1
|
Liu Y, Niu X, Zhang D, Zhou L, Tao C, Lin Y, Chen S, Chen Y, Lin Z, Kong S. Insight into enhancing the performance of sludge dewatering using a novel flocculant CS-TA prepared through free radical-mediated conjugation. ENVIRONMENTAL TECHNOLOGY 2025; 46:1160-1177. [PMID: 39010782 DOI: 10.1080/09593330.2024.2377797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Flocculation is one of the most significant conditioning methods for sludge dewatering. In the study, a novel flocculant CS-TA, prepared through free radical-mediated conjugation of tannic acid (TA) and chitosan (CS), was proposed to improve sludge dewatering. The characterisation using Fourier transform infra-red spectroscopy and X-ray diffraction analysis shows that the CS chain was the backbone of CS-TA, and the presence of CS-TA aromatic rings confirmed the conjugation of CS with TA. Moreover, the conditioning of CS-TA yielded the best dewatering performance at 30 mg g TS-1 with the water content of sludge cake by press filtration (Wsc) of 59.78% ± 0.3% and capillary suction time (CST) of 11.8s ± 0.35 s, compared to 98.2% ± 0.15% and 56.2 s ± 0.16 in raw sludge. The results of different influencing factors (e.g. pH and temperature) on flocculation efficiency indicated that CS-TA possessed the capacity for enhancing sludge dewaterability over a wide range of pH, and the optimal temperature was observed to be 35 °C. Furthermore, the increase of particle size and zeta potential implied the addition of CS-TA favoured the formation of larger particles charge neutralisation and adsorption bridging effect. In addition, extracellular polymer substances (EPS) analysis indicated that the decrease in the polysaccharide and protein contents in EPS after CS-TA addition could increase the relative hydrophobicity of sludge. Moreover, the contents of heavy metals in sludge and their leaching toxicity and environmental risk were reduced. This study provides comprehensive insights into the exploration of CS-TA for sludge dewatering and the maintenance of ecological security in an eco-friendly.
Collapse
Affiliation(s)
- Yuejin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, People's Republic of China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Chunyang Tao
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Yu Lin
- Guangzhou Urban Drainage Company Limited, Guangzhou, People's Republic of China
| | - Siping Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Yawen Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Suying Kong
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| |
Collapse
|
2
|
Braine MF, Kearnes M, Khan SJ. Quality and risk management frameworks for biosolids: An assessment of current international practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169953. [PMID: 38215849 DOI: 10.1016/j.scitotenv.2024.169953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Biosolids, a product of wastewater treatment, provide a valuable resource, but to optimize the use of this resource it is necessary to manage risks posed to public health and the environment. Key requirements include identifying contaminant sources and providing barriers to ensure containment and treatment while maintaining the viability and value of biosolids products. Responsibility for managing biosolids is the remit of many stakeholders but primarily it rests with private and public wastewater facilities. The global variabilities in the way biosolids resources are acknowledged, applied, and managed are substantial. For example, some countries are increasing incineration because of their ability to remove contaminants while others have experienced a proportional decrease in incineration dependent on industrial resources or regarding resource recovery costs and needs. Some jurisdictions focus on energy recovery and others on land application. A risk management framework is a tool that may provide a suitable holistic approach to biosolids management. With this focus, current instruments in practice globally to manage biosolids were assessed for the degree to which they have adopted a risk management framework. To form a basis for this assessment a set of criteria was established by concept mapping several internationally recognized standards. Guidelines for a range of developed and developing countries were then assessed against these criteria. That process enabled the identification of which current practices were holistic in terms of applying biosolids risk management principles from production to end-use. Through this process, risk management gaps and vulnerabilities were identified. The results reveal that the incorporation of risk standards into risk management frameworks around the world is variable for the presence of risk criteria and the scale of detail provided. Contaminant concentrations need perspective within the changing risk landscape for stakeholders and the environment while jointly the opportunities and contaminant challenges require solutions that balance risks.
Collapse
Affiliation(s)
- Marilyn F Braine
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Matthew Kearnes
- School of Humanities & Language, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia; School of Civil Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Yuan H, Zhu N. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168605. [PMID: 37989393 DOI: 10.1016/j.scitotenv.2023.168605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Large amounts of waste activated sludge (WAS) as a by-product generated from the biological treatment in wastewater treatment plants (WWTPs) is of high moisture content (MC), organic pollutants, heavy metals and pathogenic bacteria, it may cause serious environmental ecological risk without appropriate disposal. More than one half of the total operation cost is accounted for sludge disposal in a WWTP. Dewatering is an essential and important step during the sludge treatment and disposal process for it could efficiently reduce its volume, and be beneficial to the subsequent treatment and disposal of sludge. However, sludge should be conditioned before mechanical dewatering because of its high hydrophilicity. In this work, it presented a comprehensive review on sludge dewatering including summarizing the dewaterability measurement indexes, affecting factors, conditioning technologies, the improvement mechanisms. Finally, based on the eventual disposal and low carbon emission target, the implications and perspectives development of sludge conditioning were discussed. Based on the above discussion, there is no unified theoretical insight of the improvement mechanism of sludge dewaterability. In addition, the relationship between the microstructure of organic matters in sludge floc and the dewaterability should be deepened. Especially, how to choose the optimal conditioning technology for sludge dewatering lies in the physical and chemical properties of sludge, however, the carbon emission of the conditioning and dewatering process also needs to be considered. Accordingly, green, low-cost and organic conditioning agents are the direction of future research, and the establishment of automatic operating system and real-time evaluation index system is the key challenge.
Collapse
Affiliation(s)
- Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Hou J, Hong C, Ling W, Hu J, Feng W, Xing Y, Wang Y, Zhao C, Feng L. Research progress in improving sludge dewaterability: sludge characteristics, chemical conditioning and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119863. [PMID: 38141343 DOI: 10.1016/j.jenvman.2023.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Sludge from wastewater treatment processes with high water content and large volume has become an inevitable issue in environmental management. Due to the challenging dewatering properties of sludge, current mechanical dewatering methods are no longer sufficient to meet the escalating water content standards of sludge. This paper summarizes the characteristics of various sludge and raises reasons for the their dewaterability differences. Affected by extracellular polymeric substances, biological sludge is hydrophilic and negatively charged, which limits the dewatering degree. The rheological properties, flocs, ionic composition, and solid phase concentration of the sludge also influence the dewatering to some extent. For these factors, the chemical conditioning measures with simple operation and excellent effect improve its dewaterability, which mainly include flocculation/coagulation, acid/alkali treatment, advanced oxidation, surfactant treatment and combined treatment. There is a growing necessity to explore the development of new chemical conditioning agents, even though traditional agents continue to remain widely used. However, the development of these new agents should prioritize finding a balance between various factors such as efficiency, effectiveness, ease of operation, environmental safety, and cost-effectiveness. Electrochemical dewatering enhances solid-liquid separation, and its coupling with chemical conditioning is also an excellent means to further reduce water content. In addition, the improvement of press filter is an effective way, which is influenced by pressure, processing time, sludge cake thickness and pore structure, filter media etc. In general, it is essential to develop new conditioning agents and enhance mechanical filtration press technology based on a thorough understanding of various sludge properties. Concurrently, an in-depth study of the principles of mechanical pressure filtration will contribute to establishing a theoretical foundation for effective deep sludge dewatering and propel further advancements in this field.
Collapse
Affiliation(s)
- Jiachen Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibo Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Liu W, Xing X, Li M, Yu Y, Hu T, Mao Y, Liang L, Zhang Y, Zhang J, Qi S. New insight into the geochemical mechanism and behavior of heavy metals in soil and dust fall of a typical copper smelter. ENVIRONMENTAL RESEARCH 2023; 225:115638. [PMID: 36889563 DOI: 10.1016/j.envres.2023.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The desorption mechanism of heavy metals (HMs) in soil around the mining region are complex and affected by multiple pollution sources, including sewage discharge and atmospheric deposition. Meanwhile, pollution sources would change soil physical and chemical properties (mineralogy and organic matter), thus affecting the bioavailability of HMs. This study aimed to investigate the pollution source of HMs (Cd, Co, Cu, Cr, Mn, Ni, Pb, and Zn) in soil near mining, and further evaluate influence mechanism of dust fall on HMs pollution in soil by desorption dynamics processes and pH-dependence leaching test. Result presented that dust fall is the primary pollution source to HMs accumulation in soil. Additionally, the result of mineralogical analysis in dust fall revealed that quartz, kaolinite, calcite, chalcopyrite, and magnetite are the major mineralogical phases by XRD and SEM-EDS. Meanwhile, the abundance of kaolinite and calcite in dust fall is higher than in soil, which is the primary reason of higher acid-base buffer capacity of dust fall. Correspondingly, the weakened or disappeared of hydroxyl after the adding acid extraction (0-0.4 mmol· g-1) demonstrated that hydroxyl is the main participants of HMs absorption in soil and dust fall. These combined findings suggested that atmospheric deposition not only increases the pollution loading of HMs in soil, but also changes the mineral phase composition of soil, which would increase the adsorption capacity and bioavailability of HMs in soil. This is very remarkable that heavy metals in soil influenced by dust fall pollution could be released preferentially when soil pH is changed. The present results of this study would provide efficient and scientific targeted strategies for pollution control of HMs in soil near mining areas.
Collapse
Affiliation(s)
- Weijie Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Miao Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Lili Liang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuan Zhang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Xiao T, Wang H, Wang X, Wu H, Yuan S, Dai X, Dong B. New strategy of drinking water sludge as conditioner to enhance waste activated sludge dewaterability: Collaborative disposal. WATER RESEARCH 2023; 233:119761. [PMID: 36841166 DOI: 10.1016/j.watres.2023.119761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Drinking water sludge (DWS) and waste activated sludge (WAS) are usually treated separately. With the continuous deepening understanding of the characteristics of two types sludge, the research and application of the collaborative disposal is worth considering. The heated modification DWS (HDWS) rich in inorganic matter and aluminum (Al2O3) can be used as a conditioner to enhance WAS dewaterability using its properties with physical skeleton and chemically catalyzed ozone (O3). The results showed that the minimum values of capillary water time (CST) and specific resistance filtration (SRF) for WAS were 20.9±2.40 s and 1.07±0.19×1013 m/kg at pH=4, O3 dosage=60 mg/g VS and HDWS dosage=700 mg/g VS, corresponding to the reduction of sludge cake water content (Wc) to 60.37±0.97 %. The mechanism of HDWS+O3 enhanced WAS dewaterability was systematically elucidated through pyridine-infrared analysis and density functional theory (DFT) calculations. The surface of Al2O3 in HDWS had more Lewis acidic sites, and the oxygen atoms of O3 combined with Al atoms to form Al-O bonds and undergo electron transfer, while O3 molecules dissociated to produce more hydroxyl radicals (·OH). With the oxidation of ·OH, the extra-microcolony/cellular polymers (EMPS/ECPS) structure were destroyed and became looser, promoting the conversion of internal moisture to free moisture. Zeta potential tended to zero, particle size increased, and the surface was more hydrophobic. Correlation analysis revealed that the component content, protein (PN) secondary structure and molecular weight (MW) in ECPS were positively and more strongly correlated with the sludge dewaterability compared to EMPS. The discovery of HDWS+O3 applied to effectively enhance WAS dewaterability provided an inspiring perspective on the emerging DWS and WAS co-processing disposition.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Haibin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|
7
|
Yuan Z, Ma W, Zhu N, Zhu Y, Wu S, Lou Z. Identifying the fate of nitrogenous species during sewage sludge pyrolysis via in-situ tracing of protein-sludge inherent components interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160437. [PMID: 36427709 DOI: 10.1016/j.scitotenv.2022.160437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The effect of interactions between different components in sewage sludge on the thermochemical transformation of nitrogenous species is usually neglected, which is important to explain the generation mechanism of some key nitrogenous by-products. Here, we investigated the distribution, form, and chemical properties of the products from sludge-extracted protein (PR) under different pyrolysis scenarios using several in-situ probe techniques, to elucidate the critical role of typical sludge organics/inorganics on the evolution of nitrogenous intermediates and by-products. The results suggested that Ca/Fe/Si/Al-containing inorganics significantly affected the pyrolytic behavior of PR and the thermal transformation of nitrogenous species, while sludge organics, including humic acids and polysaccharides, had limited effects on the temperature-dependent evolution of nitrogenous species in PR. Among them, calcium oxide catalyzed the ring-opening reaction of heterocyclic-N with aromatic-like structures, resulting in a 21.1 %-68.8 % reduction in nitrogen fixation efficiency in the char. At lower temperatures (350-450 °C), calcium oxide caused more nitrogen to be transferred to the gas/tar phases in the form of NH3 and heterocyclic-N, and it also enhanced the conversion of nitrile-N → HCN → NO at temperatures above 450 °C. In contrast, polyferric salts inhibited the devolatilization of mono-heterocyclic-N and enhanced the thermal stability of poly-heterocyclic-N, resulting in a maximum increase of 18.5 mg·g-1 of nitrogen content in the char, while reducing the release of NH3 and HCN by 71.1 % and 32.0 %. This work elucidated the interaction between PR and inherent components in sludge, providing key information for the control of nitrogenous volatiles and NOx.
Collapse
Affiliation(s)
- Zhihang Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenchao Ma
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Zhu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Shaolin Wu
- Shanghai Solid Waste Management Center, Shanghai 200235, China
| | - Ziyang Lou
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Zhang X, Zhang H, Wang Z, Liu T, Guo D, Hu Z. Enhanced paper sludge dewatering and in-depth mechanism by oxalic acid/Fe 2+/persulfate process. CHEMOSPHERE 2023; 311:136966. [PMID: 36280120 DOI: 10.1016/j.chemosphere.2022.136966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
As a typical advanced oxidation process, Fe2+-persulfate (PDS) oxidation technology has been widely and efficiently reported for enhancing sludge dewaterability. However, higher dosage of Fe2+ must be added, which will restrain the oxidation efficiency of Fe2+-PDS process. In this work, the oxalic acid (OA)/Fe2+-PDS process was studied to improve paper sludge dewatering. With the OA dosage of 6 μmol (g total solid (TS))-1, Fe2+ dosage of 0.3 mmol (g TS)-1, and PDS dosage of 0.6 mmol (g TS)-1, sludge dewaterability was improved more efficiently. The specific resistance to filtration and water content of sludge cake were decreased by 70.7% and 8.0%, respectively. In comparison with Fe2+-PDS process, the viscosities of sludge suspension and supernatant were further reduced by 3.73% and 51.77%, respectively, and the contents of extracellular polymeric substances fractions were increased. The improved sludge dewaterability in OA/Fe2+-PDS process was mainly contributed by the synergistic effect of oxidative disintegration by free radicals and flocs re-flocculation, the contributions of which were the orders: metal cations > sulfate radical > hydroxyl radical. OA enhanced the efficient disintegration of sludge flocs, released more bound water, generated more Fe3+-oxalate complexes, and finally increased the sludge particle size significantly, forming a larger aggregation and obvious cracks. Additionally, the stabilization of several heavy metals was improved due to the chelating capacity of OA. These works will provide a novel approach for sludge dewatering in the PDS oxidation process.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510000, China; Zhejiang Shanying Paper CO., LTD, Jiaxing, Zhejiang, 314000, China; Northeast Petroleum University, Daqing, Heilongjiang, 163318, China.
| | - Hongtao Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Zhenchang Wang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Tao Liu
- Zhejiang Shanying Paper CO., LTD, Jiaxing, Zhejiang, 314000, China
| | - Daliang Guo
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Zhijun Hu
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| |
Collapse
|
9
|
Wang D, Pan C, Chen L, He D, Yuan L, Li Y, Wu Y. Positive feedback on dewaterability of waste-activated sludge by the conditioning process of Fe(II) catalyzing urea hydrogen peroxide. WATER RESEARCH 2022; 225:119195. [PMID: 36215838 DOI: 10.1016/j.watres.2022.119195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The treatment and disposal of sludge is a complex environmental problem because of the high moisture content. Herein, We reported the process of Fe(II) activating Urea hydrogen peroxide (UHP) to improve waste activated sludge (WAS) dewaterability for the first time. Fe(II)/UHP was proven to significantly improve WAS dewaterability. Specifically, under the optimal conditions with 60/35-Fe(II)/UHP mg/g TSS, the CST, SRF, and WCSC of WAS reduced from 215.3 ± 7.5s, 9.2 ± 0.32 (× 1012 m/kg), and 92.2 ± 0.7% (control) to 62.3 ± 4.3s, 2.8 ± 0.09 (× 1012m/kg), and 70.4 ± 0.4%, respectively. Further analysis revealed that •OH was generated in the Fe(II)/UHP system and played the dominant role in enhancing WAS dewaterability. •OH was found to attack extracellular polymeric substances (EPSs) and cells, causing EPSs fragmentation and decomposition part of EPSs into micro-molecule organics or even inorganics, and leading to cell destruction, thus liberating the EPSs-bound and cells-bound water. •OH also degraded the protein in centrifugal liquor (CL) into micro-molecule organics such as amino acids, which could reduce the viscosity and electronegativity of CL. The above facts ultimately reduced solid-liquid interface interaction but increased hydrophobicity, flocculation, and flowability of WAS. Meanwhile, the broken WAS flocs were then re-flocculated via adsorption bridging and charge neutralization induced by Fe(II) and Fe(III). Moreover, Fe(II)/UHP treatment achieved the reduction and stabilization of heavy metals of dewatered sludge, which further enabled its land application. Finally, the Fe(II)/UHP process was found to be more attractive than the Fe(II)/persulfate, classical Fenton processes, and cPAM in terms of cost savings and practical implementation.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chuli Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lisha Chen
- School of Resources &Environment, Nanchang University, Nanchang 330031, PR China.
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Longhu Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
10
|
Zhou J, Zhou Y, You X, Zhang H, Gong L, Wang J, Zuo T. Potential promotion of activated carbon supported nano zero-valent iron on anaerobic digestion of waste activated sludge. ENVIRONMENTAL TECHNOLOGY 2022; 43:3538-3551. [PMID: 33944701 DOI: 10.1080/09593330.2021.1924290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
A large amount of waste activated sludge (WAS) harms the ecological environment, and anaerobic digestion (AD) is an effective method for WAS treatment. In this study, activated carbon (AC)/ nano zero-valent iron (NZVI) was synthesized by a liquid-phase reduction method, and was used to boost methane production. The associated mechanisms and effects of additives on AD during the addition and removal stage were investigated systematically. Compared to the blank group, the cumulative methane production was increased by 14.3%, 26.3% and 34.1% in the groups of AC, NZVI and AC/NZVI, respectively. The addition of AC/NZVI significantly increased the concentration of VFAs and promoted the hydrolysis and acidification of WAS. After the AD of the additives addition stage was finished, the additives were removed and the sludge was replenished in all groups, the methanogenesis performance of the experimental groups was significantly inhibited. The cumulative methane production in the AC and AC/NZVI groups was 21.7% and 13.5% lower than the blank group, respectively. The experimental results have a good correlation with curve fitting by the modified Gompertz model. The modified Gompertz model found that AC, NZVI and AC/NZVI increased the methanogenic potential and maximum methane production rate of WAS, but also prolonged the lag-phase time. AC/NZVI might play a role in coupling effects. It could not only maintain the original characteristics of NZVI and increase its stability, but also develop the advantages of AC promoting direct interspecies electron transfer. Microbial community analysis indicated that the abundance of hydrogenotrophic methanogens was enriched by AC/NZVI.
Collapse
Affiliation(s)
- Jun Zhou
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Ying Zhou
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Xiaogang You
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Haonan Zhang
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Lei Gong
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Jin Wang
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| | - Tong Zuo
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, Shandong Province 266042, P. R. People's Republic of China
| |
Collapse
|
11
|
Chu L, He W, Xu F, Tong Y, Xu F. Ecological risk assessment of toxic metal(loid)s for land application of sewage sludge in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155549. [PMID: 35490816 DOI: 10.1016/j.scitotenv.2022.155549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludge, including those after biological or thermochemical treatments, has the potential to be used as fertilizers for recycle of resources. However, its potential ecological risk is also of great concern to policy making. This study employed comprehensive ecological risk assessment (ERA) methods to evaluate the risk caused by the toxic metal(loid)s in sewage sludge throughout China. The conventional geo-accumulation index and potential ecological risk index revealed that cadmium (Cd) and mercury (Hg) were of significant concern in treating sewage sludge before land application, but chromium (Cr) and zinc (Zn) were preferred by potential affected proportion (PAF) and overall risk probability (ORP) of species sensitivity distribution (SSD). Because SSD considered both the community and the ecotoxicity of toxic metal(loid)s, it was more advantageous and promising in assessing ecological risks caused by land application of sewage sludge. Based on the predicted no-effect concentration (PNEC) of toxic metal(loid) calculated by hazardous concentration that cause death of 50% of species (HC50) by SSD, the maximum allowable disposal amount (MADA) of sewage sludge in the whole China indicated that chromium (Cr) should be totally eliminated because of its high risks in the present background soil. After excluding Cr, the MADA of sewage sludge in China was 3.24 × 106 t and 6.47 × 107 t under land application scenarios with high and low ecological risks, respectively. Additionally, the MADA could be increased by mixing sewage sludge with deeper soil in wider areas. This study emphasized that local laws and regulations on land application of sewage sludge and the subsequent ERA system need to be addressed in the future.
Collapse
Affiliation(s)
- Liquan Chu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Fuliu Xu
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fuqing Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 710049, China
| |
Collapse
|
12
|
Dong Y, Yuan H, Ge D, Zhu N. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism. WATER RESEARCH 2022; 220:118704. [PMID: 35667172 DOI: 10.1016/j.watres.2022.118704] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Sludge dewatering is an essential process for reduction of sludge volume to decrease cost of ultimate disposal. In this study, a novel method using activated carbon (AC) strengthening electrochemical (EC) treatment (EC/AC) was adopted to improve greatly sludge dewaterability. It was shown that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced to 55.9 ± 1.24 s and 64.3 ± 1.23%, respectively, under the optimal conditions of EC voltage 20 V, EC time 30 min and 0.2 g/g dry solid (DS) AC. AC with rich functional groups as "the third electrode" intensified electrooxidation by forming multiple microelectrodes and electron transfer capacity and conductivity of sludge were strengthened by AC in EC system, which were illustrated by electrochemical analysis. It could be found that zeta potential and particle size were increased and surface roughness was reduced after EC/AC treatment intensifying sludge hydrophobicity. Form the results of rheological behaviors of sludge, flowability was strengthened and viscosity was weakened under the conditioning of EC/AC. Besides, colloidal force and gel-like network strength were lessened, which was also verified by organic matters and percentage of inviable cells. At the same time, intracellular matters were released and degraded and bound water was released converting into free water. In addition, sludge compressibility and structural strength were increased and porous structure was formed facilitating water outflow via addition of mesoporous AC as skeleton builder, which eventually led to an improved separation efficiency of solid-water and sludge dewaterability. The results of heavy metals suggested that sludge cake after EC/AC treatment was favorable for land application.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Dong Y, Yuan H, Bai L, Ge D, Zhu N. A comprehensive study on simultaneous enhancement of sludge dewaterability and elimination of polycyclic aromatic hydrocarbons by Fe 2+ catalyzing O 3 process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152015. [PMID: 34843792 DOI: 10.1016/j.scitotenv.2021.152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous removal of polycyclic aromatic hydrocarbons (PAHs) in the process of enhancement of sludge dewaterability via oxidation of hydroxyl radicals (•OH) and flocculation of Fe3+ by Fe2+-catalyzing O3 were investigated as a novel research focus. The results showed that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced from 57.9 s and 85.1% to 13.6 s and 69.65% under the optimum usage of 60 mg/g dry solids (DS) O3 and 80 mg/g DS FeSO4, respectively. The relevant dewatering mechanism of Fe2+-catalyzing O3 treatment was elucidated. It was found that extracellular polymeric substances-bound (EPS-bound) and intracellular water was dramatically released through destroying sludge cells and EPS gel-like structure by produced •OH. In addition, the results of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and 13C NMR spectroscopy revealed that •OH oxidized and mineralized hydrophilic organic matters intensifying hydrophobicity of sludge surface. Moreover, Fe3+ generated by oxidation of Fe2+ agglomerated fragmented fine particles into large aggregates and decreased exposure of hydrophilic sites by neutralizing negative charge, which promoted water-solids separation. Meanwhile, sludge surface roughness was decreased which was determined by material type upright confocal laser microscope (CLM). As a consequence, •OH and Fe3+ were mainly responsible for enhancement of sludge dewaterability. Moreover, more than 40% of removal rate of PAHs was accomplished by Fe2+-catalyzed O3 treatment mitigating the environmental risks of PAHs spread.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Bai
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Cai M, Qian Z, Xiong X, Dong C, Song Z, Shi Y, Wei Z, Jin M. Cationic polyacrylamide (CPAM) enhanced pressurized vertical electro-osmotic dewatering of activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151787. [PMID: 34808190 DOI: 10.1016/j.scitotenv.2021.151787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Pressurized vertical electro-osmotic dewatering (PVEOD) has been regarded as a feasible method to achieve sludge deep-dewatering, but the dewatering efficiency is still challenged by high electric resistance. This study employed cationic polyacrylamide (CPAM) as a skeleton builder to enhance electro-osmotic flow in PVEOD. The sludge dewatering efficiency and synergistic effect of CPAM and PVEOD were elucidated. The sludge morphology, surface property, extracellular polymeric substances (EPS) destruction and migration, spatial distributions of proteins and polysaccharides, and current changes were investigated. After the addition of optimal CPAM dose, the sludge formed a uniform and porous structure that provided water channels and enhanced electric transport, thus promoting EPS destruction. The sludge moisture content (MC) analysis indicated the more liberation of bound water due to EPS destruction. Besides, the re-flocculation of disintegrated sludge flocs improved the sludge filtration and thus dewaterability. Instantaneous energy consumption (Et,0.5) was optimized and two-step synergistic mechanism was thus proposed. These findings indicated that the combination of CPAM and PVEOD is a promising strategy to broaden the scope of industrial application of sludge deep-dewatering.
Collapse
Affiliation(s)
- Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhuohui Qian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xingaoyuan Xiong
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Zhijun Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuejing Shi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| |
Collapse
|
15
|
Bai L, Wang G, Ge D, Dong Y, Wang H, Wang Y, Zhu N, Yuan H. Enhanced waste activated sludge dewaterability by the ozone-peroxymonosulfate oxidation process: Performance, sludge characteristics, and implication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151025. [PMID: 34662606 DOI: 10.1016/j.scitotenv.2021.151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Dewatering treatment is an essential step to diminish sludge volume, cut down transportation costs, and improve subsequent disposal efficiency. In this study, ozone-peroxymonosulfate (O3/PMS) oxidation process was employed to ameliorate sludge dewaterability. Sludge capillary suction time (CST) and water content (Wc) of dewatered sludge cake could reduce from 70.5 s and 81.93% to 26.7 s and 65.65%, respectively, under the optimal dosage of 30 mg/g TS O3 and 0.4 mmol/g TS PMS. The increased sludge zeta potential, particle size, and fluidity promoted sludge dewatering performance apparently. The decreased hydrophilic, fluorescent EPS components and proteins/peptides-like + Lipids percentage in EPS as well as the ratio of α-helix/(β-sheet + random coil) of treated EPS protein secondary structure was greatly responsible for the enhanced sludge dewaterability. SO4- and OH were detected in ozone-peroxymonosulfate process to crack sludge flocs, eliminate hydrophilic substances and liberate bound water. Moreover, the concentrations of both heavy metals and polycyclic aromatic hydrocarbons (PAHs) of sludge after O3/PMS conditioning were decreased, and the stability and toxicity of heavy metals were also reduced, except Zn. In conclusion, this work offered a comprehensive insight based on ozone-peroxymonosulfate (O3/PMS) advanced oxidation for improving the sludge dewaterability and environmental implication.
Collapse
Affiliation(s)
- Lu Bai
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanjun Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanting Dong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhui Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
16
|
Feng J, Zhang T, Sun J, Zhu J, Yan W, Tian S, Xiong Y. Improvement of sewage sludge dewatering by piezoelectric effect driven directly with pressure from pressure filtration: Towards understanding piezo-dewatering mechanism. WATER RESEARCH 2022; 209:117922. [PMID: 34890911 DOI: 10.1016/j.watres.2021.117922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Piezoelectric effect was firstly employed to improve dewatering efficiency of sludge. It was found that the piezoelectric effect could be driven directly by the pressure of pressure filtration process, without any additional energy. This piezo-dewatering process coupled piezoelectric effect with pressure filtration could efficiently remove moisture of sludge. Under 0.6 MPa for 2 h, moisture content (MC) and weight of sludge could be reduced to 63.9% and 3.2 g from 96.7% and 50 g by the piezo-dewatering process with 0.45 g t-BaTiO3. This piezo-dewatering efficiency was much higher than that of usual conditioning-pressure filtrations using CaO, FeCl3 or polyacrylamide (PAM) as the conditioners. And the piezo-dewatering process assisted by PAM could further decrease MC and weight of the sludge to 54.9% and 2.1 g, correspondingly, which complied to the advanced dewatering requirement (MC < 60%). The favorable piezo-dewatering efficiency was contributed to the piezo-catalytic oxidation and the electric role of remnant piezo-field. The finding of this piezo-dewatering mechanism offered an inspiring look at developing the emerging dewatering technology.
Collapse
Affiliation(s)
- Jinxi Feng
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Henan Institute of Surveying and Mapping Engineering, No.8, Huanghe Road, Zhengzhou 450003, PR China
| | - Jingxiang Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China
| | - Jinzhu Zhu
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China
| | - Wen Yan
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China
| | - Ya Xiong
- School of Environmental Science and Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, PR China.
| |
Collapse
|
17
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
18
|
Wang G, Ge D, Bai L, Dong Y, Bian C, Xu J, Zhu N, Yuan H. Insight into the roles of electrolysis-activated persulfate oxidation in the waste activated sludge dewaterability: Effects and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113342. [PMID: 34314959 DOI: 10.1016/j.jenvman.2021.113342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Sludge dewatering, as one of the most important steps of sludge treatment, can facilitate transportation and improve disposal efficiency by reducing the volume of sludge. This study investigated the effects of electrolysis-activated persulfate oxidation on improving sludge dewaterability. The results indicated that the sludge capillary suction time (CST) and water content of dewatered sludge cake (Wc) reduced from 93.7 s and 87.8% to 9.7 s and 68.3% respectively at the optimized process parameters: electrolysis voltage of 40 V, electrolysis time of 20 min, and 1.2 mmol/g TS S2O82-. Correlation analysis revealed that the enhancement of sludge dewaterability was closely associated with the increased floc size and zeta potential, decreased protein content in three-layers extracellular polymeric substances (EPS) and viscosity (R = -0.868, p = 0.002; R = -0.703, p = 0.035; R ≥ 0.961, p < 0.001; R = 0.949, p < 0.001). Four protein fluorescence regions in EPS were analyzed by three-dimensional excitation-emission matrix parallel factor (3D-EEM-PARAFAC). The protein secondary structure was changed after the treatment, and the reduction of α-helix/(β-sheet + random coil) indicated that more hydrophobic sites were exposed. Analysis by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and rheological test demonstrated that the hydrophilic functional groups of the sludge were decreased and the sludge mobility was significantly enhanced after the treatment with electrolysis-activated persulfate oxidation. Moreover, bound water was converted to free water during SO4·- and ·OH generated by electrolysis-activated persulfate degraded EPS and attacked sludge cells. Meanwhile, scanning electron microscopy (SEM) images revealed that the treated sludge formed porous channel structures, which promoted the flowability of the water. These findings provide a new insight based on electrolysis-activated persulfate oxidation in sludge treatment for enhancing sludge dewaterability.
Collapse
Affiliation(s)
- Guanjun Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Bai
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanting Dong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Bian
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajia Xu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Li Y, Wang D, Yang G, Yuan X, Yuan L, Li Z, Xu Q, Liu X, Yang Q, Tang W, Jiang L, Li H, Wang Q, Ni B. In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126389. [PMID: 34323710 DOI: 10.1016/j.jhazmat.2021.126389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Anaerobically digested sludge (ADS) is commonly hard to dewater for the presence of extracellular polymeric substances (EPS) and the liberation of glutinous soluble microbic products during anaerobic digestion. Sodium percarbonate (SPC) expediting zero-valent iron (ZVI) corrosion (SPC/ZVI) process firstly conditioned ADS to amend its dewaterability. Results showed that SPC/ZVI conditioning decreased moisture content of dewatered cake from 90.5% (control) to 69.9% with addition of 0.10 g/g TS SPC and 0.20 g/g TS ZVI. Mechanistic research indicated that the enhanced ADS dewaterability mainly resulted from •OH and Fe(III)/iron polymers yielded in SPC/ZVI. •OH disrupted EPS, damaged cytoderm & cytomembrane, and lysed intracellular substances, unbinding the bound water. Meanwhile, the breakage and inactivation of microbe by •OH prompted the production of macro-pores in ADS. •OH adjusted the conformation of extracellular/intracellular proteins by intervening in the H-bonds and S-S bonds, availing the hydrophobicity and slight flocculation of ADS. •OH further facilitated the despiralization of α-helical to β-sheet structure in ADS pellets, benefiting cell-to-cell aggregation. Additionally, Fe(III)/iron polymers from ZVI corrosion accelerated to gather ADS and maintained its floc structure. Consequently, SPC/ZVI conditioning not only adjusted the natures of ADS and its EPS but also the features of residual pellets, which further induced the advancement of ADS dewaterability. In addition, SPC/ZVI conditioning possibly surmounts some limitations existing in ZVI/Peroxide or ZVI/Persulfate technique.
Collapse
Affiliation(s)
- Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longhu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zijing Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bingjie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Liu C, Zhou X, Zhou L, Wei Y, Liu J. Enhancement of sludge electro-dewatering by anthracite powder modification. ENVIRONMENTAL RESEARCH 2021; 201:111510. [PMID: 34147466 DOI: 10.1016/j.envres.2021.111510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Electro-dewatering of sludge has received considerable attention due to its low energy consumption for sludge deep-dewatering. However, prior studies have shown the resistance of dried sludge near anode significantly hinders electro-dewatering. The dewatering performance may be improved by reducing the resistance with the addition of conductive material into sludge. We conditioned municipal sludge by anthracite powder, an inexpensive product, to increase solid conductivity, followed by electro-dewatering. After running for 20 min under a constant voltage of 30 V, when the anthracite powder mass was 10%-22% of raw sludge dry solids mass (DS), the final dry solids content of the mud cake after dehydration was 6.2%-12.9% higher than that from dehydration of unconditioned sludge. The average filtrate flow rate ranged from 0.0243 to 0.0285 g s-1. The lowest unit energy consumption, 0.19 kW h·kgwater-1, which was 14% lower than that of control, was reached when 18% DS of anthracite was added. Our theoretical analysis indicates that properly increasing solid conductivity of sludge can reduce the adverse effect caused by the high electrical resistance of sludge near anode. The experimental results, along with the theoretical analysis, show that using anthracite powder for sludge modification is an economical approach to improve sludge dewatering rate and reduce energy consumption.
Collapse
Affiliation(s)
- Changyuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xingqiu Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China.
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, United States
| | - Yijun Wei
- Shenzhen Water (Group) CO., LTD, Futian Branch Company, Shenzhen, 518000, PR China
| | - Jiangyan Liu
- Shenzhen Shenshui Ecological & Environmental Technology CO., LTD., Shenzhen, 518000, PR China
| |
Collapse
|
21
|
Coupling electro-dewatering and low-temperature air-drying for efficient dewatering of sludge. Sci Rep 2021; 11:19167. [PMID: 34580359 PMCID: PMC8476545 DOI: 10.1038/s41598-021-98477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 12/05/2022] Open
Abstract
This study investigated the effects of electro-dewatering on subsequent low-temperature drying at various potentials and the characteristics of low-temperature air-drying sludge were explored through experiments and multi-physical modeling. Experimental results showed that the extracellular polymeric substance (EPS) content in the sludge was reduced during electro-dewatering process, even the species of organic matter was changed, as well as the dewatered cake tend to form many seepage channels, crack and a certain number of holes. These changes in the properties and structure were conducive to the subsequent low-temperature drying process. For air-drying process, the mass of the sludge cake variation was simulated and results were consistent with the experimental phenomenon. Firstly, the weight of the sludge cake was decreased approximately linearly with time, then tended to stable and reached the dewatering limitation finally. The applied higher electric field intensity (25 V cm−1) in the front-end electro-dewatering were conducive to promote water vapor diffusion activity in air-drying stage. Energy consumption and yield analysis results indicated that the combined technology has lower energy consumption and higher yield than that of directly low-temperature drying.
Collapse
|
22
|
Xiong Q, Jiang S, Fang R, Chen L, Liu S, Liu Y, Yin S, Hou H, Wu X. An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124465. [PMID: 33191029 DOI: 10.1016/j.jhazmat.2020.124465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new process was developed using ClO- and corncob biochar (CB) combined with HAS (a stabilizer) to remove cyanide from gold smelting pulp. The Box-Behnken design was employed to optimize the doses of treatment reagents during cyanide removal. Results showed that the optimal doses of the three reagents were as follows: ClO- dose of 20 mg/g dry solid (DS), CB dose of 22 mg/g DS, and an HAS dose of is 24 mg/g DS. The cyanide concentration in the filtrate was the lowest (0.114 mg/L), with a 98.36% removal efficiency after a contact time of 2 h at 25 °C under optimized conditions. Compared with those of ClO- and HAS, it was found that the dose of biochar was the dominant factor influencing cyanide removal. Batch sorption experiments of cyanide to biochar indicated that the Langmuir isotherm model fit the sorption data, and the maximum cyanide sorption capacity was expected to be 2.57 ± 0.06 mg/g. Density functional theory (DFT) calculations (interaction energy was -74.42 kcal/mol) indicated that the adsorption peak resulted from cation-π interactions between the cyanide and CB. This study could lead to a novel environmental-friendly approach for the removal of cyanide from gold smelting pulp.
Collapse
Affiliation(s)
- Qiao Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Shijie Jiang
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Ran Fang
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Lei Chen
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Shuhua Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Xiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
23
|
Dong Y, Shen Y, Ge D, Bian C, Yuan H, Zhu N. A sodium dichloroisocyanurate-based conditioning process for the improvement of sludge dewaterability and mechanism studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112020. [PMID: 33508699 DOI: 10.1016/j.jenvman.2021.112020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Sludge dewatering is necessary to reduce the volume of sludge for cost-effective transport and ultimate disposal. In this study, a novel combined chemical conditioning process was proposed to improve sludge dewatering performance in which sludge flocs were destructed by sodium dichloroisocyanurate (DCCNa) and re-flocculated by Al2(SO4)3 and the mechanism was elucidated. The results showed that sludge capillary suction time (CST) dropped to 15.4 s and moisture content of dewatered sludge cake (Mc) deceased to 71.01% respectively, after the application of combined conditioning with the optimal dosage of 200 mg DCCNa/g dry solids (DS) and 80 mg Al2(SO4)3/g DS. With chemical conditioning, sludge physicochemical properties were greatly changed. With the DCCNa application, the percentage of low-molecular-weight substances in soluble extracellular polymeric substances (S-EPS) increased. Also, the sludge zeta potential dropped from -16.85 mV to -25.45 mV and the median particle size (D50) decreased from 54.1 μm to 51.6 μm. However, the subsequent conditioning by Al2(SO4)3 dosing not only led to an increment of 18% in the portion of macromolecules in S-EPS, but also increased the zeta potential and D50 to -10.74 mV and 53.2 μm, respectively. The bound water content in sludge declined from 2.92 g/g DS to 1.98 g/g DS after combined conditioning. We concluded that DCCNa disintegrated the sludge flocs and microbial cells leading to the release of bound water, fine particles and organic substances with negative charge, and the fine colloidal particles can be flocculated into large dense aggregations with the dosing of Al2(SO4)3. In summary, the proposed combined conditioning provided a highly effective and environmental friendly approach to improve the sludge dewatering performance.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Bian
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
24
|
Li W, Zhu N, Shen Y, Yuan H. Towards efficient elimination of polycyclic aromatic hydrocarbons (PAHs) from waste activated sludge by ozonation. ENVIRONMENTAL RESEARCH 2021; 195:110783. [PMID: 33497683 DOI: 10.1016/j.envres.2021.110783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/24/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge is one of the sinks for PAHs accumulation and concerns are growing regarding the environmental risk of the discharge of PAHs in waste activated sludge (WAS) as a major byproduct of sewage treatment. Here, we evaluated the effectiveness of ozone treatment to eliminate the 16 priority PAHs in WAS. The PAHs removal efficiency increased with ozone dosage and was strongly pH dependent. Even at ozone dosage of 40 mg O3·g-1, the PAHs removal efficiency at pH 9.0 (44.5%) was significantly higher than that observed at pH 5.0 and 200 mg O3·g-1 (41.7%). The pH-dependent elimination behavior of PAHs was attributed to the varying yield of hydroxyl radicals (OH) and degree of sludge disintegration (R2 = 0.88-0.92). Over 96% of the PAHs were in the particulate flocs (PF) phase, while the fraction bound to the freely dissolved (FS) and dissolved and colloidal (DC) matters was negligible, indicating the need of WAS disintegration during ozonation to make PAHs more accessible to O3 molecules and OH to initiate oxidation reactions. Failure of the three-compartment model to describe the PAHs sorption behavior in sludge matrix during ozonation implied that oxidation reaction occurred simultaneously with the partitioning of PAHs from PS to DC/FS fraction. Lastly, the results of the intermittent ozonation experiment demonstrated the interference of soluble organic compounds during PAHs degradation, particularly proteins and humic substances, as O3 and OH scavengers. At ozone dosage of 120 mg O3·g-1 (pH 9.0), the PAHs removal efficiency was improved by 19.5% by intermittent ozonation, as compared to continuous ozonation under the same conditions.
Collapse
Affiliation(s)
- Wenhao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
25
|
Chu L, He W. Toxic metals in soil due to the land application of sewage sludge in China: Spatiotemporal variations and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143813. [PMID: 33248760 DOI: 10.1016/j.scitotenv.2020.143813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Land application has become a promising method for recycling energy and resources from sewage sludge; however, the changes that occur to the toxic metal concentrations in soil following the application of sewage sludge have been poorly investigated in China. The present study attempted to investigate the spatiotemporal variations of toxic metal concentrations in soil due to the land application of sewage sludge and the critical influencing factors. Overall, the results indicated that an increasing ratio of sewage sludge for land application, the concentrated disposal measures, and a shallower soil may lead to elevated toxic metal concentrations in soil. The worst scenario simulation showed that the cumulative discharge of toxic metals through sludge disposal were ranked as: Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. After sewage sludge was applied to previously unaffected soil, i.e., background soil, the toxic metal concentrations in the soil increased annually over the period from 2006 to 2017. However, with respect to the affected soil, the concentrations of Zn and Cu increased, whereas the concentrations of As, Cd, Cr, and Pb decreased annually over the period from 2006 to 2017. The results indicate that, in practice, the selection of soil for sewage sludge disposal depends on the background and actual concentrations of toxic metals in a soil as well as the stress caused by the amount of sewage sludge application to cultivated land. We propose to use sewage sludge containing relatively lower concentrations of metals than the disposal soil for land application. Furthermore, land application of sewage sludge should be suited to local conditions in the future sewage sludge management.
Collapse
Affiliation(s)
- Liquan Chu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
26
|
Bian C, Ge D, Wang G, Dong Y, Li W, Zhu N, Yuan H. Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: Operation condition, sludge properties, and mechanisms. CHEMOSPHERE 2021; 262:128385. [PMID: 33182129 DOI: 10.1016/j.chemosphere.2020.128385] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The study proposed the ultrasound-activated persulfate oxidation as a novel approach to enhance sludge dewaterability. The results demonstrated that the reduction of water content of dewatered sludge cake was 16.5% and the capillary suction time was reduced to 39.5 s at the optimal conditions of 1.0 mmol/g-TS S2O82- and ultrasound energy density of 2.0 kW L-1 within 15 min. The promotion of dewaterability was closely associated with the enlarged floc size, decreased viscosity, and near-neutral zeta potential. Meanwhile, the correlation analysis revealed that the protein in extracellular polymeric substances (EPS) governed sludge dewaterability, especially in loosely bound EPS. Three-dimensional excitation-emission matrix fluorescence spectroscopy, Fourier transform infrared spectroscopy and scanning electronic microscopy analysis revealed that ultrasound-activated persulfate oxidation treatment effectively degraded the gel-like EPS matrix and attacked cells, releasing the moisture which was trapped in EPS and cells. The aggregation of particles promoted the elimination of moisture. Furthermore, heavy metals in conditioned dewatered sludge cakes all satisfied the A level of agricultural land (GB4284-2018) requirements and the chemical speciation distribution of some heavy metals changed significantly.
Collapse
Affiliation(s)
- Chang Bian
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanjun Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Li
- College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Ge D, Dong Y, Zhang W, Yuan H, Zhu N. A novel Fe 2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139146. [PMID: 32446059 DOI: 10.1016/j.scitotenv.2020.139146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 05/15/2023]
Abstract
As an essential section before final sludge disposal, sludge dewatering has currently been one of the focus issues. In this study, an innovative Fe2+/persulfate/tannic acid (TA) process was verified to further strengthen systemic efficacy on enhancing sludge dewaterability, compared with the conventional Fe2+/persulfate process. With the efficient TA/Fe2+ (molar ratio) of 0.25 added in Fe2+ (0.3 mmol/gTS (total solid))/persulfate (0.6 mmol/gTS) process, sludge dewaterability was enhanced remarkably. Capillary suction time, specific resistance to filtration, and water content of dewatered sludge cake were further reduced by 61.5%, 35.3%, and 6.4% than these in Fe2+/persulfate. Sludge supernatant viscosity was further reduced by 86.7% due to the more removal of extracellular polymeric substances (EPS). The secondary structure of EPS protein changed apparently and fluorescent components of EPS decreased distinctly. Sludge functional group contents were observed to be lower. TA effectually increased sludge particle size and heightened sludge flocculability, rendering the large and compact aggregations. Moreover, TA accelerated the recovery of Fe2+, facilitating persulfate activation to generate more SO4·- and ·OH for EPS disruption and cell lysis in the conditioning system. These findings provided a novel approach based on the Fe2+/persulfate process in sludge treatment for desirable dewaterability.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenrui Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
28
|
Li T, Shi Y, Li X, Zhang H, Pi K, Gerson AR, Liu D. Leaching behaviors and speciation of cadmium from river sediment dewatered using contrasting conditioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114427. [PMID: 32247921 DOI: 10.1016/j.envpol.2020.114427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Chemical conditioning is an effective strategy for improved river sediment dewatering affecting both the dewatering efficiency and subsequent resource utilization of the dewatered cake. Two types of conditioning agents, polyaluminium chloride (PAC)/cationic polyacrylamide (PAM) (coagulation precipitation conditioning agent, referred to as P-P conditioning) and ferrous activated sodium persulfate (advanced oxidation conditioning agent, referred to as F-S conditioning) were examined. With increasing leach liquid to solid (L/S) ratio the concentration of Cd for the real time leachates from the dewatered cakes decreased, but the leaching ratio of Cd in both P-P and F-S dewatered cakes increased. With the same L/S, the leaching ratio was reduced for both types of conditioning, as compared to no conditioning, with the leaching ratio being least with F-S conditioning. The leaching ratio of Cd in the dewatered cake with L/S of 100 L kg-1 was reduced from 21.3% of the total Cd present for the un-conditioned sediment to 12.5% upon P-P conditioning and 11.6% upon F-S conditioning. Furthermore, the different conditioning methods affected the Cd speciation in the dewatered cakes reducing the easy-to-leach speciation of exchangeable and carbonate-bound Cd species and increasing the potential-to-leach speciation of iron-manganese oxide and organically bound Cd species and also the difficult-to-leach species. Risk assessment indicates that the risk due to Cd leaching from the dewatered cakes at L/S of 100 L kg-1 was reduced from high risk to medium risk after P-P and F-S conditioning with reduced bioavailability.
Collapse
Affiliation(s)
- Tian Li
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yafei Shi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei, 430068, China.
| | - Xiaoran Li
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiqin Zhang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Kewu Pi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei, 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, 7109, Australia
| | - Defu Liu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China; Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, Wuhan, Hubei, 430068, China
| |
Collapse
|
29
|
Ge D, Bian C, Yuan H, Zhu N. An in-depth study on the deep-dewatering mechanism of waste activated sludge by ozonation pre-oxidation and chitosan re-flocculation conditioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136627. [PMID: 31981868 DOI: 10.1016/j.scitotenv.2020.136627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
At present, wastewater and sludge management departments are in urgent of the sludge deep-dewatering technique, which can substantially reduce sludge volume, enhance sludge calorific value and save costs. Ozonation pre-oxidation and chitosan (CT) re-flocculation conditioning have been verified to be an efficacious and environmental-friendly approach to realize sludge deep-dewatering. This paper focused on the novel insights into sludge properties under ozonation and CT conditioning. With 60 mg/gTS O3 and 20 mg/gTS CT, the water content of the conditioned sludge cake satisfied the deep-dewatering level (<60%). The ozone dosage of 60 mg/gTS effectually enhanced the release of soluble COD and retained the inherent organic matters simultaneously, and subsequently, CT could further reduce extracellular biopolymers, especially proteins. Fluorescence analysis indicated that the protein-like substances were largely decomposed into fulvic acid-like and humic acid-like substances after ozonation, and CT could further remove humic acid-like components. Macromolecules were observed to form by CT combining with ozonated extracellular polymers. Low-field NMR technique monitored sludge water states and suggested that water movability weakened after ozonation and enhanced again through CT conditioning. SEM images reflected that CT was available as junction link for ozonated polymers to aggregate into large flocs. Furthermore, the calorific value of conditioned sludge cake increased and sludge cake drying time was saved pronouncedly. The findings provided the systematic and comprehensive insights into the sludge properties in pre-oxidation and re-flocculation conditioning, which would aid in a better understanding of the in-depth dewatering mechanism and developing new dewatering technique.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Bian
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|