1
|
Pippal PS, Kumar R, Kumar R, Singh A. Integrating satellite and model data to explore spatial-temporal changes in aerosol optical properties and their meteorological relationships in northwest India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170835. [PMID: 38354813 DOI: 10.1016/j.scitotenv.2024.170835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This study aims to analyze the temporal and spatial distribution of Aerosol Optical Properties across Northwest India using aerosol data from MODIS (Moderate Resolution Imaging Spectroradiometer) and OMI (Ozone Monitoring Instrument) sensors from 2003 to 2022. Therefore, this study investigated the decadal, interannual, and seasonal changes in aerosol optical properties, vegetation index, and meteorological parameters in the northwest Indian region (8 boxes). Using GIOVANNI (Goddard Earth Sciences Data and Information Services Center (GES DISC) Online Visualization and Analysis Infrastructure), we retrieved daily and monthly Aqua and Terra MODIS products of aerosol optical depth (AOD), Angstrom exponent (AE), normalized difference vegetation index (NDVI), and OMI aerosol index (AI) to examine the spatiotemporal variations by using statistical approaches. The results demonstrated that the decadal averages of aerosol properties showed values of AOD 0.35 (Aqua) and 0.34 (Terra) and AE 1.20 (Aqua) and 1.10 (Terra) with the highest levels during the post-monsoon. Notably, the mean interannual concentrations of AOD and NDVI consistently surpass 0.3, and AE and AI exceed 1 in most locations, underscoring the persistence of high aerosol loading. Also, the study revealed a negative decadal change in AOD of about -8.24 %, while AE, AI, and NDVI showed positive decadal changes of about 9.24 %, 15.09 %, and 12.67 %, respectively. In addition, aerosol optical properties and local meteorology strongly correlated (-0.8 to +0.8). Principal Component Analysis (PCA) identifies meteorological parameters as significant drivers, with the first three components explaining over 70 % of the variation in aerosol optical properties. The NOAA HYSPLIT trajectory model suggests that the long-distance dust transport from the Arabian Peninsula frequently penetrates Gujarat province and then to northwest India. The results contributed to air quality management strategies and provided valuable insights into regional climate and air quality with the influence of meteorology.
Collapse
Affiliation(s)
- Prity S Pippal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Atar Singh
- Centre for Cryosphere and Climate Change Studies, National Institute of Hydrology, Roorkee, India
| |
Collapse
|
2
|
Pippal PS, Kumar R, Singh A, Kumar R. A bibliometric and visualization analysis of the aerosol research on the Himalayan glaciers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104998-105011. [PMID: 37721676 DOI: 10.1007/s11356-023-29710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
This research focuses on a bibliometric analysis of research on aerosols' impact on the glaciers in the Himalayan glacier region published in journals from all subject categories based on the Science Citation Index Expanded, collected from the Web of Science and Scopus database between January 2002 and April 2022. The indexing phrases like "aerosol," "glacier," and "snow" are commonly used terms and have been utilized to collect the related publications for this investigation. The document selections were based on years of publication, authorship, the scientific output of authors, distribution of publication by country, categories of the subjects, and names of journals in which scholarly papers were published. The number of articles on aerosols accelerating the melting of glaciers shows a notable increase in recent years, along with more glacier melting results from countries involved in climate science research. People's Republic of China (382) was the country with the highest publication output on aerosols impacting the melting of glaciers. The USA (367) was the most cited country, with about 17,500 total citations and 80.40 average citations per year from January 2002 to April 2022. The results reveal that research trends in the glaciers on aerosols' impact on the glaciers have been attractive in recent years, and the number of articles in this field keeps increasing fast. This study offers opportunities to track research trends, identify collaboration prospects, and inform climate policy. Integrating data sources and engaging the public will further enhance the impact and relevance of this critical research field.
Collapse
Affiliation(s)
- Prity Singh Pippal
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Atar Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
3
|
Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, Hu J. Long-term spatiotemporal evolution and coordinated control of air pollutants in a typical mega-mountain city of Cheng-Yu region under the "dual carbon" goal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:649-678. [PMID: 37449903 DOI: 10.1080/10962247.2023.2232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Tan Poh Aun
- SOx NOx Asia Sdn Bhd, Subang Jaya, Selangor, Malaysia
| | - Jinzhao Hu
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| |
Collapse
|