1
|
Lam D, Zhang K, Parolari AJ. Soil, climate, and landscape drivers of base cation concentrations in green stormwater infrastructure soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169907. [PMID: 38185164 DOI: 10.1016/j.scitotenv.2024.169907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Deicing practices and infrastructure weathering can impact plants, soil, and water quality through the input and transport of base cations. Base cation accumulation in green stormwater infrastructure (GSI) soils has the potential to decrease soil infiltration rates and plant water uptake or to promote leaching of metals and nutrients. To understand base cation retention in GSI soils and its drivers, we sampled 14 GSI soils of different age, contributing areas, and infiltration areas, across 3 years. We hypothesized that soil, climate, and landscape drivers explain the spatial and temporal variability of GSI soil base cation concentrations. Sodium (Na), Calcium (Ca), and Magnesium (Mg) concentrations in GSI soils were higher than in reference soils, while Ca and Mg were similar to an urban floodplain soil. Neither the contributing area, contributing impervious area, nor their ratios to infiltration area predicted base cation concentrations. Age predicted the spatial variability of Potassium (K) concentrations. Ca and Mg were moderately predicted by sand and silt, while clay predicted Mg, and sand predicted K. However, no soil characteristics predicted Na concentrations. A subset of sites had elevated Na in Fall 2019, which followed a winter with many freezing events and higher-than-average deicer salt application. K in sites with elevated Na was lower than in non-elevated sites, suggesting that transient spikes of Na driven by deicer salt decreased the ability of GSI soils to accumulate K. These findings demonstrate the large variability of GSI soil base cation concentrations and the relative importance of soil, climate, and landscape drivers of base cation dynamics. High variability in GSI soil data is commonly observed and further research is needed to reduce uncertainties for modeling studies and design. Improved understanding of how GSI soil properties evolve over time, and their relation to GSI performance, will benefit GSI design and maintenance practices.
Collapse
Affiliation(s)
- Duyen Lam
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America
| | - Kun Zhang
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America
| | - Anthony J Parolari
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America.
| |
Collapse
|
2
|
Pahlavan F, Ghasemi H, Yazdani H, Fini EH. Soil amended with Algal Biochar Reduces Mobility of deicing salt contaminants in the environment: An atomistic insight. CHEMOSPHERE 2023; 323:138172. [PMID: 36804634 DOI: 10.1016/j.chemosphere.2023.138172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Soil-based filter media in green infrastructure buffers only a minor portion of deicing salt in surface water, allowing most of that to infiltrate into groundwater, thus negatively impacting drinking water and the aquatic ecosystem. The capacity of the filter medium to adsorb and fixate sodium (Na+) and chloride (Cl-) ions has been shown to improve by biochar amendment. The extent of improvement, however, depends on the type and density of functional groups on the biochar surface. Here, we use density functional theory (DFT) and molecular dynamics (MD) simulations to show the merits of biochar grafted by nitrogenous functional groups to adsorb Cl-. Our group has shown that such functional groups are abundant in biochar made from protein-rich algae feedstock. DFT is used to model algal biochar surface and its possible interactions with Cl- through two possible mechanisms: direct adsorption and cation (Na+)-bridging. Our DFT calculations reveal strong adsorption of Cl- to the biochar surface through hydrogen bonding and electrostatic attractions between the ions and active sites on biochar. MD results indicate the efficacy of algal biochar in delaying chloride diffusion. This study demonstrates the potential of amending soils with algal biochar as a dual-targeting strategy to sequestrate carbon and prevent deicing salt contaminants from leaching into water bodies.
Collapse
Affiliation(s)
- Farideh Pahlavan
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Hamid Ghasemi
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Hessam Yazdani
- Department of Civil and Environmental Engineering, University of Missouri , W1024 Lafferre Hall, MO 65211, Columbia
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
3
|
Marganingrum D, Ismail MFA, Wulan DR. Assessment of shallow groundwater contamination on Pari Island, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:87. [PMID: 36346480 DOI: 10.1007/s10661-022-10649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Freshwater on small islands is generally limited and relies on rainwater and groundwater. This study aimed to assess changes in shallow groundwater quality on Pari Island, Indonesia. Pari Island is a small island with an area of 41.32 ha and belongs to a monsoon climate. Also, being a residential island, it attracts many tourists. The approach was to assess the shallow groundwater quality of ten wells during the dry and wet seasons. Changes in water quality were evaluated using traditional hydrochemical analysis methods (Schoeller, Piper, and Gibbs diagrams) and ion ratios. Shallow groundwater quality in the study area showed different responses depending on the season. Therefore, each well responded differently to changes represented by changes in water quality. The change is controlled by various factors: evaporation (or water balance), geology, aquifer characteristics, tides, wind direction, and wave height. These factors trigger the fluctuation of groundwater and seawater interface, affecting the amount of rainwater and seawater transported to the freshwater aquifer layer. This water volume transported affects the process of rock weathering, dissolution, and dilution of contaminants in shallow groundwater.
Collapse
Affiliation(s)
- Dyah Marganingrum
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, 40135, Indonesia.
| | - Mochamad Furqon Azis Ismail
- Research Center for Climate and Atmosphere, National Research and Innovation Agency, Bandung, 40173, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, 40135, Indonesia
| |
Collapse
|
5
|
Goor J, Cantelon J, Smart CC, Robinson CE. Seasonal performance of field bioretention systems in retaining phosphorus in a cold climate: Influence of prolonged road salt application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146069. [PMID: 33714832 DOI: 10.1016/j.scitotenv.2021.146069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Bioretention systems are popular low impact development stormwater management features designed to remove pollutants, including phosphorus (P), from urban stormwater runoff. While the performance of bioretention systems in retaining P has been well studied, seasonal variability of P retention in field-scale systems installed in cold climates, including the influence of high road de-icing salt (sodium chloride) inputs, remains unclear. Two large field-scale bioretention systems installed in London, Ontario, Canada were monitored over their initial operational period to evaluate the seasonal trends in the retention of different forms of P in bioretention systems and the impact of high salt loading. Over the 12-month monitoring period, a net retention of total P and dissolved organic P, and a net release of soluble reactive P and total dissolved P mass were observed. Reduced hydrological performance and increased effluent P concentrations resulted in high P release from the bioretention systems in early to mid-spring (March and April), with most release occurring during a few individual large precipitation events. Laboratory-scale column experiments were performed using the engineered soil media installed in the field-scale bioretention systems to isolate the effect of high salt loading on P release. Column experiments combined with field data indicate that prolonged high salt loads through winter and spring may have contributed to elevated spring P release, mostly in the form of soluble reactive P, from the field-scale bioretention systems. Findings from this study are needed to better understand the performance of bioretention systems with respect to P retention as required to improve urban stormwater management in cold climates. Results have implications for further investigations of the impact of road salt on P mobility in bioretention systems and more broadly in roadside soils and groundwater systems.
Collapse
Affiliation(s)
- Jaeleah Goor
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada
| | - Julia Cantelon
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada; Department of Geography and Environment, Western University, London, ON N6A 5B9, Canada
| | | | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
6
|
Burgis CR, Hayes GM, Henderson DA, Zhang W, Smith JA. Green stormwater infrastructure redirects deicing salt from surface water to groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138736. [PMID: 32361433 DOI: 10.1016/j.scitotenv.2020.138736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Winter deicing salt application has led to water quality impairment as stormwater carries salt ions (Na+ and Cl-) through watersheds. Green infrastructure (GI) is a promising urban stormwater management practice, but its efficacy in managing salt is unknown. GI is not yet designed to remove salt, but may have potential to mitigate its loading to surface waters. Two roadside infiltration-based GI practices in Northern Virginia (bioretention and bioswale) were monitored year-round over 28 precipitation events to investigate the transport of salt through modern stormwater infrastructure. Stormwater runoff volumes and concentrations of salt ions entering and exiting each GI were monitored to determine reductions of salt ions. Both the bioretention and bioswale significantly reduced effluent surface loads of Cl- and Na+ (76% to 82%), displaying ability to temporarily retain and infiltrate salts and delay their release to surface waters. Changes in bioretention soil chemistry revealed a small percentage of Na+ was stored long-term by ion exchange, but no long-term Cl- storage was observed. Limited soil storage along with groundwater observations suggest the majority of salt removed from stormwater by the bioretention infiltrates into groundwater. Infiltration GI can buffer surface waters from salt, but are also an avenue for groundwater salt loading.
Collapse
Affiliation(s)
- Charles R Burgis
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Gail M Hayes
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Derek A Henderson
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Wuhuan Zhang
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - James A Smith
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States.
| |
Collapse
|
7
|
Kaushal SS, Wood KL, Galella JG, Gion AM, Haq S, Goodling PJ, Haviland KA, Reimer JE, Morel CJ, Wessel B, Nguyen W, Hollingsworth JW, Mei K, Leal J, Widmer J, Sharif R, Mayer PM, Johnson TAN, Newcomb KD, Smith E, Belt KT. Making 'Chemical Cocktails' - Evolution of Urban Geochemical Processes across the Periodic Table of Elements. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2020; 119:1-104632. [PMID: 33746355 PMCID: PMC7970522 DOI: 10.1016/j.apgeochem.2020.104632] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kelsey L Wood
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Joseph G Galella
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Austin M Gion
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Shahan Haq
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Phillip J Goodling
- MD-DE-DC US Geological Survey Water Science Center, 5522 Research Park Drive, Catonsville, Maryland 21228, USA
| | | | - Jenna E Reimer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Carol J Morel
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Barret Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - William Nguyen
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - John W Hollingsworth
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Kevin Mei
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Julian Leal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Jacob Widmer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Rahat Sharif
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - Paul M Mayer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Western Ecology Division, 200 SW 35 Street, Corvallis, Oregon 97333, USA
| | - Tamara A Newcomer Johnson
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | | | - Evan Smith
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kenneth T Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| |
Collapse
|