1
|
Antonio-Gutiérrez O, Solano R, Lagunez-Rivera L. Enhancement of phenolic compounds in vanilla curing with the application of UVC light, microwaves and ultrasound. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2020-2026. [PMID: 39285998 PMCID: PMC11401815 DOI: 10.1007/s13197-024-06061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Short-wave ultraviolet light at 254 nm (UVC light) was evaluated at different doses (0.9, 2.16, 4.50 and 7.16 J/m2) to increase phenolic compounds and analyze its effect on the native microbial flora present on vanilla (Vanilla planifolia) beans (VB). Subsequently, microwave and ultrasound treatments were applied, individually or in combination, at different powers levels (1100 and 600 W) and amplitudes (50 and 90%) during the curing process. In the UVC light treatment, a dose 2.16 J/m2 was the optimal, resulting in a 74% increases in total phenolic compounds (TPC) in VB compared to the control. During the curing process of the irradiated VB, the combination of microwave (600 W) and ultrasound (50% amplitude) resulted in 37.909 ± 0.52 mg GAE/g d.m. of TPC, while non-irradiated pods showed 29.869 ± 0.54 mg GAE/g d.m. at 50 days. This methodology offers several advantages, such as eliminating the need for tedious handling and skilled labor. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06061-6.
Collapse
Affiliation(s)
- Oscar Antonio-Gutiérrez
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, C.P. 71230 México
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, C.P. 71230 México
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, C.P. 71230 México
| |
Collapse
|
2
|
Wang JJ, Zhou YY, Xiang JL, Du HS, Zhang J, Zheng TG, Liu M, Ye MQ, Chen Z, Du Y. Disinfection of wastewater by a complete equipment based on a novel ultraviolet light source of microwave discharge electrodeless lamp: Characteristics of bacteria inactivation, reactivation and full-scale studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170200. [PMID: 38296065 DOI: 10.1016/j.scitotenv.2024.170200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
Ultraviolet (UV) light is widely used for wastewater disinfection. Traditional electrode-excited UV lamps, such as low-pressure mercy lamps (LPUV), encounter drawbacks like electrode aging and rapid light attenuation. A novel UV source of microwave discharge electrodeless lamp (MDEL) has aroused attention, yet its disinfection performance is unclear and still far from practical application. Here, we successfully developed a complete piece of equipment based on MDELs and achieved the application for disinfection in wastewater treatment plants (WWTPs). The light emitted by an MDEL (MWUV) shared a spectrum similar to that of LPUV, with the main emission wavelength at 254 nm. The inactivation rate of Gram-negative E. coli by MWUV reached 4.5 log at an intensity of 1.6 mW/cm2 and a dose of 20 mJ/cm2. For Gram-positive B. subtilis, an MWUV dose of 50 mJ/cm2 and a light intensity of 1.2 mW/cm2 reached an inactivation rate of 3.4 log. A higher MWUV intensity led to a better disinfection effect and a lower photoreactivation rate of E. coli. When inactivated by MWUV with an intensity of 1.2 mW/cm2 and a dose of 16 mJ/cm2, the maximum photoreactivation rate and reactivation rate constant Kmax of E. coli were 0.63 % and 0.11 % h-1 respectively. Compared with the photoreactivation, the dark repair of E. coli was insignificant. The full-scale application of the MDEL equipment was conducted in two WWTPs (10,000 m3/d and 15,000 m3/d). Generally 2-3 log inactivation rates of fecal coliforms in secondary effluent were achieved within 5-6 s contact time, and the disinfected effluent met the emission standard (1000 CFU/L). This study successfully applied MDEL for disinfection in WWTPs for the first time and demonstrated that MDEL has broad application prospects.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Yun-Yi Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Ti-Gang Zheng
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
3
|
Tian Y, Han Z, Su D, Luan X, Yu L, Tian Z, Zhang Y, Yang M. Assessing impacts of municipal wastewater treatment plant upgrades on bacterial hazard contributions to the receiving urban river using SourceTracker. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123075. [PMID: 38052339 DOI: 10.1016/j.envpol.2023.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Upgrading municipal wastewater treatment plants (MWTPs) has been implemented in many megacities of China to reduce the discharges of nutrients and other pollutants and improve water quality of highly urbanized rivers. However, the contribution of MWTP discharge to bacterial hazards in the receiving rivers after upgrades has been largely unknown. In this study, high-throughput sequencing and shotgun metagenomics were applied to investigate the changes in the abundance, composition, potential risks, and contributions of bacteria and antibiotic resistance genes (ARGs) from effluent to receiving river after upgrading the third-largest MWTP in China with denitrification biofilters, ultrafiltration, ozonation, and disinfection processes. The annual loadings of total nitrogen and 27 types of pharmaceuticals were reduced by 42.4% ± 13.2% and 46.2% ± 15.4%, respectively. Bacterial biomass decreased from (3.58 ± 0.49) to (1.23 ± 0.27) × 107 16S rRNA gene copies/mL, and identified biomarkers in effluent and downstream shifted due to the adopted processes. Opportunistic pathogen bacteria downstream were also reduced. Although the relative abundance of total ARGs in MWTP effluent increased from 1.10 ± 0.02 to 2.19 ± 0.03 copies/16S rRNA gene after upgrades, that of total and high-risk ARGs downstream showed no significant difference. More importantly, the Bayesian-based SourceTracker method provided valuable insight by revealing that the contributions of MWTP discharge to downstream bacteria (from 44.2% ± 1.5%-31.4% ± 0.9%) and ARGs (from 61.2% ± 5.3%-47.6% ± 4.1%) were significantly reduced following the upgrades, indicating upgrading MWTP showed integrated benefits to the bacterial hazards in the receiving river. This study provides useful information for better control of bacterial hazard risks and operational strategy for the improvement of the urban aquatic ecosystem.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Du Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lina Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Sun YG, Wang HB, Wu YH, Cao KF, Chen Z, Ikuno N, Koji N, Hu HY. High-efficiency and low-carbon inactivation of UV resistant bacteria in reclaimed water by flow-through electrode system (FES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166297. [PMID: 37595918 DOI: 10.1016/j.scitotenv.2023.166297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.
Collapse
Affiliation(s)
- Yi-Ge Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
5
|
Tchonkouang RD, Lima AR, Quintino AC, Cristofoli NL, Vieira MC. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023; 12:3227. [PMID: 37685160 PMCID: PMC10486447 DOI: 10.3390/foods12173227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Alexandre R. Lima
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Andreia C. Quintino
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Nathana L. Cristofoli
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Margarida C. Vieira
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
- Department of Food Engineering, High Institute of Engineering, Universidade do Algarve, Campus da Penha, 8000-139 Faro, Portugal
| |
Collapse
|
6
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Ma D, Weir MH, Hull NM. Fluence-based QMRA model for bacterial photorepair and regrowth in drinking water after decentralized UV disinfection. WATER RESEARCH 2023; 231:119612. [PMID: 36706469 DOI: 10.1016/j.watres.2023.119612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet disinfection is a promising solution for decentralized drinking water systems such as communal water taps. A potential health risk is enzymatic photorepair of pathogens after UV disinfection, which can result in regrowth of pathogens. Even though photorepair is a known issue, no formal risk assessments have been conducted for photorepair after UV disinfection in drinking water. The main objective was to construct a quantitative microbial risk assessment (QMRA) of photorepair after UV disinfection of drinking water in a decentralized system. UV disinfection and photorepair kinetics for E. coli were modelled using reproducible fluence-based determinations. Impacts of water collection patterns, and wavelength-dependent water container material transmittance, sunlight intensity, and photorepair enzyme absorbance were quantified. After UV disinfection by 16 or 40 mJ/cm2 of < 5-log microorganisms per L, risk of infection did not exceed 1-in-10,000 under conditions permitting E. coli photorepair. Risk from photorepair was less than 1-in-10,000 for photorepair light exposure < 0.75 h throughout the day for UV fluence 16 mJ/cm2 or greater. UV disinfection followed by solar disinfection surpassing photoreactivation during storage reduced risk below 1-in-10,000 for photorepair light exposure > 2.5 h between modelled times of 9 AM - 3 PM. The model can be expanded to other pathogens as UV fluence and photorepair fluence response kinetics become available, and this QMRA can be used to inform the placement of community water access points to reduce risk of photorepair and ensure adequate shelf life of UV disinfected water under safe storage conditions.
Collapse
Affiliation(s)
- Daniel Ma
- College of Engineering, Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Mark H Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Natalie M Hull
- College of Engineering, Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA; Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li X, Huang G, Li Y, Chen X, Yao Y, Liang Y, Huang J, Zhao K, Yin J. Low-Cost ceramic disk filters coated with Graphitic carbon nitride (g-C3N4) for drinking water disinfection and purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yang Z, Liu P, Wei H, Li H, Li J, Qiu X, Ding R, Guo X. Alteration in microbial community and antibiotic resistance genes mediated by microplastics during wastewater ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153918. [PMID: 35189224 DOI: 10.1016/j.scitotenv.2022.153918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) could be as a vector to colonize microorganisms and antibiotic resistance gene (ARGs) in surface water. However, little information is known regarding their changes by the presence of MPs in wastewater treatment. Here, the effects of different concentrations and sizes of polystyrene microplastics (PSMPs) on the distribution and removal of microbial communities and ARGs under ultraviolet disinfection of urban sewage have been systematically studied. Results showed that the presence of MPs altered abundance and functions of microorganisms in wastewater, despite different effects on different types of microorganisms. The most abundant ARGs in original disinfection tank sewage was rpoB2 (6.34%). A certain concentration range of MPs can improve the ability of specific types of ARGs in the UV disinfection process. Compared to the system without PSMPs, the content of Deinococcus-Thermus and Bacteroidetes phylum increased, while Actinobacteria and Proteobacteria phylum decreased in the presence of MPs. The microbial functions, especially the genetic information processing and metabolism were altered by the presence of PSMPs. In addition, PSMPs altered the content of ARGs, where the contents of OXA-182 and ErmH were increased, while adeF and ANT3-Iic were decreased. PSMPs also decreased the free ARB content in wastewater by providing colonization sites. The UV disinfection efficiency of microorganisms and ARGs was also intervened by PSMPs since they provided colonization sites and increased the water turbidity. The findings indicated that PSMPs altered the distribution and removal of microbial community and ARGs in ultraviolet disinfection of wastewater, highlighting the combined risks.
Collapse
Affiliation(s)
- Zeyuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Haoyu Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Sayinli B, Dong Y, Park Y, Bhatnagar A, Sillanpää M. Recent progress and challenges facing ballast water treatment - A review. CHEMOSPHERE 2022; 291:132776. [PMID: 34742764 DOI: 10.1016/j.chemosphere.2021.132776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The transoceanic movement of non-indigenous microorganisms and organic and inorganic contaminants through the transfer of ballast water of ocean-going vessels can be considered highly likely. The introduction of contaminants and non-indigenous microorganisms can cause changes in indigenous microorganisms, marine species, and biota, which can create problems for the ecology, economy, environment, and human health. This paper compiles and presents ballast water treatment system concepts, principles of inactivation mechanisms used, and the advantages and challenges of the treatment technologies. In addition, the paper aims to draw attention to the relationship between various organisms and the individual mechanism to be inactivated, including the effect of external factors (e.g., pH, salinity, turbidity) on inactivation efficiency. This review can assist in the choice of a suitable ballast water treatment system, taking into account the water conditions (e.g., pH, temperature, salinity) and indigenous species of the maritime areas where the ships intend to operate. This review also provides information describing the responses of the various organisms to different treatment techniques.
Collapse
Affiliation(s)
- Burcu Sayinli
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland; Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland
| | - Yujiao Dong
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Finland
| | - Yuri Park
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland; Institute of Environmental Technology, Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
| | - Amit Bhatnagar
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Feng W, Liu Y, Gao L. Stormwater treatment for reuse: Current practice and future development - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113830. [PMID: 34600425 DOI: 10.1016/j.jenvman.2021.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Stormwater harvesting is an effective measure to mitigate flooding risk and pollutant migration in our urban environment with the continuously increasing impermeable faction. Treatment of harvested stormwater also provides the fit-for-purpose water sources as an alternative to potable water supply ensuring the reliability and sustainability of the water management in the living complex. In order to provide the water management decision-maker with a broad range of related technology database and to facilitate the implementation of stormwater harvesting in the future, a comprehensive review was undertaken to understand the corresponding treatment performance, the applicable circumstances of current stormwater treatment and harvesting technologies. Technologies with promising potential for stormwater treatment were also reviewed to investigate the feasibility of being used in an integrated process. The raw stormwater quality and the required quality for different levels of stormwater reuses (irrigation, recreational, and potable) were reviewed and compared. The required level of treatment is defined for different 'fit-for-purpose' uses of harvested stormwater. Stormwater biofilter and constructed wetland as the two most advanced and widely used stormwater harvesting and treatment technologies, their main functionality, treatment performance and adequate scale of the application were reviewed based on published peer-reviewed articles and case studies. Excessive microbial effluent that exists in stormwater treated using these two technologies has restricted the stormwater reuse in most cases. Water disinfection technologies developed for wastewater and surface water treatment but with high potential to be used for stormwater treatment have been reviewed. Their feasibility and limitation for stormwater treatment are presented with respect to different levels of fit-for-purpose reuses. Implications for future implementation of stormwater treatment are made on proposing treatment trains that are suitable for different fit-for-purpose stormwater reuses.
Collapse
Affiliation(s)
- Wenjun Feng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yue Liu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Li Gao
- Institute of Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia; South East Water Corporation, Seaford, VIC, 3198 Australia.
| |
Collapse
|
13
|
Wang HB, Wu YH, Luo LW, Yu T, Xu A, Xue S, Chen GQ, Ni XY, Peng L, Chen Z, Wang YH, Tong X, Bai Y, Xu YQ, Hu HY. Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. WATER RESEARCH 2021; 204:117606. [PMID: 34500181 PMCID: PMC8390064 DOI: 10.1016/j.watres.2021.117606] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 05/19/2023]
Abstract
The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, PR China
| | - Ao Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou Jiangsu 215163, PR China
| | - Song Xue
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Lu Peng
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
14
|
Chen GQ, Wu YH, Wang YH, Chen Z, Tong X, Bai Y, Luo LW, Xu C, Hu HY. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125283. [PMID: 33582467 DOI: 10.1016/j.jhazmat.2021.125283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial extracellular polymeric substances (EPS) have a profound role in various wastewater treatment and reclamation processes, in which a variety of technologies are used for disinfection and microbial growth inhibition. These treatment processes can induce significant changes in the quantity and properties of EPS, and altered EPS could further adversely affect the wastewater treatment and reclamation system, including membrane filtration, disinfection, and water distribution. To clarify the effects of microbial inactivation approaches on EPS, these effects were classified into four categories: (1) chemical reactions, (2) cell lysis, (3) changing EPS-producing metabolic processes, and (4) altering microbial community. Across these different effects, treatments with free chlorine, methylisothiazolone, TiO2, and UV irradiation typically enhance EPS production. Among the residual microorganisms in EPS matrices after various microbial inactivation treatments, one of the most prominent is Mycobacterium. With respect to EPS properties, proteins and humic acids in EPS are usually more susceptible to treatment processes than polysaccharides. The affected EPS properties include changes in molecular weight, hydrophobicity, and adhesion ability. All of these changes can undermine wastewater treatment and reclamation processes. Therefore, effects on EPS quantity and properties should be considered during the application of microbial inactivation and growth inhibition techniques.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xing Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
15
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. CHEMOSPHERE 2021; 274:129957. [PMID: 33979920 PMCID: PMC8121763 DOI: 10.1016/j.chemosphere.2021.129957] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
16
|
Causes, Factors, and Control Measures of Opportunistic Premise Plumbing Pathogens—A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.
Collapse
|