1
|
Li Y, Liang H, Yang W, Cheng L, Gao D. Enhanced nitrogen removal and microbial community of the mainstream deammonification treating fluctuating influent C/N wastewater by the novel functional carriers. CHEMOSPHERE 2024; 366:143416. [PMID: 39341392 DOI: 10.1016/j.chemosphere.2024.143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The plug-flow fixed bed reactors with zeolite/tourmaline-modified polyurethane carriers (PFBRZTP) and polyurethane carriers (PFBRPU) were operated to assess the fluctuating influent C/N impact on the system performance and the carrier effect on the enhancing the system operation. Result suggested that fluctuations in influent C/N and variations in operational temperature reduced the removal performance and system stability within PFBRPU. The negative impact of C/N fluctuation could be effectively mitigated by effluent reflux. In contrast, PFBRZTP performance and operational stability of maintained at high level with a greater nitrogen removal rate (0.18 kg N·(m³·d)-1). Redundancy analyses showed that the fluctuations in influent C/N dramatically affected the microbiome structure in PFBRPU, and the leading influencing factor was shifted to the fluctuating amount of influent C/N, which in turn reduced the system performance and stability. ZTP carriers could maintain the balance of main functional bacterial activity and abundance and promote the partial denitrification process with a higher Thauera abundance of 0.48%.
Collapse
Affiliation(s)
- Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; CAUPD (Beijing) Planning & Design Consultants Ltd, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
2
|
Yuan Q, Lou Y, Chen S, Chen Y, Li X, Zhang X, Qian L, Zhang Y, Sun Y. Effect of long-term dosage of hydrazine on mainstream anammox process: Biofilm characteristics and microbial community. CHEMOSPHERE 2024; 363:142968. [PMID: 39074665 DOI: 10.1016/j.chemosphere.2024.142968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
The impact of the long-term trace hydrazine (N2H4) exogenous supplementation on activity of the anaerobic ammonium oxidation (anammox) biofilm was investigated in a moving bed biofilm reactor (MBBR) for mainstream wastewater treatment. The results of this study demonstrated that the addition of 2-5 mg/L N2H4 enhanced anammox biofilm activity, as evidenced by the augmented nitrogen removal rate (NRR), which increased from 113.4 g/(m3·d) to 126.7 g/(m3·d) with the introduction of 2 mg/L N2H4. However, a higher concentration of N2H4 (10 mg/L) suppressed anammox activity, leading to a reduced NRR of 91.5 g/(m3·d). Bioindicators revealed that the long-term addition of 2 mg/L N2H4 fostered the accumulation of anammox bacteria (AnAOB) biomass, elevating the volatile suspended solids (VSS) content by 12%. Moreover, the structural composition of extracellular polymeric substances (EPS) within the biofilm was altered, resulting in enhanced biofilm strength within the reactor. The protective mechanism of the biofilm was activated, and EPS secretion was stimulated by the continuous N2H4 supplementation. The introduction of an excess dosage of N2H4 led to alterations in the microbial communities, ultimately resulting in a decline in the performance of the reactor. These findings collectively illustrate that N2H4, as an intermediate product, can effectively enhance anammox activity within the MBBR for mainstream wastewater treatment. This study contributes to the understanding of the optimization strategies for anammox processes in wastewater treatment systems.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liang Qian
- Thunip Co., Ltd., Beijing, 100084, China.
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
3
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
4
|
Li Y, Liang H, Cheng L, Yang W, Wang P, Gao D. Mainstream deammonification at ambient temperature treating real sewage by a plug-flow fixed-bed reactor based on zeolite/tourmaline-modified polyurethane carriers. BIORESOURCE TECHNOLOGY 2023:129184. [PMID: 37207694 DOI: 10.1016/j.biortech.2023.129184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
A plug-flow fixed-bed reactor (PFBR) with zeolite/tourmaline-modified polyurethane (ZTP) carriers (PFBRZTP) was constructed to realize mainstream deammonification for real domestic sewage treatment. The PFBRZTP and PFBR were operated for 111 days treating aerobically pretreated sewage in parallel. A higher nitrogen removal rate of 0.12 kg N·(m3·d)-1 was achieved in PFBRZTP despite lowering the temperature (16.8-19.7 ℃) and fluctuating water quality. Meanwhile, it was indicated that anaerobic ammonium oxidation dominated (64.0 ±13.2%) in PFBRZTP, by nitrogen removal pathway analysis and high anaerobic ammonium-oxidizing bacteria (AnAOB) activity (2.89 mg N·(g VSS·h)-1). And, the lower protein/polysaccharides (PS) ratio further indicated a better biofilm structure in PFBRZTP owing to a higher abundance of microorganisms relevant to PS and cryoprotective EPS secretion. Furthermore, partial denitrification was an important nitrite supply process in PFBRZTP based on low AOB activity/AnAOB activity ratio, higher Thauera abundance and a remarkably positive correlation between Thauera abundance and AnAOB activity.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
5
|
Wang XP, Wu Q, Wang X, Fan NS, Jin RC. Research advances in application of mainstream anammox processes: Roles of quorum sensing and microbial metabolism. CHEMOSPHERE 2023; 333:138947. [PMID: 37196790 DOI: 10.1016/j.chemosphere.2023.138947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a low-carbon biological nitrogen removal process, that has been widely applied to treat high-strength wastewater. However, the practical application of mainstream anammox treatment is limited due to the slow growth rate of anammox bacteria (AnAOB). Therefore, it is important to provide a comprehensive summary of the potential impacts and regulatory strategies for system stability. This article systematically reviewed the effects of environmental fluctuations on anammox systems, summarizing the bacterial metabolisms and the relationship between metabolite and microbial functional effects. To address the shortcoming of mainstream anammox process, molecular strategies based on quorum sensing (QS) were proposed. Sludge granulation, gel encapsulation and carrier-based biofilm technologies were adopted to enhance the QS function in microbial aggregation and reduction of biomass loss. Furthermore, this article discussed the application and progress of anammox-coupled processes. Valuable insights were provided for the stable operation and development of mainstream anammox process from the perspectives of QS and microbial metabolism.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xin Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Li Y, Liang H, Yang W, Cheng L, Cao J, Wang P, Gao D. Enhanced nitrogen removal in mainstream deammonification systems at ambient temperature by novel modified carriers and differentiation of microbial community transformation. BIORESOURCE TECHNOLOGY 2022; 366:128158. [PMID: 36272683 DOI: 10.1016/j.biortech.2022.128158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zeolite-modified polyurethane (ZP) carriers and zeolite/tourmaline-modified polyurethane (ZTP) carriers were proposed to enhance mainstream deammonification. The system with ZTP carriers was rapidly established in 28 days with a nitrogen removal rate (NRR) of 0.150 kg N·(m3·d)-1. Moreover, the facilitative effect of tourmaline was suggested by the highest humic acid peak intensity and more balanced potential activity. Besides, SEM-EDS analysis revealed carrier characteristic improvement was achieved in both novel carriers while maintaining an excellent spatial structure. Moreover, the microbial analysis suggested that both modified carriers support the substrate supply to anaerobic ammonium oxidizing bacteria (AnAOB) by enhancing dissimilatory nitrate reduction to ammonium and partial denitrification under nitrate accumulation conditions. Nevertheless, the ZTP system had a greater advantage over maintaining the original AnAOB (Candidatus Jettenia) and ammonium oxidizing bacteria (Nitrosomonas) abundance. Overall, this study provides ZTP carriers with great potential for facilitating the establishment of mainstream deammonification at full-scale WWTPs.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiasuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
7
|
Zhang QQ, Liu N, Liu JZ, Yu Y, Fu WJ, Zhao JQ, Jin RC. Decoding the response of complete autotrophic nitrogen removal over nitrite (CANON) performance and microbial succession to hydrazine and hydroxylamine: Linking performance to mechanism. BIORESOURCE TECHNOLOGY 2022; 363:127948. [PMID: 36108938 DOI: 10.1016/j.biortech.2022.127948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The influence of hydrazine (N2H4) and hydroxylamine (NH2OH) on performance and microbial community structures of complete autotrophic nitrogen removal over nitrite (CANON) process were assessed in this study. Experimental results demonstrated that CANON process was successfully started up and got total nitrogen removal efficiency (TNRE) of 53.6 % ± 9.8 % and 56.4 % ± 6.5 % under 1.0 and 0.5 mg L-1 N2H4 and NH2OH, respectively. N2H4 and NH2OH promoted activity of ammonia-oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB), and inhibited activity of nitrite-oxidizing bacteria (NOB). Meanwhile, the stable operation of CANON process could be maintained without N2H4 auxiliary. While, performance assisted by NH2OH was fluctuated without NH2OH addition, suggesting that both N2H4 and NH2OH had a persistent and reversible inhibition on NOB. This study reveals new insights into influence of N2H4 and NH2OH on CANON performance.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| | - Ning Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Ze Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yan Yu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wen-Jing Fu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jian-Qiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Zhang T, Lai Y, Lin W. Design of a ratiometric near-infrared fluorescent probe with double excitation for hydrazine detection in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155462. [PMID: 35504388 DOI: 10.1016/j.scitotenv.2022.155462] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Hydrazine has a wide range of industrial applications, but it is also a toxic and explosive chemical substance, which brings potential risks to human health and environmental safety. Therefore, rapid and sensitive monitoring of hydrazine is of great importance in environmental sciences and biological systems. In this work, a new near-infrared (NIR) ratiometric fluorescent probe (Ac-HY) was designed to detect hydrazine under double excitation and emission mode. Ac-HY exhibited large stokes shift (130 nm), high selectivity and sensitivity to hydrazine detection. The applications of Ac-HY probe for detecting hydrazine in vapor and imaging hydrazine in lipid droplets and zebrafish. Therefore, Ac-HY can be used to monitor the distribution of exogenous hydrazine in vitro and in vivo.
Collapse
Affiliation(s)
- Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
9
|
Xiang T, Liang H, Gao D. Effect of exogenous hydrazine on metabolic process of anammox bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115398. [PMID: 35751243 DOI: 10.1016/j.jenvman.2022.115398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The effect of N2H4 (hydrazine) on AnAOB (anaerobic ammonia oxidizing bacteria) metabolic pattern is unknown. Therefore, the main purpose of this paper was to explore the effects of exogenous N2H4 on the SAA (specific anammox activity), characteristics and metabolic pathway of AnAOB. The results showed that low N2H4 concentration (1-5 mg/L) continuous dosing can promote SAA. The promoting effect was found to be more obvious within the dosage of 3-5 mg/L N2H4. It was also indicated that high N2H4 concentration dosing (5-10 mg/L) can trigger the self-protection mechanism of AnAOB granular sludge by secreting a large amount of B-PN (binding polymeric protein). Intermittent addition of N2H4 at low concentration is conducive to the long-term stable operation of anammox process. Exogenous N2H4 can be directly oxidized by AnAOB to promote the consumption of NO2--N and NH4+-N. In addition, excess electrons can also drive the process of NO3--N reduction and NO2--N disproportionation. Theoretically, these reaction processes need two and ten extra electrons respectively, which is not easy to occur compared with the anammox process.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Liang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
10
|
Zhang Q, Lin JG, Kong Z, Zhang Y. A critical review of exogenous additives for improving the anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155074. [PMID: 35398420 DOI: 10.1016/j.scitotenv.2022.155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anammox achieves chemoautotrophic nitrogen removal under anaerobic and anoxic conditions and is a low-carbon wastewater biological nitrogen removal process with broad application potential. However, the physiological limitations of AnAOB often cause problems in engineering applications, such as a long start-up time, unstable operation, easily inhibited reactions, and difficulty in long-term strain preservation. Exogenous additives have been considered an alternative strategy to address these issues by retaining microbes, shortening the doubling time of AnAOB and improving functional enzyme activity. This paper reviews the role of carriers, biochar, intermediates, metal ions, reaction substrates, redox buffers, cryoprotectants and organics in optimizing anammox. The pathways and mechanisms of exogenous additives, which are explored to solve problems, are systematically summarized and analyzed in this article according to operational performance, functional enzyme activity, and microbial abundance to provide helpful information for the engineering application of anammox.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
Li Y, Xiang T, Liang H, Wang P, Gao D. Achieving rapid mainstream deammonification through inoculating long-term refrigerated sidestream sludge in plug-flow fixed-bed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151415. [PMID: 34742959 DOI: 10.1016/j.scitotenv.2021.151415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The start-up of a stable mainstream deammonification requires sufficient anaerobic ammonia-oxidizing bacteria (AnAOB). This study used a plug-flow fixed-bed reactor (PFBR) to verify the feasibility of establishing the mainstream deammonification system by inoculating the sidestream sludge after long-term refrigeration. A rapid resuscitation of the mainstream deammonification system was accomplished by controlling the front-end aeration rate of the PFBR. Results showed that the system was rapidly resuscitated in 44 days eventually with the nitrogen removal rate and nitrogen removal efficiency of 0.1 kg N·(m3·d)-1 and 79.1%, respectively. Also, the efficient performance was secured by the proportionate approaching equilibrium of AnAOB and ammonia-oxidizing bacteria (AOB) activity of 2.35 ± 0.40 and 2.60 ± 0.29 mg N·(g VSS·h)-1, respectively. In addition, Pearson correlation analysis revealed that AnAOB abundance (detected Candidatus Kuenenia) negatively correlated with the AOB (mainly Nitrosomonas)/AnAOB abundance ratio, while correlated positively with the residual ammonium concentration of a region. Furthermore, long-term refrigeration probably reduced the cross-feed relationship between AnAOB and other symbiotic organisms (Armatimonadetes and Chloroflexi) to maintain the basic metabolism. Meanwhile, extracellular polymeric substances produced by other genera (order Xanthomonadales and Pseudomonadales) decreased the mass transfer, protecting AnAOB from unfavorable conditions, thereby facilitating high AnAOB abundance during refrigeration. Thus, this study provides a promising perspective towards the practical applications of mainstream process.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
12
|
Shi S, Lin Z, Zhou J, Fan X, Huang Y, Zhou J. Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system. BIORESOURCE TECHNOLOGY 2022; 344:126190. [PMID: 34710607 DOI: 10.1016/j.biortech.2021.126190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic biological nitrogen removal will provide low-cost strategies for the treatment of high-temperature nitrogenous wastewater (greater than 45 ℃). In this study, a thermophilic denitrifying granular sludge system was established at 50 ℃ and compared with mesophilic systems (30 ℃ and 40 ℃). The results showed a significant increase in COD and nitrate removal rate with the elevating temperature. Besides, the microbial community analysis indicated an obvious succession of key functional bacteria at different temperatures. Enriched thermophiles including Truepera, Azoarcus, and Elioraea were the dominant denitrifiers in the thermophilic denitrifying granular sludge system, which ensured the high nitrate removal at 50 ℃. Moreover, the functional gene prediction also denoted an enrichment of nitrate reduction genes and carbon metabolism pathways at 50 ℃, which could explain the enhancement of thermophilic denitrification. These findings could provide new insight into the application of denitrifying granular sludge in thermophilic wastewater treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
13
|
Xiang T, Liang H, Gao D. Comparison of recovery characteristics between AnAOB and AOB-AnAOB granular sludge after long-term storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149741. [PMID: 34464807 DOI: 10.1016/j.scitotenv.2021.149741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The recovery characteristics of long-term stored sludge are still elusive. Here, an AnAOB granular sludge reactor (R1) (15 d) was found to recover faster than AOB-AnAOB granular sludge reactor (R2) (21 d) after 240 d 4 °C storage. Higher nitrogen removal performance was also achieved in R1 (5.96 ± 0.14 kg N/(m3·d)) than that of R2 (0.33 ± 0.02 kg N/(m3·d)). It was indicated that more c-di-GMP synthetase was predicted in R1 triggered more amino acid metabolic function genes (Pyruvate kinase and 6-phosphofructokinase) which can secrete more extracellular proteins. Correspondingly, the higher abundance of functional genes related to exopolysaccharide secretion (Glucokinase and UDP-glucose 4-epimerase) trigger by GP6, GP10 and GP16 was found in R2. In addition, some heterotrophic bacteria cooperating with AnAOB (Comamonas and Simplicispira) were found more active in R1 than that of R2 due to the higher relative abundance of functional genes related to folic acid metabolic (Dihydrofolate synthase and Dihydrofolate reductase). However, AOB-AnAOB granular sludge was observed more likely to protect cells through NAD(P)-dependent dehydrogenase. It was indicated that AnAOB granular sludge has better application potential, more active characteristics of aggregation metabolism and collaboration with auxiliary bacteria than that of R2.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
14
|
Cheng B, Bao J, Du J, Tufail H, Xu T, Zhang Y, Mao Q. Application of electric fields to mitigate inhibition on anammox consortia under long-term tetracycline stress. BIORESOURCE TECHNOLOGY 2021; 341:125730. [PMID: 34418843 DOI: 10.1016/j.biortech.2021.125730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The feasibility of applying electric fields to mitigate inhibition of tetracycline (TC) on anammox process and improve system stability was evaluated in this study. Three electric field intensities of 1, 3 and a variable intensity of 1-6 V (VEF) were used to optimize electric field intensity under gradually increasing addition of TC (0.5, 2 and 10 mg L-1). Results showed that the application of electric fields (3 V and VEF) could improve TC tolerance and keep relatively high-efficiency nitrogen removal performance, especially at TC ≥ 2 mg L-1. Furthermore, applying electric fields contributed to mitigate irreversible inhibition and improve the stability of community structure. Underlying mechanism analysis indicated that the main mechanism of applying electric fields to mitigate inhibition relies on sludge structure strengthening. This study explored a novel strategy to reduce the inhibition of antibiotics on microbial denitrification and broaden the application of anammox in industrial water treatment.
Collapse
Affiliation(s)
- Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - JianGuo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Haseeb Tufail
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Xu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
15
|
Xiang T, Liang H, Wang P, Gao D. Insights into two stable mainstream deammonification process and different microbial community dynamics at ambient temperature. BIORESOURCE TECHNOLOGY 2021; 331:125058. [PMID: 33812136 DOI: 10.1016/j.biortech.2021.125058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
How to achieve stable mainstream deammonification is still a huge challenge. In this work, satisfactory nitrogen removal were achieved in a deammonification granular sludge reactor (R1, 0.42 ± 0.03 kg N / (m3·d)) and a mixed flocculent with granular sludge reactor (R2, 0.39 ± 0.04 kg N / (m3·d)) at ambient temperature (21-28 ℃) . The good adaptability of anammox bacteria (Candidatus Jettenia) to ambient temperature ensured its efficient activity (0.84-1.54 mg N/(g VSS·h)). The overexpression ammonia monooxygenase gene abundances in ammonia oxidizing bacteria (Nitrosomonas) was also predicted. The inhibition of hydrazine and the competition of denitrifying bacteria (Denitratisoma) to nitrite nitrogen, leading to a low Nitrospira relative abundances (0.2%-2.1%) . It was also found that R1 was more resistant to the unfavorable condition. For R2, higher Denitratisoma abundances (9.2%-18.5%) and predicted metabolic pathway abundances related to carbon metabolism were observed.
Collapse
Affiliation(s)
- Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- Center for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Center for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
16
|
Wang J, Liang J, Sun L, Shen J, Wang M. Achieving reliable partial nitrification and anammox process using polyvinyl alcohol gel beads to treat low-strength ammonia wastewater. BIORESOURCE TECHNOLOGY 2021; 324:124669. [PMID: 33445011 DOI: 10.1016/j.biortech.2021.124669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, polyvinyl alcohol (PVA) gel beads were used to aid the partial nitrification and anammox process (PN/A) for treating low-strength ammonia wastewater. When treating synthetic and municipal wastewater, the reactor amended with PVA gel beads achieved a total nitrogen removal efficiency of 75.1 ± 8.4% and 66.6 ± 7.0% respectively, while the control reactor without PVA gel beads achieved 63.2 ± 7.8% and 28.2 ± 11.5% respectively. Dissolved oxygen (<0.5 mg O2 L-1) and substrate diffusion in porous PVA gel beads facilitated the formation of microbial stratification in the gel beads. Unclassified Candidatus Brocadiaceae (major anammox bacteria) and Ignavibacterium (major ammonia oxidizing bacteria) enriched in the inside and outside layers of PVA gel beads, which benefited the synergetic cooperation of these bacteria and protecting them from environmental fluctuations. This study provides a promising solution for achieving a reliable PN/A process in mainstream wastewater treatment.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Sun
- China Qiyuan Engineering Corporation, Xi'an 710018, China
| | - Jianqing Shen
- Tong Xiang Small Boss Special Plastic Products Co. Ltd, Tongxiang 314500, China
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Gao D, Xiang T. Deammonification process in municipal wastewater treatment: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 320:124420. [PMID: 33232853 DOI: 10.1016/j.biortech.2020.124420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The deammonification process has been proved to be an efficient nitrogen removal process in treating high NH4+-N concentration wastewater (sidestream deammonification). It is very hopeful to bring WWTP close to energy autarky. However, the feasibility of applying mainstream deammonification to sewage treatment need to be further explored. Therefore, this review attempts to give an overview of challenges in applying mainstream deammonification and to discuss the impacts of unfavorable conditions on main functional species. In addition, some novel control strategies to maintain the dominant position of desired species were summarized. Efficient solution to the conflict between AnAOB (Anaerobic ammonium-oxidizing bacteria) biomass retention and NOB (Nitrite oxidizing bacteria) wash out was also reviewed. Ultimately, we suggested further studies including effective improved process that achieve combination of autotrophy and organotrophy species based on the metabolic diversity of AnAOB.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Wang Y, Tian F, Guo P, Fu D, Heeres HJ, Tang T, Yuan H, Wang B, Li J. Catalytic liquefaction of sewage sludge to small molecular weight chemicals. Sci Rep 2020; 10:18929. [PMID: 33144686 PMCID: PMC7609695 DOI: 10.1038/s41598-020-75980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
The catalytic hydrotreatment of sewage sludge, the wet solid byproducts from wastewater treatment plants, using supported Ir, Pt, Pd, Ru catalysts had been investigated with different solvent conditions. Reactions were carried out in a batch set-up at elevated temperatures (400 °C) using a hydrogen donor (formic acid (FA) in isopropanol (IPA) or hydrogen gas), with sewage sludge obtained from different sampling places. Sewage sludge conversions of up to 83.72% were achieved using Pt/C, whereas the performance for the others catalysts is different and solvent had a strong effect on the conversion rate and product constitution. The sewage sludge oils were characterised using a range of analytical techniques (GC, GC-MS, GCxGC, GPC) and were shown to consist of monomers, mainly alkanes and higher oligomers.
Collapse
Affiliation(s)
- Yuehu Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China. .,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China.
| | - Feihong Tian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Peimei Guo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Dazhen Fu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Hero Jan Heeres
- Chemical Engineering Department, ENTEG, University of Groningen, Nijenborg 4, 9747 AG, Groningen, The Netherlands
| | - Taotao Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Huayu Yuan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.,Observation and Research Station for Guizhou Karst Environmental Ecosystems, Guiyang, 550025, China
| |
Collapse
|