irradiated SARS-CoV-2 and used to test the efficiency of PEG precipitation and adsorption-extraction to concentrate the virus from three physiochemically different wastewater samples, sourced from three distinct wastewater plants. Efficiency of viral concentration and RNA extraction was assessed by reverse-transcriptase polymerase chain reaction and the recovery yields calculated. As co-purification of inhibitors can be problematic for subsequent detection, two commonly used commercial master mixes were assessed for their sensitivity and efficiency to detect two SARS-CoV-2 target nucleocapsid (N) gene sequences. Recovery rates varied greatly between wastewater matrices and concentration methods, with the highest and most reproducible recovery rates (46.6-56.7%) observed when SARS-CoV-2 was precipitated with PEG and detected by the Luna® Universal master mix. The adsorption-extraction method was less effective (0-21.7%). This study demonstrates that PEG precipitation is the more robust method, which translates well to varying wastewater matrices, producing consistent and reproducible recovery rates. Furthermore, it is compatible with different kits for RNA extraction and quantitation.
Collapse
Affiliation(s)
- Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Jonathan J Whittall
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Aaron J Pandopulos
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Cobus Gerber
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
15
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Haalck I, Löffler P, Baduel C, Wiberg K, Ahrens L, Lai FY. Mining chemical information in Swedish wastewaters for simultaneous assessment of population consumption, treatment efficiency and environmental discharge of illicit drugs. Sci Rep 2021; 11:13510. [PMID: 34188128 PMCID: PMC8241857 DOI: 10.1038/s41598-021-92915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
Consumption of illicit drugs poses health risks to the public and environment. Knowledge on their usage helps better implementations of intervention strategies to reduce drug-related harms in the society and also policies to limit their releases as emerging contaminants to recipient environments. This study aimed to investigate from the daily consumption to treatment efficiency and subsequent discharge of illicit drugs by the Swedish urban populations based on simultaneous collection and analysis of influent and effluent wastewater. Two different weekly monitoring campaigns showed similar drug prevalence in Stockholm and Uppsala, with amphetamine as the most popular drug. Almost all target drug residues were still measurable in effluent wastewater. High removal efficiencies (> 94%) were observed for amphetamine, cocaine and benzoylecgonine, whereas ketamine, 3,4-methylenedioxymethamphetamine (MDMA), mephedrone and methamphetamine were the least removed substances (< 64%), with the highest discharge observed for MDMA in both catchments (~ 3.0 g/day in Uppsala; ~ 18 g/day in Stockholm). Our study provides new insights into short-term changes in the use and related discharge of illicit drugs by urban populations. Such wastewater monitoring can provide useful information to public health, forensic and environmental authorities in planning future intervention and regulation policies.
Collapse
Affiliation(s)
- Inga Haalck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Christine Baduel
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
- University Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, Grenoble, France
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
17
|
Mao G, Hu H, Liu X, Crittenden J, Huang N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:115785. [PMID: 33607600 DOI: 10.1016/j.envpol.2020.115785] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
For the foreseeable future, industrial water demand will grow much faster than agriculture. The demand together with the urgency of wastewater treatment, will pose big challenges for most developing countries. We applied the bibliometric analysis combined with social network analysis and S-curve technique to quantitatively analyze 9413 publications related to industrial wastewater treatment in the Scientific Citation Index (SCI) and Social Sciences Citation Index (SSCI) databases from 1998 to 2019. The results showed that: (1) Publications on industrial wastewater treatment have increased from 120 in 1998 to 895 in 2019 with a steady annual increment rate, and researchers have focused more on the application and optimization of existing technologies. (2) China had the highest number of publications (n = 1651, 19.66% of global output) and was a core country in the international cooperation network, whereas the United States and European countries produced higher quality papers. (3) By analyzing the co-occurrence and clusters of keywords and comparing three wastewater treatment categories (physical, chemical, biological), adsorption (n = 1277), oxidation (n = 1085) and activated sludge process (n = 1288) were the top three techniques. Researchers have shifted their focus to treatment technologies for specific wastewater type, such as textile wastewater, pulp and paper wastewater, and pharmaceutical wastewater. The S-curve from articles indicates that physical and chemical treatment technologies are attached with great potential in the near future, especially adsorption and advanced oxidation, while the biological treatment technologies are approaching to the saturation stage. Different pattern is observed for the S-curve derived from patents, which stressed the limited achievement until now and further exploration in the field application for the three treatment categories. Our analysis provides information of technology development landscape and future opportunities, which is useful for decision makers and researchers who are interested in this area.
Collapse
Affiliation(s)
- Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Haoqiong Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Xi Liu
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; College of Management and Economics, Tianjin University, Tianjin, 300072, China.
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ning Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| |
Collapse
|
18
|
Trowsdale S, Price M, Wilkins C, Tscharke B, Mueller J, Baker T. Quantifying nicotine and alcohol consumption in New Zealand using wastewater-based epidemiology timed to coincide with census. Drug Alcohol Rev 2021; 40:1178-1185. [PMID: 33715226 DOI: 10.1111/dar.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/19/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Accurate and timely information about nicotine and alcohol consumption is needed to inform effective policy. Wastewater-based epidemiology provides an opportunity to quantify consumption, which can complement traditional data collection methods. METHODS Wastewater samples were collected from seven wastewater treatment plants on seven consecutive days in three regions of New Zealand during the same week as the national census (6 March 2018). Samples were analysed for nicotine and alcohol metabolites using liquid chromatography-tandem mass spectrometry. Detailed catchment maps were developed and per capita consumption calculated. RESULTS Observed nicotine consumption (mean 1528 ± 412 cigarettes/day/1000 people) was similar to national sales data. Observed alcohol consumption (mean 1155 ± 764 standard drinks/day/1000 people) was lower than estimated using alcohol availability data. Consumption of nicotine and alcohol was generally higher in the Bay of Plenty and Canterbury compared to Auckland, mirroring trends in the New Zealand Health Survey. Intra-regional differences were observed and the patterns could not be attributed to urbanisation alone. Nicotine consumption was consistent throughout the week whereas alcohol consumption often peaked at the weekend. Nicotine consumption was correlated with neighbourhood-deprivation. There was little correlation for alcohol. DISCUSSION AND CONCLUSIONS Wastewater-based epidemiology provides a quantitative dataset that complements traditional methods of investigating nicotine and alcohol consumption. Timing data collection to coincide with the census helps to account for the influence of population mobility when normalising consumption.
Collapse
Affiliation(s)
- Sam Trowsdale
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Mackay Price
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chris Wilkins
- SHORE & Whariki Research Centre, College of Health, Massey University, Auckland, New Zealand
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Tom Baker
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Overview of the Policies for Phasing Out Ocean Dumping of Sewage Sludge in the Republic of Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12114553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ocean dumping of municipal sewage sludge (MSS) that was treated in wastewater treatment plants in the Republic of Korea (ROK) began in 1993 and has sharply increased thereafter; this deteriorated the benthic environment of the dumping sites, consequently necessitating relevant policies to be developed to reduce dumping. This review introduces the outcomes of policies used to phase out ocean dumping of MSS in ROK and provides a method for improving contaminated environments. We first review a previous report submitted under the London Protocol in 2016 and then provide additional data collected since then. In addition, we introduce a scientific research result that reduced the concentration of harmful substances in the dumping sites by capping the dumping area. ROK established policies to phase out the dumping in 2006, which had immediate impacts, with dumping of MSS terminated in 2012. These policies were then expanded to terminate dumping of all types of sewage sludge in 2016, due to the fast and strict application of actions based on intergovernmental cooperation and societal consensus. In addition, the capping method that covered the contaminated sediments with dredged materials was effective. The success of the evaluated policies and research could be effectively applied to areas with similar circumstances.
Collapse
|
20
|
Leyva-Díaz JC, Monteoliva-García A, Martín-Pascual J, Munio MM, García-Mesa JJ, Poyatos JM. Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. BIORESOURCE TECHNOLOGY 2020; 299:122631. [PMID: 31902639 DOI: 10.1016/j.biortech.2019.122631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Over the last years, an increasing concern has emerged regarding the eco-friendly management of wastewater. Apart from the role of wastewater treatment plants (WWTPs) for wastewater and sewage sludge treatment, the increasing need of the recovery of the resources contained in wastewater, such as nutrients and water, should be highlighted. This would allow for transforming a wastewater treatment plant (WWTP) into a sustainable technological system. The objective of this review is to propose a moving bed biofilm reactor (MBBR) as a novel technology that contributes to the circularity of the wastewater treatment sector according to the principles of circular economy. In this regard, this paper aims to consider the MBBR process as the initial step for water reuse, and nutrient removal and recovery, within the circular economy model.
Collapse
Affiliation(s)
- J C Leyva-Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain.
| | - A Monteoliva-García
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - J Martín-Pascual
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - M M Munio
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - J J García-Mesa
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - J M Poyatos
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| |
Collapse
|
21
|
de Oliveira M, Frihling BEF, Velasques J, Filho FJCM, Cavalheri PS, Migliolo L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135568. [PMID: 31846817 DOI: 10.1016/j.scitotenv.2019.135568] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 04/13/2023]
Abstract
Emerging contaminants are increasingly present in the environment, and their appearance on both the environment and health of living beings are still poorly understood by society. Conventional sewage treatment facilities that are under validity and were designed years ago are not developed to remove pharmaceutical compounds, their main focus is organic and bacteriological removal. Pharmaceutical residues are associated directly with quantitative production aspects as well as inadequate waste management policies. Persistent classes of emerging compounds such as xenobiotics present molecules whose physicochemical properties such as small molecular size, ionizability, water solubility, lipophilicity, polarity and volatility make degradability, identification and quantification of these complex compounds difficult. Based on research results showing that there is a possibility of risk to human and environmental health the presence of these compounds in the environment this article aimed to review the main pharmaceutical and xenobiotic residues present in the environment, as well as to present the most common methodologies used. The most commonly used analytical methods for identifying these compounds were HPLC and Gas Chromatography coupled with mass spectrometry with potential for characterize complex substances in the environment with low concentrations. An alternative and low-cost technology for emerging compound treatment demonstrated in the literature with a satisfactory performance for several types of sewage such as domestic sewage, wastewater and agroindustrial, was the Wetlands Constructed. The study was able to identify the main compounds that are being found in the environment and identify the most used analytical methods to identify and quantify these compounds, bringing some alternatives combining technologies for the treatment of compounds. Environmental contamination is eminent, since the production of emerging compounds aims to increase along with technological development. This demonstrates the need to explore and aggregate sewage treatment technologies to reduce or prevent the deposition of these compounds into the environment.
Collapse
Affiliation(s)
- Milina de Oliveira
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Jannaina Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Fernando Jorge Corrêa Magalhães Filho
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Ludovico Migliolo
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
22
|
Yadav MK, Kumar A, Short MD, Nidumolu B, Saint CP. Aquatic Phytotoxicity to Lemna minor of Three Commonly Used Drugs of Addiction in Australia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:710-716. [PMID: 31482305 DOI: 10.1007/s00128-019-02708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The manufacturing and consumption of drugs of addiction has increased globally and their widespread occurrence in the environment is an emerging concern. This study evaluated the phytotoxicity of three compounds: methamphetamine, codeine and morphine; commonly reported in Australian urban water, to the aquatic plant Lemna minor under controlled conditions. L. minor was sensitive to lower drug concentrations when administered in multi-compound mixtures (100-500 µg L-1) than when applied individually (range 600-2500 µg L-1), while no adverse effects were observed at environmentally-relevant concentrations (1-5 µg L-1) detected in wastewater effluent. In conclusion, the results show that the concentrations of these compounds discharged into the environment are unlikely to pose adverse phytotoxic effects. These three compounds are known to be the most stable of their group under such conditions indicating that with this respect it is safe to use recycled water for existing regulated reclaimed purposes including agricultural or parklands irrigation or replenishing surface and groundwater. However, more research on the analysis of methamphetamines and opiates in municipal effluents is needed to reassure the likely environmental hazard of these neuroactive drug classes to aquatic organisms. Given the ever-growing production and aquatic disposal of discharge wastewater globally, this study provides timely and valuable insights into the likely drug-related impacts of effluent disposal on aquatic plants in receiving environments.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Anu Kumar
- CSIRO, Land and Water, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Bhanu Nidumolu
- CSIRO, Land and Water, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- Division of Information Technology, Engineering and the Environment, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|