1
|
Liang Z, Pan S, Guo F. Spatiotemporal variations of phosphorus fraction and distribution in Sichuan section mainstem in the upper Yangtze River with impoundment of Xiangjiaba Reservoir in the lower Jinsha River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178608. [PMID: 39874879 DOI: 10.1016/j.scitotenv.2025.178608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Sichuan section mainstem (SSM) in the upper Yangtze River (UYR) plays a crucial role in protecting the aquatic environment of the UYR and ensuring a safe water supply to the Three Gorges Reservoir. The impoundments of cascade reservoirs on the lower Jinsha River have significantly influenced sediment regime and phosphorus (P) transport in the SSM. This effect on water quality and safety remains poorly understood. In this study, the spatiotemporal variations of P fraction and distribution in the SSM from 2010 to 2020 were measured. The results showed that critical changes were observed in the SSM after the impoundment in 2012, which were as follows: (1) in the outflow of the SSM, dissolved phosphorus (DP) flux increased from 0.950 × 104 t to 1.153 × 104 t and the proportion of DP in the total phosphorus (TP) increased by 227.4 %. Jinsha River, Min River, and DP release from internal P, bore responsibilities of 24.6 %, 38.9 %, and 21.3 % for the DP growth, respectively. (2) Min River replaced Jinsha River as the dominant P supplier. (3) Concentrations of TP, particle phosphorus (PP), coarse particle P (CPP), and fine particle P (FPP) were positively related with SS concentration (R2 > 84 %). Proportions of PP and DP in TP showed substantial logarithmic increase and decrease over SS concentration (R2 > 95 %), respectively. The proportion of FPP in PP was elevated by 32.5 %, whereas that of FPP in TP remained stable in both the SSM and its tributaries from 2010 to 2020 and had a relatively close value (35.9 to 39.9 %). The important phenomenon, not reported in previous studies, will need detailed exploration to reveal the reasons and scientific significances in future work. These findings elucidated the transformation of P species along the SSM, providing a comprehensive understanding of FPP and CPP in preventing and controlling P pollution in the SSM.
Collapse
Affiliation(s)
- Zhu Liang
- Yibin Research Base, Key Laboratory of Yangtze River Water Environment, Ministry of Education of the People's Republic of China, Yibin 644000, China; College of Resource & Environment, Yibin University, Yibin 644000, China.
| | - Shulin Pan
- Yibin Research Base, Key Laboratory of Yangtze River Water Environment, Ministry of Education of the People's Republic of China, Yibin 644000, China; College of Resource & Environment, Yibin University, Yibin 644000, China
| | - Fangcheng Guo
- College of Resource & Environment, Yibin University, Yibin 644000, China
| |
Collapse
|
2
|
Wu X, Wang Y, Jiao L, He J, Zhou H, Hao Z. Influencing Factors of Phosphorus Mobility and Retention in the Sediment of Three Typical Plateau Lakes. TOXICS 2025; 13:120. [PMID: 39997935 PMCID: PMC11860908 DOI: 10.3390/toxics13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
The mechanisms driving changes in the stability of phosphorus (P) in sediments under lake ecosystem degradation remain poorly understood. This study investigated the P-binding forms in sediments from three plateau lakes with different trophic states in Yunnan Province, China, aiming to elucidate the responses of sediment P compositions to human activities, lake trophic status, and dissolved organic matter (DOM) characteristics. The results showed that human activity directly contributed to sediment P retention. The trophic type of lake exerted a discernible effect on P mobility in the sediments, as eutrophic algae-type lakes had a higher content of sediment mobile-P. Moreover, the sediment DOM promoted the adsorption of BD-P and NH4Cl-P. Generally, exogenous pollution caused by human activity leads to lake eutrophication and a decline in lake ecosystem stability. This variation was largely influenced by water depth. A decrease in lake ecosystem stability leads to increased P mobility in sediments, which increases the risk of endogenous pollution. The DOM plays an important role in the mobility of sediment P. These insights offer a novel perspective for understanding how lake ecosystem characteristics are related to endogenous P loads in lakes.
Collapse
Affiliation(s)
- Xue Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China; (Y.W.); (H.Z.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yancai Wang
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China; (Y.W.); (H.Z.)
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China; (Y.W.); (H.Z.)
| | - Hongbin Zhou
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China; (Y.W.); (H.Z.)
| | - Zhengzheng Hao
- Yunnan Dianwei Environmental Protection Technology Co., Ltd., Kunming 650031, China;
| |
Collapse
|
3
|
Zhang C, Zhao Y, Xu M, Zheng W, Zhao Y, Qin B, Wang R. Revealing the hidden burden for lake management: the sediment phosphorus storage pools in Eastern Plain Lake Zone, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116052-116065. [PMID: 37906335 DOI: 10.1007/s11356-023-30555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
As one of the essential components in ecosystems, lakes play a major role in the global phosphorus (P) cycle. It is helpful for further understanding of the inside lake P geochemical cycle to research P pollution and storage in lakes, which is of positive significance for lake eutrophication restoration. In this study, we investigated the total phosphorus concentrations (TPC) of water and sediments from 37 lakes in the Eastern Plain Lake Zone (EPL) of China, evaluated the P pollution degree of lakes, and estimated P storage in lake sediments with quantitative data of lake area and number. The results indicate that the total phosphorus concentrations of water (TPCW) and total phosphorus concentrations of the surface sediments (0-1 cm, TPCSS) in EPL were high, the mean values were 0.11 mg·L-1 and 869.85 mg·kg-1 respectively, with obvious differences between urban and rural areas, as well as between different river basins. Over half (56.76% and 70.27% respectively) of the lakes reached severe pollution levels in water and surface sediments. There were 16224 lakes (> 0.01 km2) with a total area of 21662.37 km2 in the EPL, and the P storage in the lake sediments (0-30 cm) was about 4.87 ± 2.08 Tg (1 Tg = 1 × 1012 g), accounting for about 2.74% of the basin soil. TPCW and TPCSS of lakes in the EPL were significantly positively correlated, may suggest a close nutrient cycling relationship between the lake water and the sediment. During periods of high winds and waves, the stored P in the top sediments in the EPL may continue to participate in the internal P geochemical cycle and migrate to the overlying water, posing a potential pollution hazard. Therefore, it is crucial to take into account the sediment P pools when formulating effective lake phosphorus management strategies.
Collapse
Affiliation(s)
- Chenxue Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Min Xu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenxiu Zheng
- Hubei Normal University, Huangshi, 435000, China
| | - Yu Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
4
|
Yan K, Luo YH, Li YJ, Du LP, Gui H, Chen SC. Trajectories of soil microbial recovery in response to restoration strategies in one of the largest and oldest open-pit phosphate mine in Asia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115215. [PMID: 37421785 DOI: 10.1016/j.ecoenv.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Southwestern China has the largest geological phosphorus-rich mountain in the world, which is seriously degraded by mining activities. Understanding the trajectory of soil microbial recovery and identifying the driving factors behind such restoration, as well as conducting corresponding predictive simulations, can be instrumental in facilitating ecological rehabilitation. Here, high-throughput sequencing and machine learning-based approaches were employed to investigate restoration chronosequences under four restoration strategies (spontaneous re-vegetation with or without topsoil; artificial re-vegetation with or without the addition of topsoil) in one of the largest and oldest open-pit phosphate mines worldwide. Although soil phosphorus (P) is extremely high here (max = 68.3 mg/g), some phosphate solubilizing bacteria and mycorrhiza fungi remain as the predominant functional types. Soil stoichiometry ratios (C:P and N:P) closely relate to the bacterial variation, but soil P content contributes less to microbial dynamics. Meanwhile, as restoration age increases, denitrifying bacteria and mycorrhizal fungi significantly increased. Significantly, based on partial least squares path analysis, it was found that the restoration strategy is the primary factor that drives soil bacterial and fungal composition as well as functional types through both direct and indirect effects. These indirect effects arise from factors such as soil thickness, moisture, nutrient stoichiometry, pH, and plant composition. Moreover, its indirect effects constitute the main driving force towards microbial diversity and functional variation. Using a hierarchical Bayesian model, scenario analysis reveals that the recovery trajectories of soil microbes are contingent upon changes in restoration stage and treatment strategy; inappropriate plant allocation may impede the recovery of the soil microbial community. This study is helpful for understanding the dynamics of the restoration process in degraded phosphorus-rich ecosystems, and subsequently selecting more reasonable recovery strategies.
Collapse
Affiliation(s)
- Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Ju Li
- The State Phosphorus Resource Development and Utilization Engineering Technology Research Centre, Yunnan Phosphate Chemical Group Co. Ltd, Kunming 650607, China
| | - Ling-Pan Du
- The State Phosphorus Resource Development and Utilization Engineering Technology Research Centre, Yunnan Phosphate Chemical Group Co. Ltd, Kunming 650607, China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Si-Chong Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China; Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK.
| |
Collapse
|
5
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Dong Y, Xu F, Liang X, Huang J, Yan J, Wang H, Hou Y. Beneficial use of dredged sediments as a resource for mine reclamation: A case study of Lake Dianchi's management in China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:81-91. [PMID: 37245399 DOI: 10.1016/j.wasman.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Dredging is one of the most effective methods for inhibiting the endogenous contamination of natural lakes. However, both the amount and the scope of dredging will be restricted if the disposal of the dredged sediment incurs considerable environmental and economic costs. The use of dredged sediments as a post-mining soil amendment for mine reclamation benefits both sustainable dredging and ecological restoration. This study incorporates a field planting experiment with a life cycle assessment to confirm the practical effectiveness of sediment disposal via mine reclamation, as well as its environmental and economic superiority over other alternative scenarios. The results show that the sediment offered plentiful organic matter and nitrogen for mine substrate, stimulating plant growth and increasing photosynthetic carbon fixation density, followed by enhanced plant root absorption and an improved soil immobilization effect on heavy metals. A 2:1 ratio of mine substrate to sediment is recommended to significantly promote the yield of ryegrass while reducing levels of groundwater pollution and soil contaminant accumulation. Due to the significant reduction in electricity and fuel, mine reclamation had minimal environmental impacts on global warming (2.63 × 10-2 kg CO2 eq./kg DS), fossil depletion (6.81 × 10-3 kg oil eq./DS), human toxicity (2.29 × 10-5 kg 1,4-DB eq/kg DS), photochemical oxidant formation (7.62 × 10-5 kg NOx eq./kg DS), and terrestrial acidification (6.69 × 10-5 kg SO2 eq./kg DS). Mine reclamation also had a lower cost (CNY 0.260/ kg DS) than cement production (CNY 0.965/kg DS) and unfired brick production (CNY 0.268/kg DS). The use of freshwater for irrigation and electricity for dehydration were the key factors in mine reclamation. Through this comprehensive evaluation, the disposal of dredged sediment for mine reclamation was verified to be both environmentally and economically feasible.
Collapse
Affiliation(s)
- Yuecen Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangming Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ximing Liang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junlong Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junchen Yan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yunjian Hou
- Water Ecology Management Center of Dianchi, Kunming 650100, China
| |
Collapse
|
7
|
Xia R, Duan P, Li R, Jiao L, He J, Ding S, Wu X. Effects of calcination on the environmental behavior of sediments by phosphorus speciation and interface characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117103. [PMID: 36603249 DOI: 10.1016/j.jenvman.2022.117103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Dredged sediments derived from eutrophicated lakes poses hardness of sludge disposal and ecological risks. The proper pretreatment and utilization of dredged sediments presented a challenge. In this study, Dianchi Lake sediments were dredged, thermally treated and utilized as particle capping material in batch experiments. The effects of calcination on phosphorus speciation and sediment-water interface environment as well as P immobility mechanism were predominantly explored. The microstructures and chemical compositions of calcined sediments were investigated, indicating the porosity and mineralization components were greatly enhanced. The fractional analysis of phosphorus revealed that the calcination process reduced the percentage of unsteady phosphorus, transforming into stable inert phosphorus fractions (Al-P, Ca-P and Res-P), respectively, thereby minimized its mobility and eutrophication risk. Interestingly, calcination temperatures of 700 °C and 800 °C resulted in smaller releasing potentials and equilibrium phosphorus concentrations, despite having lower adsorption capacities than 550 °C. Furthermore, the results of redox potential monitoring showed that the thermally treated Dianchi Lake sediments could enhance the redox potential and dissolved oxygen in the surface sediment, indicating the amelioration of interfacial environment. The practical monitoring experiments confirmed the capping depressed the DTP to 0.031 mg L-1. The investigation of this study provided explicit evidence of Ca coupled P and aerobic Fe bound P strengthened the immobilization effects, and the development of sediment calcination demonstrates a promising strategy for alleviating the burden of endogenous pollution and improving aerobic environment, which are of great significance for lake ecological remediation.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, People's Republic of China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Yunnan, Kunming, 650032, People's Republic of China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xue Wu
- Kunming Institute of Eco-Environmental Sciences, Yunnan, Kunming, 650032, People's Republic of China
| |
Collapse
|
8
|
Bi W, Zhang D, Weng B, Dong Z, Wang F, Wang W, Lin W, Yan D. Research progress on the effects of droughts and floods on phosphorus in soil-plant ecosystems based on knowledge graph. HYDRORESEARCH 2023. [DOI: 10.1016/j.hydres.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Xie Y, Sheng Y, Li D, He F, Du J, Jiang L, Luo C, Li G, Zhang D. Change of the structure and assembly of bacterial and photosynthetic communities by the ecological engineering practices in Dianchi Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120386. [PMID: 36228847 DOI: 10.1016/j.envpol.2022.120386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial bloom challenges the aquatic ecosystem and ecological restoration is an effective approach for cyanobacterial bloom control, but the change of aquatic community after ecological restoration is still unclear. Dianchi Lake is an eutrophic lake with frequent cyanobacterial blooms in China, and recent ecological restoration projects in Caohai (north part) have a satisfactory performance. In this study, we collected 249 water samples at 23 sites from Dianchi Lake to explore the relationships between water physicochemical variables and aquatic microbial communities. Water physicochemical variables in Waihai (south part) intensively changed along time, whereas those in Caohai did not. Photoautotrophic communities were significantly divergent between Caohai and Waihai. Waihai had a lower diversity of photoautotrophic community, containing higher abundance of Cyanophyceae (89.9%) than Caohai (42.7%). Nutrient level and Cyanophyceae only exhibited strong correlations in Wahai (p < 0.05). Redundancy analysis and microbial ecological network suggested that microbial communities in Caohai had a higher stability. Deterministic process dominated the microbial assembly (50-80% for bacteria and >90% for photoautotrophs), and particularly in Caohai. Our results unraveled that the structure and assembly of bacterial and photoautotrophic communities significantly changed after ecological restoration, offering valuable suggestions that photosynthetic diversity should be focused for other ecological restoration projects.
Collapse
Affiliation(s)
- Yucheng Xie
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China.
| | - Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Danni Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Feng He
- Water Environment Research Division, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650000, China
| | - Jinsong Du
- Water Environment Research Division, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650000, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
10
|
Ding S, Jiao L, He J, Li L, Liu W, Liu Y, Zhu Y, Zheng J. Biogeochemical dynamics of particulate organic phosphorus and its potential environmental implication in a typical "algae-type" eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120240. [PMID: 36152715 DOI: 10.1016/j.envpol.2022.120240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Organic phosphorus (Po) plays a very important role in the process of lake eutrophication, but there is still a lack of knowledge about the internal cycle of Po in suspended particulate matter (SPM) dominated by algal debris. In this study, the characterization of bioavailable Po by sequential extraction and enzymatic hydrolysis showed that 45% of extracted TP was Po in SPM of Lake Dianchi, and 43-98% of total Po in H2O, NaHCO3 and NaOH fractions was enzymatically hydrolyzable Po (EHP, H2O-EHP: 31-53%). Importantly, labile monoester P was the main organic form (68%) of EHP, and its potential bioavailability was higher than that of diester P and phytate-like P. According to the estimation of P pools in SPM of the whole lake, the total load of Pi plus EHP in the H2O extract of SPM was 74.9 t and had great potential risk to enhance eutrophication in the lake water environment. Accordingly, reducing the amount of SPM in the water during the algal blooming period is likely to be a necessary measure that can successfully interfere with or block the continuous stress of unhealthy levels of P on the aquatic ecosystem.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Lingping Li
- Shenzhen Green Creating Promotion Center of Living Environment, Shenzhen, 518040, China
| | - Wenbin Liu
- Ecological Engineering Company Limited of CCCC First Harbor Engineering Co., Ltd., Shenzhen, 518107, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinlong Zheng
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| |
Collapse
|
11
|
Jia Y, Zeng W, Fan Z, Meng Q, Liu H, Peng Y. An effective titanium salt dosing strategy for phosphorus removal from wastewater: Synergistic enhancement of chemical and biological treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156960. [PMID: 35760169 DOI: 10.1016/j.scitotenv.2022.156960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Titanium salt coagulant, as a new type of water treatment agent, has been widely studied, but most researches do not consider its effect on the biological treatment. In this study, different doses of TiCl4 were added to the biological phosphorus removal (BPR) system to investigate the impact of TiCl4 on BPR. The results showed that the addition of TiCl4 not only significantly reduced the phosphorus concentration in effluent (below 0.5 mg/L), but also kept it stable. Moreover, the sedimentation performance of activated sludge was improved, which was superior to the control group. According to the results of flow cytometry (FCM), a small amount of TiCl4 significantly improved the bioactivities, but excessive dosage caused inhibition. When the dosage of TiCl4 below 20 mg/L, polyphosphate accumulating metabolism (PAM) was strengthened. In addition, the richness of microbial community and the relative abundance of Candidatus Accumulibacter clades also increased. However, when the dosage reached 60 mg/L, the relative abundance of Candidatus Competibacter increased and the BPR system was deteriorated. This study suggests that the addition of appropriate concentration of TiCl4 can realize the synergistic enhancement of biological and chemical phosphorus removal in sewage treatment.
Collapse
Affiliation(s)
- Yuan Jia
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zhiwei Fan
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingan Meng
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongjun Liu
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Verma V, Soti A, Kulshreshtha NM, Rampuria A, Brighu U, Gupta AB. Strategies for enhancing phosphorous removal in Vertical Flow Constructed Wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115406. [PMID: 35661880 DOI: 10.1016/j.jenvman.2022.115406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Constructed wetlands (CWs) are among the fastest emerging treatment methods for wastewater treatment. Unlike their organics and nitrogen removal capacities, the potential of CWs as a sink for phosphorous is still debatable. In this study, the secondary data from several CWs treating domestic sewage were compiled and assessed. Curves were plotted between orthophosphate-phosphorous (PO43--P) loading and the corresponding removal rates. Other factors affecting PO43--P removal like depth of the CW, surface area, organic loading rate etc. Were also analyzed. Removal rates of PO43--P were conforming to a linear positive relation with the loading rates. Pea gravel as a CW medium performed consistently well (60-80% removal) for a wide range of influent PO43--P loading (0.5-1.5 g/m3-d). The increased depth of the wetland appears to favor phosphate removal. PO43--P removal was found to be correlated with outlet dissolved oxygen, total Kjeldahl nitrogen removal and effluent nitrate. The study suggests that proper design, optimal organic loading and suitable pre-treatment may increase the applicability of CWs for phosphate removal from domestic wastewater. Larger area requirements can also be avoided by increasing their depth while keeping the volume of the filter media the same.
Collapse
Affiliation(s)
- Vishesh Verma
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Aakanksha Rampuria
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Akhilendra Bhusan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
13
|
Xu X, Wang B, Shen J, Kang J, Zhao S, Yan P, Chen Z. Characteristics and disinfection by-product formation potential of dissolved organic matter in reservoir water in cold area. CHEMOSPHERE 2022; 301:134769. [PMID: 35500634 DOI: 10.1016/j.chemosphere.2022.134769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The severe cold in winter with harsh natural conditions in Northeastern China seriously affect the water quality of the reservoir, showing the increased content and more complex types of organic matter, which brings severe challenges to the control of disinfection by-products (DBPs) in drinking water treatment with reservoir water as the water source. In this study, the fractions of dissolved organic matter (DOM) in source water at before ice formation period (P1), ice-age period (P2), and ice begin to melt period (P3) were separated by membrane separation technology. Subsequently, the contributions of DOM fractions with different molecular weights (MW) to DOC, UV254, and SUVA254, and their disinfection by-product formation potential (DBPFP) were evaluated. Although DOM with high MW (5-10 kDa) contributed the most to dissolved organic carbon (DOC) and UV254, but the contribution of DOM with low MW (0-1 kDa) to DBPs formation could not be ignored, especially during ice-age period. There was no significant difference in the total numbers of DOM formula belonged to low MW fraction at these three periods, mainly including lignin, followed by N-containing saturated compounds and tannins. Additionally, redundancy analysis revealed that DOC and UV254 as the predictors had good correlation with DBPFP, while SUVA254 could not be used as a single indicator to predict the generation potential of DBPs, and could be used as the prediction factors together with AImodwa parameter closely related to DBPFP. The study provided key information for controlling the DBPs formation of DOM in water, especially in the ice-age period, and provided the theoretical basis for water plant production.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
14
|
Bi W, Weng B, Yan D, Wang H, Wang M, Yan S, Jing L, Liu T, Chang W. Responses of Phosphate-Solubilizing Microorganisms Mediated Phosphorus Cycling to Drought-Flood Abrupt Alternation in Summer Maize Field Soil. Front Microbiol 2022; 12:768921. [PMID: 35111138 PMCID: PMC8802831 DOI: 10.3389/fmicb.2021.768921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microbial communities are essential to phosphorus (P) cycling, especially in the process of insoluble phosphorus solubilization for plant P uptake. Phosphate-solubilizing microorganisms (PSM) are the dominant driving forces. The PSM mediated soil P cycling is easily affected by water condition changes due to extreme hydrological events. Previous studies basically focused on the effects of droughts, floods, or drying-rewetting on P cycling, while few focused on drought-flood abrupt alternation (DFAA), especially through microbial activities. This study explored the DFAA effects on P cycling mediated by PSM and P metabolism-related genes in summer maize field soil. Field control experiments were conducted to simulate two levels of DFAA (light drought-moderate flood, moderate drought-moderate flood) during two summer maize growing periods (seeding-jointing stage, tasseling-grain filling stage). Results showed that the relative abundance of phosphate-solubilizing bacteria (PSB) and phosphate-solubilizing fungi (PSF) increased after DFAA compared to the control system (CS), and PSF has lower resistance but higher resilience to DFAA than PSB. Significant differences can be found on the genera Pseudomonas, Arthrobacter, and Penicillium, and the P metabolism-related gene K21195 under DFAA. The DFAA also led to unstable and dispersed structure of the farmland ecosystem network related to P cycling, with persistent influences until the mature stage of summer maize. This study provides references for understanding the micro process on P cycling under DFAA in topsoil, which could further guide the DFAA regulations.
Collapse
Affiliation(s)
- Wuxia Bi
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Baisha Weng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- *Correspondence: Baisha Weng, ,
| | - Denghua Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Hao Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Mengke Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Siying Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| | - Lanshu Jing
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Tiejun Liu
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot, China
| | - Wenjuan Chang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| |
Collapse
|
15
|
Sun H, Jiao R, Wang D. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115942. [PMID: 33158612 DOI: 10.1016/j.envpol.2020.115942] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In recent years, microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention because of the potential risks they pose to aquatic environments, but there are few studies on the difference of aggregation mechanism between MPs and NPs. In this study, 100 nm and 1 μm polystyrene plastics were selected as models to explore the aggregation mechanism of MPs/NPs under different aquatic environments. The influence of ion species and concentrations on the aggregation behaviors and kinetics were systematically investigated to predict the effects of water quality on the occurrence form of MPs and NPs based on DLVO theory and revised modified Smoluchowski theory. Results showed concentration, valence and hydrated ability of cations jointly affected the aggregation behavior of NPs. The critical coagulation concentration ratio of cations were consistent with Schulze-Hardy rules. But the different aggregation rate coefficients of same valent cations were ascribed to the structural layer force. Anion species played a role in the reaction-controlled regime by producing hydrogen ions to neutralize negative charges on NPs surfaces. Due to the strong Brownian motion and structural layer force, NPs would be stable in freshwater but preferentially aggregated when transport through brackish water, estuaries, eutrophication and high hardness areas and sea water, forming the accumulation hot spots of NPs in the sediment. While for MPs, physical process controlled the aggregation mechanism of them, leading to high stability in natural water and eventually transporting into marine environments. This study provided a theoretical foundation for assessing the transport, distribution, fate and ecological risks of MPs and NPs in realistic aquatic environments.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Wu M, Liu J, Gao B, Sillanpää M. Phosphate substances transformation and vivianite formation in P-Fe containing sludge during the transition process of aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2021; 319:124259. [PMID: 33254472 PMCID: PMC7558235 DOI: 10.1016/j.biortech.2020.124259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/30/2023]
Abstract
Excess sludge was considered as a promising raw material for phosphorus recovery. In this study, the P-Fe containing sludge came from the aerobic membrane bioreactor with electrocoagulation (EC), which was refluxed to the anaerobic unit for iron reduction. Under anaerobic condition, the ORP and pH maintained at -350 mV and 7.5, which exactly met the conditions for vivianite formation. According to the analysis of X-ray polycrystalline diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), the final product of the sludge after anaerobic condition was mainly vivianite. Microbial analysis showed that there were iron reducing bacteria (IRB) in sludge before and after anaerobic process, including Dechloromonas, Desulfovibrio. Aeromonas and Methanobacterium. During the transition process of aerobic and anaerobic conditions, amorphous phosphate substances in P-Fe containing sludge could be transformed vivianite just with long term standing, which could promote the recovery of phosphate resource from wastewater.
Collapse
Affiliation(s)
- Mingzhao Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
17
|
Using Microbial Aggregates to Entrap Aqueous Phosphorus. Trends Biotechnol 2020; 38:1292-1303. [DOI: 10.1016/j.tibtech.2020.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
18
|
Wang X, Zhou J, Wu Y, Bol R, Wu Y, Sun H, Bing H. Fine sediment particle microscopic characteristics, bioavailable phosphorus and environmental effects in the world largest reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114917. [PMID: 32563140 DOI: 10.1016/j.envpol.2020.114917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
The transport and retention of sediments in fine grain sizes plays an important role in the cycles of phosphorus (P), and is closely related to the extent and potential for eutrophication in water reservoirs. In order to highlight the environmental indications for the transport of fine sediment particles and the associated bioavailable phosphorus (Bio-P) in the world largest reservoir, the Three Gorges Reservoir (TGR), the suspended and bed sediments were collected at 13 sections in 2016. The sediment physicochemical properties, micromorphology of sediment particles, distribution of elements on particle surface, P adsorption parameters, and P fractions in different grain sized sediments were analyzed. The results showed that the fine sediment particles had a strong P adsorption ability due to their micromorphology, mineral compositions, and the high contents of Fe/Al/Mn (hydr)oxides, which contributed a higher concentration of Bio-P in <16 μm sediment particles. The adsorption of P on the sediment particles occurred longitudinally along the TGR, and the fine sediment particles (<16 μm) dominated the transport and distribution of Bio-P in the TGR sediments. The reduced inflow and retention of fine sediment particles, caused by the construction of cascade reservoirs along the Jinsha River (upper reach of the Yangtze River), has resulted in the decrease in the retention of Bio-P in the TGR. Therefore, we conclude that the continuously decrease of inflow and retention of the fine sediment particles in the TGR, and with it a reduced sediment P buffer capacity, may enhance algal blooms occurrence also in view of the increased P discharge from the overall TGR catchment. The study results can contribute to improved management guidance on fine sediment particles and associated phosphorus for the operation and environmental protection of other large reservoirs in the world.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Land and Resources, China West Normal University, Nanchong, 637009, China.
| | - Jun Zhou
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanhong Wu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Roland Bol
- Institute of Bio-and Geosciences, Agrosphere, Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Yong Wu
- School of Land and Resources, China West Normal University, Nanchong, 637009, China
| | - Hongyang Sun
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
19
|
Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although phytoremediation is the main method for P-removal and maintaining ecosystem balance in geological phosphorus-enriched soils (PES), little is known about the structure and function of microbial communities in PES. Interactions between plants and soil microorganisms mainly occur in the rhizosphere. The aim of this work was to investigate the composition and diversity of bacterial communities found in rhizosphere soils associated with the following three dominant plant species: Erianthus rufipilus, Coriaria nepalensis, and Pinus yunnanensis. In addition, we compared these rhizosphere bacterial communities with those derived from bulk soils and grassland plots in PES from the Dianchi Lake basin of southwestern China. The Illumina MiSeq platform for high-throughput sequencing of 16S rRNA was used for the taxonomy and the analysis of soil bacterial communities. The results showed higher bacterial diversity and nutrient content in rhizosphere soils as compared with bulk soils. Rhizosphere bacteria were predominantly comprised of Proteobacteria (24.43%) and Acidobacteria (21.09%), followed by Verrucomicrobia (19.48%) and Planctomycetes (9.20%). A comparison of rhizosphere soils of the selected plant species in our study and the grassland plots showed that Acidobacteria were the most abundant in the rhizosphere soil of E. rufipilus; Bradyrhizobiaceae and Rhizobiaceae in the order Rhizobiales from C. nepalensis were found to have the greatest abundance; and Verrucomicrobia and Planctomycetes were in higher abundance in P. yunnanensis rhizosphere soils and in grassland plots. A redundancy analysis revealed that bacterial abundance and diversity were mainly influenced by soil water content, soil organic matter, and total nitrogen.
Collapse
|
20
|
Li X, Chen J, Zhang Z, Kuang Y, Yang R, Wu D. Interactions of phosphate and dissolved organic carbon with lanthanum modified bentonite: Implications for the inactivation of phosphorus in lakes. WATER RESEARCH 2020; 181:115941. [PMID: 32480057 DOI: 10.1016/j.watres.2020.115941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lanthanum-modified bentonite (LMB) is a widely used phosphorus-inactivating agent in lakes. However, dissolved organic carbon (DOC) exists ubiquitously in lakes, and its influence on phosphate binding is still not adequately understood. Our results showed that both phosphate and DOC can be adsorbed by LMB. The Langmuir adsorption maxima of phosphate and DOC were 9.06 mg P/g and 5.31 mg C/g, respectively, generating a C/P molar ratio ∼1.5. When phosphate and DOC coexisted at this ratio, the adsorption of phosphate was not influenced by DOC and vice versa. However, the phosphate capture by LMB was significantly reduced by raising the ratio above ∼9, and the reduction was increased with increasing the ratio. Once adsorbed by LMB, phosphate was essentially not desorbed by DOC, while adsorbed DOC can be mostly liberated by phosphate. It is deemed that phosphate can interact preferentially with La on LMB. However, DOC can still be adsorbed by LMB, even after LMB was saturated with phosphate, which was attributed to (i) the high coordination capacity of La; (ii) the interaction of DOC with the hydroxyl group(s) of the adsorbed phosphate via hydrogen bonding; and (iii) the interaction of DOC with the La sites unoccupied by phosphate. We proposed that LMB can be applied in the season (time) when the DOC/P ratio in lakes is low enough to facilitate the adsorption of phosphate, which will no longer be released into water, even after the C/P ratio is raised later.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Jiabin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Zhiyong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Yue Kuang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Renjie Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
21
|
Ji B, Zhu L, Wang S, Qin H, Ma Y, Liu Y. A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135453. [PMID: 31810675 DOI: 10.1016/j.scitotenv.2019.135453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Ferrous salts have been widely used to enhance phosphorus removal in full-scale wastewater treatment plants, with an average dosage of 0.24-0.35 mM. However, such high dosage inevitably caused serious concerns on operation, potential biological toxicity and excessive sludge production. Thus, this study investigated the effect of micro-dosing of ferrous salt at the level of 0.02 mM on enhanced biological phosphorus removal (EBPR) in sequencing batch reactors. Results showed that micro-dosing of ferrous salt enhanced the overall performance, with average COD, TN and TP removal of more than 4.2%, 2.0% and 5.8%, respectively. In addition, the sequencing analysis further revealed that micro-ferrous dosing could significantly improve the diversity and richness of the microbial community (p < 0.05), whereas the regular dosing of ferrous salts (0.25 mM) negatively impacted on the EBPR performance. It was found that the abundances of phosphorus accumulating organisms (PAOs) in R2 (micro-dosing) were nearly 1.5-fold and 2-fold higher than those in R1 (control) and R3 (regular dosing). The contributions of biological and chemical pathways towards the observed phosphorus removal were also determined according to the phosphorus releasing rate. For micro-dosage and regular dosage of ferrous salts, phosphorus removal mainly relied on biological phosphorus removal and chemical phosphorus removal, respectively. It appears from this this study that the micro-ferrous dosing strategy is practically feasible and economically viable for enhanced phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hui Qin
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|