1
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:696-720. [PMID: 39141030 DOI: 10.2166/wst.2024.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India E-mail:
| |
Collapse
|
3
|
Li S, Zhang Y, Liu M, Du Z, Li J, Gu L, Xu L, Liu F. Ascorbic acid reduction pretreatment enhancing metal regulation to improve methane production from anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169185. [PMID: 38092219 DOI: 10.1016/j.scitotenv.2023.169185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Conversion of waste activated sludge (WAS) to methane by anaerobic digestion (AD) is often limited by the slow rate of hydrolysis, and the presence of metal ions in sludge is regarded as a critical factor hindering sludge hydrolysis. This study developed a novel strategy to remove Fe from WAS by using ascorbic acid (VC) as a reducing agent under acidic conditions. The feasibility of reduction pretreatment in improving methane production of AD and its intrinsic mechanism were investigated. Results indicate that, under VC doses of 100 mmol/L and pH of 3.50, pretreatment removed 47.60 % of Fe, 59.88 % of Ca, and 51.86 % of Mg contained in the sludge. The removal of metal ions facilitated the disruption of sludge flocculation structure and extracellular polymeric substance (EPS) layers, leading to a 14.78 % increase in cell lysis and a decrease in fractal dimension values to 2.08. Batch AD experiments showed that VC pretreatment improved methane production, with an optimized net methane yield of 190.22 mL/g·VS, an increase of 134.75 % compared to raw WAS. The pretreatment affected the interfacial interaction energy of the sludge, leading to a transformation in the sludge surfaces from hydrophilic to hydrophobic, reducing the interaction between sludge molecules and increasing the number of binding sites available for enzymatic reactions. According to a study of microbial communities, it was found that VC pretreatment caused an increase in the presence of essential functional microbes responsible for hydrolysis, acidification, and methanation. This increase in acetoclastic and hydrogenotrophic methanogens resulted in a substantial enhancement in methane production. These results can be used to develop better pretreatment methods to enhance AD performance.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yu Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| |
Collapse
|
4
|
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161193. [PMID: 36581268 DOI: 10.1016/j.scitotenv.2022.161193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is an economical and environment-friendly technology for treating organic solid wastes (OSWs). OSWs with high sulfur can lead to the accumulation of toxic and harmful hydrogen sulfide (H2S) during AD, so a considerable amount of studies have focused on removing H2S emissions. However, current studies have found that sulfide induces phosphate release from the sludge containing iron‑phosphorus compounds (FePs) and the feasibility of recovering elemental sulfur (S0) during AD. To tap the full potential of sulfur in OSWs resource recovery, deciphering the sulfur transformation pathway and its influencing factors is required. Therefore, in this review, the sulfur species and distributions in OSWs and the pathway of sulfur transformation during AD were systematically summarized. Then, the relationship between iron (ferric compounds and zero-valent iron), phosphorus (FePs) and sulfur were analyzed. It was found that the reaction of iron with sulfide during AD drove the conversion of sulfide to S0 and iron sulfide compounds (FeSx), and consequently iron was applied in sulfide abatement. In particular, ferric (hydr)oxide granules offer possibilities to improve the economic viability of hydrogen sulfide control by recovering S0. Sulfide is an interesting strategy to release phosphate from the sludge containing FePs for phosphorus recovery. Critical factors affecting sulfur transformation, including the carbon source, free ammonia and pretreatment methods, were summarized and discussed. Carbon source and free ammonia affected sulfur-related microbial diversity and enzyme activity and different sulfur transformation pathways in response to varying pretreatment methods. The study on S0 recovery, organic sulfur conversion, and phosphate release mechanism triggered by sulfur deserves further investigation. This review is expected to enrich our knowledge of the role of sulfur during AD and inspire new ideas for recovering phosphorus and sulfur resources from OSWs.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Fang W, Lin M, Shi J, Liang Z, Tu X, He Z, Qiu R, Wang S. Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154386. [PMID: 35331758 DOI: 10.1016/j.scitotenv.2022.154386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With rapid global urbanization, anthropogenic activities alter aquatic biota in urban rivers through inputs of dissolved organic carbon (DOC) and nutrients. Microorganisms-mediated global element cycles provide functions in maintaining microbial ecology stability. The DOC (bottom-up control) and microbial predation (top-down control) may synergistically drive the competition and evolution of aquatic microbial communities, as well as their resistance and resilience, for which experimental evidences remain scarce. In this study, laboratory sediment-water column experiments were employed to mimic the organic carbon-driven water blackening and odorization process in urban rivers and to elucidate the impact of DOC on microbial ecology stability. Results showed that low (25-75 mg/L) and high DOC (100-150 mg/L) changed the aquatic microbial community assemblies in different patterns: (1) the low DOC enriched K-selection microorganisms (e.g., C39, Tolumonas and CR08G) with low biomass and low resilience, as well as high resistance to perturbations in changing microbial community assemblies; (2) the high DOC was associated with r-selection microorganisms (e.g., PSB-M-3 and Clostridium) with high biomass and improved resilience, together with low resistance detrimental to microbial ecology stability. Overall, this study provided new insight into the impact of DOC on aquatic microbial community stability, which may help guide sustainable urban river management.
Collapse
Affiliation(s)
- Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Zhongshan Municipal Ecology and Environment Bureau, Zhongshan, Guangdong 528403, China
| | - Muxing Lin
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China.
| |
Collapse
|
6
|
Shen R, Zhang S, Liang Z, Mai B, Wang S. Mechanistic insight into co-metabolic dechlorination of hexachloro-1,3-butadiene in Dehalococcoides. WATER RESEARCH 2022; 220:118725. [PMID: 35709597 DOI: 10.1016/j.watres.2022.118725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Hexachloro-1,3-butadiene (HCBD) as one of emerging persistent organic pollutants (POPs) poses potential risk to human health and ecosystems. Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation represents a promising strategy to remediate HCBD-contaminated sites. Nonetheless, information on the HCBD-dechlorinating OHRB and their dechlorination pathways remain unknown. In this study, both in vivo and in vitro experiments, as well as quantum chemical calculation, were employed to successfully identify and characterize the reductive dechlorination of HCBD by Dehalococcoides. Results showed that some Dehalococcoides extensively dechlorinated HCBD to (E)-1,2,3-tri-CBD via (E)-1,1,2,3,4-penta-CBD and (Z,E)-1,2,3,4-tetra-CBD in a co-metabolic way. Both qPCR and 16S rRNA gene amplicon sequencing analyses suggested that the HCBD-dechlorinating Dehalococcoides coupled their cell growth with dechlorination of perchloroethene (PCE), rather than HCBD. The in vivo and in vitro ATPase assays indicated ≥78.89% decrease in ATPase activity upon HCBD addition, which suggested HCBD inhibition on ATPase-mediated energy harvest and provided rationality on the Dehalococcoides-mediated co-metabolic dechlorination of HCBD. Interestingly, dehalogenation screening of organohalides with the HCBD-dechlorinating enrichment cultures showed that debromination of bromodichloromethane (BDCM) was active in the in vitro RDase assays but non-active in the in vivo experiments. Further in vitro assays of hydrogenase activity suggested that significant inhibition of BDCM on the hydrogenase activity could block electron derivation from H2 for consequent reduction of organohalides in the in vivo experiments. Therefore, our results provided unprecedented insight into metabolic, co-metabolic and RDase-active-only dehalogenation of varied organohalides by specific OHRB, which could guide future screening of OHRB for remediation of sites contaminated by HCBD and other POPs.
Collapse
Affiliation(s)
- Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shangwei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China.
| |
Collapse
|
7
|
Mitraka GC, Kontogiannopoulos KN, Tsivintzelis I, Zouboulis AI, Kougias PG. Optimization of supercritical carbon dioxide explosion for sewage sludge pre-treatment using response surface methodology. CHEMOSPHERE 2022; 297:133989. [PMID: 35181421 DOI: 10.1016/j.chemosphere.2022.133989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The present work was conducted to assess whether the implementation of Supercritical Carbon dioxide Explosion (SCE) is an efficient approach for sewage sludge pre-treatment. In this context, SCE was optimized with the aim to develop a method attempting to increase the biodegradability of sewage sludge's organic matter content, and thus, to enhance the subsequent anaerobic digestion and methane production. The statistical tool of response surface methodology was applied to evaluate the effects of the main pre-treatment parameters (i.e. temperature and time) and their interactions on methane yield, which was defined as the response. Temperature was found to be the most significant variable, having the greatest effect on methane yield. Following this, an optimum set of pre-treatment conditions corresponding to a temperature of 115 °C and time of 13 min, was determined. Under these optimum conditions, the predicted response value was 300 mL CH4/g of volatile solids. The corresponding experimental value obtained from the validation experiment fitted well with this value, clearly demonstrating the effective use of response surface methodology in optimizing SCE. Additionally, under optimum conditions, the methane yield presented a statistically significant increment of 8.7%, compared to untreated sludge. This revealed the impact of SCE as an effective and alternative way for the efficient pre-treatment of sewage sludge. Finally, thermal pre-treatment, alkaline and acidic hydrolysis were also applied to the already pre-treated sludge. It was concluded that the combined pre-treatment techniques contributed to a further increase of methane production compared to raw (untreated) substrate.
Collapse
Affiliation(s)
- Georgia-Christina Mitraka
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, Thessaloniki, GR-57001, Greece
| | | | - Ioannis Tsivintzelis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Anastasios I Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, Thessaloniki, GR-57001, Greece.
| |
Collapse
|
8
|
De Gisi S, Gadaleta G, Gorrasi G, La Mantia FP, Notarnicola M, Sorrentino A. The role of (bio)degradability on the management of petrochemical and bio-based plastic waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114769. [PMID: 35217451 DOI: 10.1016/j.jenvman.2022.114769] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In order to mitigate the social and ecological impacts of post-consumer plastic made of conventional petrochemical polymers, the market of (bio)degradable plastics have recently become more widespread. Although (bio)degradable plastics could be an environmentally friendly substitute of petrochemical ones, the consequences of their presence in the waste management system and in the environment (if not correctly disposed) are not always positive and plastic pollution is not automatically solved. Consequently, this work aims to review how plastic (bio)degradability affects the municipal solid waste management cycle. To this end, the state-of-the-art of the intrinsic (bio)degradability of conventional and unconventional petrochemical and bio-based polymers has been discussed, focusing on the environment related to the waste management system. Then, the focus was on strategies to improve polymer (bio)degradability: different types of eco-design and pre-treatment approach for plastics has been investigated, differently from other works that focused only on specific topics. The information gathered was used to discuss three typical disposal/treatment routes for plastic waste. Despite many of the proposed materials in eco-design have increased the plastics (bio)degradability and pre-treatments have showed interesting results, these achievements are not always positive in the current MSW management system. The effect on mechanical recycling is negative in several cases but the enhanced (bio)degradability can help the treatment with organic waste. On the other hand, the current waste treatment facility is not capable to manage this waste, leading to the incineration the most promising options. In this way, the consumption of raw materials will persist even by using (bio)degradable plastics, which strength the doubt if the solution of plastic pollution leads really on these materials. The review also highlighted the need for further research on this topic that is currently limited by the still scarce amount of (bio)degradable plastics in input to full-scale waste treatment plants.
Collapse
Affiliation(s)
- Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Politecnico di Bari, Via E. Orabona, 4, I-70125, Bari, Italy.
| | - Giovanni Gadaleta
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Politecnico di Bari, Via E. Orabona, 4, I-70125, Bari, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Francesco Paolo La Mantia
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy; INSTM, Via Giusti, 9 50125, Firenze, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Politecnico di Bari, Via E. Orabona, 4, I-70125, Bari, Italy
| | - Andrea Sorrentino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), P.le E. Fermi, 1, I-80055, Portici (Napoli), Italy
| |
Collapse
|
9
|
Shi J, Li H, Jiang Z, Wang C, Sun L, Wang S. Impact of substrate digestibility on microbial community stability in methanogenic digestors: The mechanism and solution. BIORESOURCE TECHNOLOGY 2022; 352:127103. [PMID: 35378285 DOI: 10.1016/j.biortech.2022.127103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the temporal dynamics of digestion efficiency and community stability in digesters fed with waste activated sludge (WAS), straw (STR-AD), food waste (FW-AD) and mixture of straw-and-food waste (STR-FW-AD). Results showed that carbon removals of recalcitrant substrates (i.e., 48.2 ± 3.9% in WAS-AD and 57.8 ± 4.9% in STR-AD) were lower than that of labile substrates (i.e., 70.7 ± 4.0% in FW-AD). Nonetheless, carbon removal of recalcitrant substrates was largely improved through co-digestion (70.3 ± 3.2% in STR-FW-AD). In contrast to monopoly communities (e.g., the highly enriched Paludibacter) fed with the labile substrates, recalcitrant substrates supported highly diverse communities. Accordingly, the medians of negative/positive cohesions of communities in WAS-AD, STR-AD, STR-FW-AD and FW-AD decreased from 0.86 to 0.63, suggesting their decreasing community stability. Microbial source tracking analyses showed the major contribution of the STR-AD community to the co-digestion community. This study provided unprecedented mechanistic insight into stability improvement of substrate co-digestion on the methanogenic digestion microbiome.
Collapse
Affiliation(s)
- Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haocong Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zekai Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Zhang Y, Meng C, He Y, Wang X, Xue G. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148042. [PMID: 34323827 DOI: 10.1016/j.scitotenv.2021.148042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The cell lysis-cryptic growth was implemented by Fenton oxidation in sequencing batch reactor. Optimizing sludge lysis condition could maximize the release of nutrients and sludge disintegration degree. After Fenton oxidation, the extracellular polymeric substance was obviously destroyed with the sludge average particle decreased from 64 μm to 36 μm. After 5% of the settled sludge in sequencing batch reactor (SBR) was oxidized by Fenton and then returned to SBR, the mixed liquor suspended solids (MLSS) decreased by 19.3% at the end of 35 days operation, the average mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS) was promoted by 13.3% during the entire operation. Returning lysed sludge had no significant influence on the organics and nitrogen removal, but the total phosphorus removal was distinctly enhanced by generating FePO4 precipitate. Additionally, returning lysed sludge suppressed nitrifying bacteria and promoted denitrifying bacteria slightly. Consequently, the cell lysis-cryptic growth for reducing sludge source discharge from wastewater biological treatment could be achieved on the premise of ensuring effluent quality.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengcheng Meng
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Tianjin United Environmental Protection Engineering Design Co., Ltd., Tianjin 300110, China
| | - Yueling He
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaonuan Wang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai 201620, China.
| |
Collapse
|
11
|
Liang Y, Lu Q, Liang Z, Liu X, Fang W, Liang D, Kuang J, Qiu R, He Z, Wang S. Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration. ISME COMMUNICATIONS 2021; 1:23. [PMID: 37938613 PMCID: PMC9723705 DOI: 10.1038/s43705-021-00025-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 05/19/2023]
Abstract
Obligate and non-obligate organohalide-respiring bacteria (OHRB) play central roles in the geochemical cycling and environmental bioremediation of organohalides. Their coexistence and interactions may provide functional redundancy and community stability to assure organohalide respiration efficiency but, at the same time, complicate isolation and characterization of specific OHRB. Here, we employed a growth rate/yield tradeoff strategy to enrich and isolate a rare non-obligate tetrachloroethene (PCE)-respiring Geobacter from a Dehalococcoides-predominant microcosm, providing experimental evidence for the rate/yield tradeoff theory in population selection. Surprisingly, further physiological and genomic characterizations, together with co-culture experiments, revealed three unique interactions (i.e., free competition, conditional competition and syntrophic cooperation) between Geobacter and Dehalococcoides for their respiration of PCE and polychlorinated biphenyls (PCBs), depending on both the feeding electron donors (acetate/H2 vs. propionate) and electron acceptors (PCE vs. PCBs). This study provides the first insight into substrate-dependent interactions between obligate and non-obligate OHRB, as well as a new strategy to isolate fastidious microorganisms, for better understanding of the geochemical cycling and bioremediation of organohalides.
Collapse
Affiliation(s)
- Yongyi Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Xiaokun Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, China
| | - Jialiang Kuang
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
13
|
Shen R, Yu L, Xu P, Liang Z, Lu Q, Liang D, He Z, Wang S. Water content as a primary parameter determines microbial reductive dechlorination activities in soil. CHEMOSPHERE 2021; 267:129152. [PMID: 33316619 DOI: 10.1016/j.chemosphere.2020.129152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Organohalide-respiring bacteria (OHRB) remove halogens from a variety of organohalides, which have been utilized for in situ remediation of different contaminated sites, e.g., groundwater, sediment and soil. Nonetheless, dehalogenation activities of OHRB and consequent remediation efficiencies can be synergistically affected by water content, soil type and inoculated/indigenous OHRB, which need to be disentangled to identify the key driving parameter and to elucidate the underlying mechanism. In this study, we investigated the impacts of water content (0-100%), soil type (laterite, brown soil and black soil) and inoculated OHRB (Dehalococcoides mccartyi CG1 and a river sediment culture) on reductive dechlorination of perchloroethene (PCE) and polychlorinated biphenyls (PCBs), as well as on associated microbial communities. Results suggested that the water content as a primary rate-limiting parameter governed dechlorination activities in environmental matrices, particularly in the soil, possibly through mediation of cell-to-organohalide mobility of OHRB. By contrast, interestingly, organohalide-dechlorinating microbial communities were predominantly clustered based on soil types, rather than water contents or inoculated OHRB. This study provided knowledge on the impacts of major parameters on OHRB-mediated reductive dechlorination in groundwater, sediment and soil for future optimization of in situ bioremediation of organohalides.
Collapse
Affiliation(s)
- Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, 100191, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Black-, gray-, and white-box modeling of biogas production rate from a real-scale anaerobic sludge digestion system in a biological and advanced biological treatment plant. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Genome-Centric Metagenomic Insights into the Impact of Alkaline/Acid and Thermal Sludge Pretreatment on the Microbiome in Digestion Sludge. Appl Environ Microbiol 2020; 86:AEM.01920-20. [PMID: 32948522 DOI: 10.1128/aem.01920-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
Collapse
|
16
|
Lu Q, Yu Z, Wang L, Liang Z, Li H, Sun L, Shim H, Qiu R, Wang S. Sludge pre-treatments change performance and microbiome in methanogenic sludge digesters by releasing different sludge organic matter. BIORESOURCE TECHNOLOGY 2020; 316:123909. [PMID: 32739582 DOI: 10.1016/j.biortech.2020.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, temporal impacts of thermal, alkaline/acid and thermal-alkaline sludge pre-treatments on digestion performance and microbiome were investigated and compared in methanogenic sludge digesters. Results showed that thermal and alkaline/acid pre-treatments were efficient in releasing intracellular and EPS organic matter, respectively. The thermal-alkaline pre-treatment showed synergistic impacts of both thermal and alkaline/acid pre-treatments by releasing the major portion of sludge organic matter from solid- to liquid-phase, which result in 60-65% organic carbon removal in subsequent sludge digestion and further optimizing digestion temperature had negligible improvement. The 16S rRNA gene-based analyses suggested that organic matter released from sludge pre-treatments is a major deterministic parameter in shaping sludge microbiome. Pre-treatment specific lineages were identified in different sludge digesters, whereas several taxa were identified as common functionally active populations in sludge digestion. This study provided mechanistic insights into impacts of pre-treatments on digestion performance and microbiome in methanogenic sludge digesters.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zehui Yu
- Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102, China
| | - Li Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haocong Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
Zhang X, Lu Y, Yao J, Wu Y, Tran QC, Vu QV. Insight into conditioning landfill sludge with ferric chloride and a Fenton reagent: Effects on the consolidation properties and advanced dewatering. CHEMOSPHERE 2020; 252:126528. [PMID: 32443263 DOI: 10.1016/j.chemosphere.2020.126528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The landfill sludge in storage reservoirs needs to be dewatered and disposed of for environmental and engineering purposes. The key factors are the high organic matter content and low permeability. Chemical conditioning is considered an efficient method for adjusting the properties of sludge. In this paper, two typical chemical agents, FeCl3 and a Fenton reagent with different additive amounts, are studied and compared for dewatering and consolidation purposes. Compression experiments and consolidation experiments are compared, and the coefficient of compressibility and compression index are obtained and compared. Then, the sludge permeability, grain size distribution variations, specific resistance to filtration (SRF) and morphology observations are considered to analyse the treatment mechanism. The results indicate that the properties of landfill sludge will change as the curing time increases. FeCl3 and Fenton are both effective in improving the consolidation and permeability properties of sludge. For the conditioning process, the optimum FeCl3 content is 20%, and the process is dominated by coagulation if FeCl3 is less than 20%; otherwise, it is dominated by hydrolysis. For the Fenton reagent, the optimum Fe2+ content and H2O2 content are 4% and 12%, respectively. The depolymerization effect of the Fenton reagent leads to the oxidation and recombination of the polar group on extracellular polymeric substances (EPSs). The results can be used to explain the conditioning mechanism of the effective agents of FeCl3 and Fenton and compare the corresponding consolidation properties. The consolidation characteristics provide a reference for further application of vacuum preloading in the sludge disposal process.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Civil Engineering, Shanghai University, 200444, China.
| | - Yitian Lu
- Department of Civil Engineering, Shanghai University, 200444, China.
| | - Jie Yao
- Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai, 201203, China.
| | - Yajun Wu
- Department of Civil Engineering, Shanghai University, 200444, China
| | - Quoc Cong Tran
- Department of Civil Engineering, Shanghai University, 200444, China
| | - Quoc Vuong Vu
- Faculty of Civil Engineering, Thuy Loi University, Hanoi City, 100000, Viet Nam
| |
Collapse
|