1
|
Cheng Q, Wang Y, Han C, Liu W, Fan G, Zhang H, Lei Z, Hu C, Zhao X. Selenium: The Toxicant for Pathogen and Pest but the Guardian of Soil and Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11495-11514. [PMID: 40317105 DOI: 10.1021/acs.jafc.5c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Selenium (Se) is an essential micronutrient for higher organisms and plays a beneficial role in plant growth and development. In recent years, there has been growing interest in the using of Se to enhance plant resilience, particularly in mitigating the effects of diseases and pests in agricultural systems. This review offers a comprehensive analysis of the sources and chemical forms of Se in soil, investigates the mechanisms of plant uptake and metabolism of different Se forms, and evaluates the physical and chemical inhibition of pathogens by various Se forms, as well as the role of Se in enhancing plant systemic resistance for crop protection. Additionally, we summarize current research on the role of Se in pest and disease control and explore potential future research directions, with a focus on integrating Se into sustainable agricultural practices. The insights presented in this review seek to establish a solid scientific foundation for Se-based approaches to pest control and emphasize its potential application in sustainable agriculture.
Collapse
Affiliation(s)
- Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chuang Han
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes/College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Zhang H, Liang L, Du X, Shi G, Wang X, Tang Y, Lei Z, Wang Y, Yi C, Hu C, Zhao X. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. PLANT, CELL & ENVIRONMENT 2025; 48:2200-2220. [PMID: 39559947 DOI: 10.1111/pce.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The use of beneficial bacteria to enhance selenium absorption in crops has been widely studied. However, it is unclear how the interaction between bacteria and plants affects selenium absorption in crops. Here, pot experiments and Murashige and Skoog medium (MS) experiments were performed. Transcriptomic analyses were used to reveal the interaction between Bacillus cereus SESY and Brassica napus. The results indicated that B. cereus SESY can significantly increase the biomass and selenium content of B. napus. The genes related to the colonization, IAA synthesis, and l-cysteine synthesis and metabolism of B. cereus SESY were significantly stimulated by B. napus through transcriptional regulation. Further verification results showed that l-cysteine increased selenium content in B. napus roots and shoots by 62.9% and 88.4%, respectively. B. cereus SESY and l-cysteine consistently regulated the relative expression level of genes involved in plant hormone, amino acid metabolism, selenium absorption, and Se enzymatic and nonenzymatic metabolic pathway of B. napus. These genes were significantly correlated with selenium content and biomass of B. napus (p < 0.05). Overall, IAA biosynthesis, and l-cysteine biosynthesis and metabolism in B. cereus SESY stimulated by interactions triggered molecular and metabolic responses of B. napus, underpinning host selenium absorption and accumulation.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, China
| | - Guangyu Shi
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ceng Yi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Liu XM, Yuan ZG, Rao S, Zhang WW, Ye JB, Cheng SY, Xu F. Identification, characterization, and expression analysis of WRKY transcription factors in Cardamine violifolia reveal the key genes involved in regulating selenium accumulation. BMC PLANT BIOLOGY 2024; 24:860. [PMID: 39266968 PMCID: PMC11396617 DOI: 10.1186/s12870-024-05562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cardamine violifolia is a significant Brassicaceae plant known for its high selenium (Se) accumulation capacity, serving as an essential source of Se for both humans and animals. WRKY transcription factors play crucial roles in plant responses to various biotic and abiotic stresses, including cadmium stress, iron deficiency, and Se tolerance. However, the molecular mechanism of CvWRKY in Se accumulation is not completely clear. RESULTS In this study, 120 WRKYs with conserved domains were identified from C. violifolia and classified into three groups based on phylogenetic relationships, with Group II further subdivided into five subgroups. Gene structure analysis revealed WRKY variations and mutations within the CvWRKYs. Segmental duplication events were identified as the primary driving force behind the expansion of the CvWRKY family, with numerous stress-responsive cis-acting elements found in the promoters of CvWRKYs. Transcriptome analysis of plants treated with exogenous Se and determination of Se levels revealed a strong positive correlation between the expression levels of CvWRKY034 and the Se content. Moreover, CvWRKY021 and CvWRKY099 exhibited high homology with AtWRKY47, a gene involved in regulating Se accumulation in Arabidopsis thaliana. The WRKY domains of CvWRKY021 and AtWRKY47 were highly conserved, and transcriptome data analysis revealed that CvWRKY021 responded to Na2SeO4 induction, showing a positive correlation with the concentration of Na2SeO4 treatment. Under the induction of Na2SeO3, CvWRKY021 and CvWRKY034 were significantly upregulated in the roots but downregulated in the shoots, and the Se content in the roots increased significantly and was mainly concentrated in the roots. CvWRKY021 and CvWRKY034 may be involved in the accumulation of Se in roots. CONCLUSIONS The results of this study elucidate the evolution of CvWRKYs in the C. violifolia genome and provide valuable resources for further understanding the functional characteristics of WRKYs related to Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Zhi-Gang Yuan
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Wei-Wei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Jia-Bao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shui-Yuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
4
|
Ma Y, Yin J, Wang J, Liu X, He J, Zhang R, Rao S, Cong X, Xiong Y, Wu M. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Food Chem 2023; 427:136710. [PMID: 37406448 DOI: 10.1016/j.foodchem.2023.136710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cardamine violifolia is a unique selenium (Se)-hyperaccumulating vegetable in China. The total Se content and Se speciation of three edible parts, including flowers, stems, and leaves were detected by HPLC-ICP-MS. Volatile organic compounds (VOCs) greatly impact food flavor. The VOCs of three samples were analyzed by E-nose, HS-GC-IMS, and HS-SPME-GC-MS. The results showed that the total Se content in flowers was significantly higher than that in leaves and was the lowest in stems. Organic Se accounts for more than 98% of the total Se content, primarily selenocystine, followed by methyl selenocysteine. A total of 102 VOCs were identified from C. violifolia, mainly esters, aldehydes, alcohols, and ketones. Flowers contained abundant VOCs, while stems and leaves contained fewer but similar profiles. Moreover, multivariate statistical analysis was applied to investigate the VOC variations and marker VOCs. This work can provide useful knowledge for understanding the Se characteristics and flavor of C. violifolia.
Collapse
Affiliation(s)
- Yan Ma
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjing Yin
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingren He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China
| | - Yin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Chen Z, Lu Y, Dun X, Wang X, Wang H. Research Progress of Selenium-Enriched Foods. Nutrients 2023; 15:4189. [PMID: 37836473 PMCID: PMC10574215 DOI: 10.3390/nu15194189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.
Collapse
Affiliation(s)
- Zhenna Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | | | | | | | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
6
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Xie H, Tian X, He L, Li J, Cui L, Cong X, Tang B, Zhang Y, Guo Z, Zhou A, Chen D, Wang L, Zhao J, Yu YL, Li B, Li YF. Spatial Metallomics Reveals Preferable Accumulation of Methylated Selenium in a Single Seed of the Hyperaccumulator Cardamine violifolia†. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2658-2665. [PMID: 36695191 DOI: 10.1021/acs.jafc.2c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Lina He
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Environmental Science and Engineering, and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jincheng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Mechanical Engineering, and National Consortium for Excellence in Metallomics, Guangxi University, Nanning 530004, Guangxi, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China
| | - Bochong Tang
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Yi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Aiyu Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Pinto Irish K, Harvey MA, Harris HH, Aarts MGM, Chan CX, Erskine PD, van der Ent A. Micro-analytical and molecular approaches for understanding the distribution, biochemistry, and molecular biology of selenium in (hyperaccumulator) plants. PLANTA 2022; 257:2. [PMID: 36416988 PMCID: PMC9684236 DOI: 10.1007/s00425-022-04017-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Collapse
Affiliation(s)
- Katherine Pinto Irish
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Maggie-Anne Harvey
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD, 4072, Australia
| | - Peter D Erskine
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Antony van der Ent
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers. Animals (Basel) 2022; 12:ani12223193. [PMID: 36428420 PMCID: PMC9686480 DOI: 10.3390/ani12223193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of this experiment was to explore the effects of a new selenium (Se) source from Se-enriched Cardamine enshiensis (SeCe) on body weight loss, anti-oxidative capacity and meat quality of broilers under transport stress. A total of 240 one-day-old ROSS 308 broilers were allotted into four treatments with six replicate cages and 10 birds per cage using a 2 × 2 factorial design. The four groups were as follows: (1) Na2SeO3-NTS group, dietary 0.3 mg/kg Se from Na2SeO3 without transport stress, (2) SeCe-NTS group, dietary 0.3 mg/kg Se from SeCe without transport stress, (3) Na2SeO3-TS group, dietary 0.3 mg/kg Se from Na2SeO3 with transport stress, and (4) SeCe-TS group, dietary 0.3 mg/kg Se from SeCe with transport stress. After a 42 d feeding period, the broilers were transported by a lorry or kept in the original cages for 3 h, respectively. The results showed that dietary SeCe supplementation alleviated transport-stress-induced body weight loss and hepatomegaly of the broilers compared with the broilers fed Na2SeO3 diets (p < 0.05). Furthermore, dietary SeCe supplementation increased the concentrations of plasma total protein and glucose, and decreased the activities of aspartate aminotransferase and alanine aminotransferase of the broilers under transport stress (p < 0.05). Dietary SeCe supplementation also enhanced the anti-oxidative capacity and meat quality in the breast and thigh muscles of the broilers under transport stress (p < 0.05). In summary, compared with Na2SeO3, dietary SeCe supplementation alleviates transport-stress-induced body weight loss, anti-oxidative capacity and meat quality impairments of broilers.
Collapse
|
10
|
Chao W, Rao S, Chen Q, Zhang W, Liao Y, Ye J, Cheng S, Yang X, Xu F. Advances in Research on the Involvement of Selenium in Regulating Plant Ecosystems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202712. [PMID: 36297736 PMCID: PMC9607533 DOI: 10.3390/plants11202712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 05/15/2023]
Abstract
Selenium is an essential trace element which plays an important role in human immune regulation and disease prevention. Plants absorb inorganic selenium (selenite or selenate) from the soil and convert it into various organic selenides (such as seleno amino acids, selenoproteins, and volatile selenides) via the sulfur metabolic pathway. These organic selenides are important sources of dietary selenium supplementation for humans. Organoselenides can promote plant growth, improve nutritional quality, and play an important regulatory function in plant ecosystems. The release of selenium-containing compounds into the soil by Se hyperaccumulators can promote the growth of Se accumulators but inhibit the growth and distribution of non-Se accumulators. Volatile selenides with specific odors have a deterrent effect on herbivores, reducing their feeding on plants. Soil microorganisms can effectively promote the uptake and transformation of selenium in plants, and organic selenides in plants can improve the tolerance of plants to pathogenic bacteria. Although selenium is not an essential trace element for plants, the right amount of selenium has important physiological and ecological benefits for them. This review summarizes recent research related to the functions of selenium in plant ecosystems to provide a deeper understanding of the significance of this element in plant physiology and ecosystems and to serve as a theoretical basis and technical support for the full exploitation and rational application of the ecological functions of selenium-accumulating plants.
Collapse
Affiliation(s)
- Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyan Yang
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
- Correspondence: (X.Y.); or (F.X.)
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Correspondence: (X.Y.); or (F.X.)
| |
Collapse
|
11
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Guo Z, Zhu B, Guo J, Wang G, Li M, Yang Q, Wang L, Fei Y, Wang S, Yu T, Sun Y. Impact of selenium on rhizosphere microbiome of a hyperaccumulation plant Cardamine violifolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40241-40251. [PMID: 35122198 DOI: 10.1007/s11356-022-18974-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cardamine violifolia is the only selenium hyperaccumulation plant found in China. It has been developed as a source of medicinal and edible products that we can consume as selenium supplements. Many planting approaches have been developed to increase the selenium content of C. violifolia for nutrient biofortification. However, the contribution of rhizosphere microbes of C. violifolia to selenium enrichment has not been investigated. In this study, four types of selenium, i.e., selenate, selenite, nanoparticles selenium from Bacillus subtilis (B. subtilis-Se), and organic selenium from yeast (yeast-Se), were added to the soil that C. violifolia was grown in, respectively. Selenate led to the greatest accumulation of selenium in C. violifolia, followed by selenite, B. subtilis-Se, and yeast-Se. Except for yeast-Se, the concentration of selenium in C. violifolia positively correlated with the amount of selenium added to the soil. Furthermore, the different types of exogenous selenium exhibited distinct effects on the rhizosphere microbiome of C. violifolia. Alpha and beta diversity analyses demonstrated that rhizosphere microbiome was more obviously affected by selenium from B. subtilis and yeast than from selenate and selenite. Different microbial species were enriched in the rhizosphere of C. violifolia under various exogenous selenium treatments. B. subtilis-Se application enhanced the abundance of Leucobacter, Sporosarcina, Patulibacter, and Denitrobacter, and yeast-Se application enriched the abundance of Singulishaera, Lactobacillus, Bdellovibrio, and Bosea. Bosea and the taxon belonging to the order Solirubrobacterales were enriched in the samples with selenate and selenite addition, respectively, and the abundances of these were linearly related to the concentrations of selenate and selenite applied in the rhizosphere of C. violifolia. In summary, this study revealed the response of the rhizosphere microbiome of C. violifolia to exogenous selenium. Our findings are useful for developing suitable selenium fertilizers to increase the selenium hyperaccumulation level of this plant.
Collapse
Affiliation(s)
- Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Gongting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yue Fei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
13
|
Zhang X, Jia L, He H, Yin H, Ming J, Hou T, Xiang J. Modulation of oxidative stress and gut microbiota by selenium-containing peptides from enshiensis Cardamine and structural-based characterization. Food Chem 2022; 395:133547. [DOI: 10.1016/j.foodchem.2022.133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
|
14
|
Liu R, Yin HQ, Li L, Huang KW, Li HX, Zhao ZL, Mao ZC. First Report of Meloidogyne incognita on Cardamine violifolia in China. PLANT DISEASE 2022; 106:PDIS07211560PDN. [PMID: 34844446 DOI: 10.1094/pdis-07-21-1560-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- R Liu
- Gansu Agricultural University, Lanzhou 730070, Gansu, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H Q Yin
- Enshi Academy of Agricultural Sciences, Tujia and Miao Nationalities Autonomous Prefecture, Enshi 445000, Hubei, China
| | - L Li
- Enshi Academy of Agricultural Sciences, Tujia and Miao Nationalities Autonomous Prefecture, Enshi 445000, Hubei, China
| | - K W Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H X Li
- Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Z L Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Z C Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Gui JY, Rao S, Gou Y, Xu F, Cheng S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1707-1718. [PMID: 34460116 DOI: 10.1002/jsfa.11511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Approximately 0.5-1 billion people worldwide face the risk of selenium (Se) deficiency because of the low Se concentration in their diets. Broccoli can accumulate Se and comprises a source of daily Se supplement for humans. Se biofortification is an effective strategy for enhancing Se content in crops. In the present study, the effects of Se yeast and selenite application on the Se content and nutrient quality of broccoli were investigated. RESULTS Broccoli growth was promoted by Se yeast but inhibited by selenite. The total Se content of broccoli florets remarkably increased with increasing exogenous Se fertilizer concentrations. The main Se species in broccoli florets were methyl-selenocysteine and selenomethionine, and their contents were significantly higher under Se yeast treatments than under selenite treatments. Se(VI) was detected only under selenite treatments. Se yeast and selenite had different influences on soluble sugar, soluble protein, vitamin C and free amino acid contents in broccoli florets. The total phenolic acid and glucosinolate contents were substantially increased by Se yeast and selenite, although the total flavonoid content was reduced by Se yeast. Tests on antioxidant enzyme activities revealed that several antioxidant enzymes (catalase, peroxidase, superoxide dismutase and glutathione peroxidase) responded to Se yeast and selenite treatments. CONCLUSION Se yeast is preferred over selenite for maximizing Se uptake and nutrient accumulation in Se-rich broccoli cultivation. However, an extremely high Se content in broccoli florets cannot be directly consumed by humans, although they can be processed into Se supplements. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
16
|
Yang D, Hu C, Wang X, Shi G, Li Y, Fei Y, Song Y, Zhao X. Microbes: a potential tool for selenium biofortification. Metallomics 2021; 13:6363703. [PMID: 34477877 DOI: 10.1093/mtomcs/mfab054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022]
Abstract
Selenium (Se) is a component of many enzymes and indispensable for human health due to its characteristics of reducing oxidative stress and enhancing immunity. Human beings take Se mainly from Se-containing crops. Taking measures to biofortify crops with Se may lead to improved public health. Se accumulation in plants mainly depends on the content and bioavailability of Se in soil. Beneficial microbes may change the chemical form and bioavailability of Se. This review highlights the potential role of microbes in promoting Se uptake and accumulation in crops and the related mechanisms. The potential approaches of microbial enhancement of Se biofortification can be summarized in the following four aspects: (1) microbes alter soil properties and impact the redox chemistry of Se to improve the bioavailability of Se in soil; (2) beneficial microbes regulate root morphology and stimulate the development of plants through the release of certain secretions, facilitating Se uptake in plants; (3) microbes upregulate the expression of certain genes and proteins that are related to Se metabolism in plants; and (4) the inoculation of microbes give rise to the generation of certain metabolites in plants contributing to Se absorption. Considering the ecological safety and economic feasibility, microbial enhancement is a potential tool for Se biofortification. For further study, the recombination and establishment of synthesis microbes is of potential benefit in Se-enrichment agriculture.
Collapse
Affiliation(s)
- Dandan Yang
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfeng Li
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yuchen Fei
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yinran Song
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.,Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Diversity of Endophytic Bacteria in Cardamine hupingshanensis and Potential of Culturable Selenium-Resistant Endophytes to Enhance Seed Germination Under Selenate Stress. Curr Microbiol 2021; 78:2091-2103. [PMID: 33772619 DOI: 10.1007/s00284-021-02444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The endophytic bacterial communities of Se hyperaccumulator Cardamine hupingshanensis collected from greenhouse and selenium mining area in Enshi City were investigated by Illumina sequencing technology. In addition, 14 culturable endophytic selenium-resistant strains were isolated and their selenium tolerance and plant growth promotion abilities were studied. The results showed that phylum Proteobacteria predominated in all the plants (> 70%) regardless of their habitats, with most of the OTUs related to Betaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria. Roots harbored many more OTUs and showed higher alpha diversities than the leaves. Both growing environment and specific microflora selection of plants were found to have noticeable effects on endophytic bacterial community structure. The 14 culturable endophytes belonging to 11 bacterial genera were able to resist different levels of selenite and selenate, with their MIC ranges of 10-120 mM and 100-600 mM. Among them, Oceanobacillus and Terribacillus genera were firstly reported for the selenium-tolerant properties of their members. Inoculation experiment revealed that three endophytic strains (CHP07, CHP08, and CHP14) with excellent plant growth-promoting traits were beneficial for growth of Brassica chinensis seeds at germination stage under 0.19 mM selenate stress.
Collapse
|
18
|
Trippe RC, Pilon-Smits EAH. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124178. [PMID: 33068997 PMCID: PMC7538129 DOI: 10.1016/j.jhazmat.2020.124178] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops. Selenium is also a potential toxin at higher concentrations, and multiple environmental disasters over the past 50 years have been caused by Se pollution from agricultural and industrial sources. Phytoremediation by plants able to take up large amounts of Se is an important tool to combat pollution issues. Both biofortification and phytoremediation applications require a thorough understanding of how Se is taken up and metabolized by plants. Selenium uptake and translocation in plants are largely accomplished via sulfur (S) transport proteins. Current understanding of these transporters is reviewed here, and transporters that may be manipulated to improve Se uptake are discussed. Plant Se metabolism also largely follows the S metabolic pathway. This pathway is reviewed here, with special focus on genes that have been, or may be manipulated to reduce the accumulation of toxic metabolites or enhance the accumulation of nontoxic metabolites. Finally, unique aspects of Se transport and metabolism in Se hyperaccumulators are reviewed. Hyperaccumulators, which can accumulate Se at up to 1000 times higher concentrations than normal plants, present interesting specialized systems of Se transport and metabolism. Selenium hyperaccumulation mechanisms and potential applications of these mechanisms to biofortification and phytoremediation are presented.
Collapse
Affiliation(s)
- Richard C Trippe
- Colorado State University, Biology Department, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
19
|
Ouerdane L, Both EB, Xiang J, Yin H, Kang Y, Shao S, Kiszelák K, Jókai Z, Dernovics M. Water soluble selenometabolome of Cardamine violifolia. Metallomics 2020; 12:2032-2048. [PMID: 33165451 DOI: 10.1039/d0mt00216j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Low molecular weight selenium containing metabolites in the leaves of the selenium hyperaccumulator Cardamine violifolia (261 mg total Se per kg d.w.) were targeted in this study. One dimensional cation exchange chromatography coupled to ICP-MS was used for purification and fractionation purposes prior to LC-Unispray-QTOF-MS analysis. The search for selenium species in full scan spectra was assisted with an automated mass defect based filtering approach. Besides selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously unreported compounds. High occurrence of selenium containing hexoses was observed, together with the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most abundant selenium species, selenolanthionine, was carried out with an ion pairing LC - post column isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the total selenium content of the leaf (78 mg (as Se) per kg d.w.).
Collapse
Affiliation(s)
- Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rao S, Yu T, Cong X, Xu F, Lai X, Zhang W, Liao Y, Cheng S. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals candidate genes and pathway involved in selenium metabolism in hyperaccumulator Cardamine violifolia. BMC PLANT BIOLOGY 2020; 20:492. [PMID: 33109081 PMCID: PMC7590678 DOI: 10.1186/s12870-020-02694-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/12/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cardamine violifolia, native to China, is one of the selenium (Se) hyperaccumulators. The mechanism of Se metabolism and tolerance remains unclear, and only limited genetic information is currently available. Therefore, we combined a PacBio single-molecule real-time (SMRT) transcriptome library and the Illumina RNA-seq data of sodium selenate (Na2SeO4)-treated C. violifolia to further reveal the molecular mechanism of Se metabolism. RESULTS The concentrations of the total, inorganic, and organic Se in C. violifolia seedlings significantly increased as the Na2SeO4 treatment concentration increased. From SMRT full-length transcriptome of C. violifolia, we obtained 26,745 annotated nonredundant transcripts, 14,269 simple sequence repeats, 283 alternative splices, and 3407 transcription factors. Fifty-one genes from 134 transcripts were identified to be involved in Se metabolism, including transporter, assimilatory enzyme, and several specific genes. Analysis of Illumina RNA-Seq data showed that a total of 948 differentially expressed genes (DEGs) were filtered from the four groups with Na2SeO4 treatment, among which 11 DEGs were related to Se metabolism. The enrichment analysis of KEGG pathways of all the DEGs showed that they were significantly enriched in five pathways, such as hormone signal transduction and plant-pathogen interaction pathways. Four genes related to Se metabolism, adenosine triphosphate sulfurase 1, adenosine 5'-phosphosulfate reductase 3, cysteine (Cys) desulfurase 1, and serine acetyltransferase 2, were regulated by lncRNAs. Twenty potential hub genes (e.g., sulfate transporter 1;1, Cys synthase, methionine gamma-lyase, and Se-binding protein 1) were screened and identified to play important roles in Se accumulation and tolerance in C. violifolia as concluded by weighted gene correlation network analysis. Based on combinative analysis of expression profiling and annotation of genes as well as Se speciation and concentration in C. violifolia under the treatments with different Na2SeO4 concentrations, a putative Se metabolism and assimilation pathway in C. violifolia was proposed. CONCLUSION Our data provide abundant information on putative gene transcriptions and pathway involved in Se metabolism of C. violifolia. The findings present a genetic resource and provide novel insights into the mechanism of Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, 445000 Hubei China
| |
Collapse
|
21
|
Dai H, Wei S, Twardowska I. Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139648. [PMID: 32927528 DOI: 10.1016/j.scitotenv.2020.139648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Soybean is recognized as one of the most important prospective protein sources for human nutrition under conditions of climate change and population growth. Occurrence of Se and Zn deficiency in vast areas over the globe inhabited by up to 2 billion people, induced search for a comprehensive solution to these problems through the efficient Se/Zn biofortification of soybean seeds (beans). To assess the Se/Zn accumulation efficiency and the physiological status of soybean plants, a pot experiment on Se and Zn enrichment in beans was conducted. It consisted of applying 15 different Se-deficient soil treatments with these elements during the flowering phase, alone or in dose combinations. Application of Se alone, besides Se accumulation in soybean, reduced Zn uptake from soil, but caused alterations in Zn translocation, and its multiple enrichment in beans. Addition of Zn alone promoted both Zn and Se enrichment in beans. Joint Se/Zn application in increasing doses appeared to have a strong synergistic effect on accumulation of these elements in beans and enhanced the physiological functions of the soybean. This manifested itself in the growth of photosynthetic production and soybean biomass, and in the improvement of lipid peroxidation status (REC, MDA and proline content indices). Toxicity symptoms indicated the maximum Se/Zn doses. Several-fold higher contents of Se and Zn in soybean straw compared to spiked soil suggest its possible use as Se/Zn-rich soil amendment in accordance with the circular economy goals. These novel findings may significantly contribute to human health improvement in Se and Zn deficient regions.
Collapse
Affiliation(s)
- Huiping Dai
- Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China; Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, 41-819 Zabrze, Poland.
| |
Collapse
|