1
|
Shi Y, Li L, Zhang WX, Li S. Depassivation of Zero-Valent Iron through Continuous Surface Renewal with Mechanochemical Processing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40367207 DOI: 10.1021/acs.est.5c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Zero-valent iron (ZVI) is a solid reductant that can react with a wide array of contaminants; however, its effectiveness is significantly reduced by the surface passivation layer formed on its surface. This study introduces mechanochemical depassivation to revitalize passivated ZVI and restore its reactivity. The method is exemplified through mechanical milling to depassivate ZVI with different passivation layers formed in solutions containing Cr(VI), Ni(II), and/or trichloroethylene, as well as in a complex water matrix. The results demonstrate rapid restoration of ZVI reactivity within 10 min of milling, achieving a 7-fold increase in contaminant removal capacity after eight cycles. The method universally outperforms acid pickling and ultrasonication across all of the tested passivation scenarios. Mechanistic analysis attributes its efficacy to the ductile-brittle disparity between the metallic iron and the passivation layers: brittle passivation layers fragment under mechanical stress, while ductile iron resists structural damage. Discrete element method simulations provide further mechanical insights into the milling dynamics and identify the contact frequency as the key factor determining depassivation efficiency. The study provides a versatile, environmentally benign, and effective depassivation method for ZVI reactions that can be integrated into ZVI reuse processes for water treatment applications.
Collapse
Affiliation(s)
- Yuxiang Shi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shaolin Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Shi J, Tang L, Shen Z, Deng L, Liu X. Removal of hexavalent chromium from wastewater by chelating resin supported Fe/Cu bimetallic nanoparticles: Characterization, performance and mechanisms. PLoS One 2025; 20:e0318180. [PMID: 40100899 PMCID: PMC11918381 DOI: 10.1371/journal.pone.0318180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/10/2025] [Indexed: 03/20/2025] Open
Abstract
In this work, Bimetallic Fe/Cu nanoparticles were successfully stabilized by chelating resin, which was specifically employed for the remediation of hexavalent chromium contaminated wastewater. Based on the characterization results, it was observed that the Fe/Cu bimetallic nanoparticles were uniformly and well distributed on the surface of the resin DOW M4195. The results demonstrated that the supported bimetallic Fe/Cu nanoparticles exhibited an excellent performance for Cr(VI) removal efficiency, reaching up to 99.4%. A series of factors, including initial pH, initial concentration of Cr(VI), co-exciting ions and humic acid were systematically evaluated to ascertain their respective impacts on Cr(VI) removal. The kinetics study followed intra-particle diffusion model demonstrated that both the adsorption and diffusion processes of Cr(VI) by the DOW M4195 resin played an important role in the overall removal of Cr(VI). The analytical results derived from XPS spectra at specific reaction times revealed the underlying removal mechanism of Cr(VI): Cr(VI) was adsorbed onto M-Fe/Cu due to the rich porous structure of the chelating resin DOW M4195. Additionally, the presence of the second metal, Cu, was found to significantly enhance the reduction performance of Fe0 and Fe(II) during the Cr(VI) removal process. The Cr(VI) removal mechanism was determined to involve a combination of physical adsorption, redox reactions and co-precipitation.
Collapse
Affiliation(s)
- Jialu Shi
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang, China
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Li Tang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, China
| | - Zhanhui Shen
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang, China
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Linan Deng
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang, China
| | - Xintong Liu
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
3
|
Shao T, Yin Q, Bai J, Zhu J, Gan M. Adsorption and catalytic reduction of hexavalent chromium based on nanomaterials: A review on metal, metallic oxide, metallic sulfide and carbon-based catalyst. ENVIRONMENTAL RESEARCH 2025; 266:120449. [PMID: 39613018 DOI: 10.1016/j.envres.2024.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Chromium (Cr) is widely recognized as a significant environmental contaminant and a major contributor to global pollution. As a result, there is a strong emphasis on developing effective methods for the removal and reduction of Cr(VI). This review examines various applications of nanomaterial catalysts, including metallic oxides, metals, metallic sulfides, and carbon-based materials. These materials encompass naturally occurring substances, synthetically produced compounds, and artificially modified forms, all of which typically exhibit favorable adsorption properties and catalytic activity. We systematically summarize the mechanisms of adsorption and catalytic reduction associated with these nanomaterials, including photocatalysis, electrocatalysis, and direct catalysis. Finally, we explore the future directions and prospects of nanomaterials in environmental remediation, highlighting the key challenges that must be addressed in this field.
Collapse
Affiliation(s)
- Tianwen Shao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; National Research Center for Geoanalysis and Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, China
| | - Qi Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; National Research Center for Geoanalysis and Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, China
| | - Jingyan Bai
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; National Research Center for Geoanalysis and Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; National Research Center for Geoanalysis and Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, China.
| |
Collapse
|
4
|
Hammad EN, Eltaweil AS, Abouelenein SA, El-Subruiti G. Enhanced Cr(VI) removal via CPBr-modified MIL-88A@amine-functionalized GO: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47851-47865. [PMID: 39009817 DOI: 10.1007/s11356-024-33859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024]
Abstract
Water contamination by heavy metals, especially chromium (VI), poses a critical environmental issue due to its carcinogenic nature and persistence in the environment. Addressing this, the current study develops an efficient adsorbent, CPBr-MIL-88A@AmGO, which utilizes the synergistic capabilities of Cetylpyridinium bromide-modified MIL-88A and amine-functionalized graphene oxide to enhance Cr(VI) removal from aqueous solutions. The obtained results indicate that CPBr-MIL-88A@AmGO achieves its highest removal efficacy at pH 2, where the interaction of CPBr and AmGO's positively charged centers significantly contributes to the adsorption processes. According to the Langmuir isotherm model, the composite's adsorption capacity reached a maximum of 306.75 mg/g. The adsorption kinetics adhered to a pseudo-second-order model along with the endothermic nature of the process. Although the presence of SO42- ions significantly reduces adsorption capacity, other interfering ions including Na+, K+, Ca2+, Cl-, and NO3- only slightly affect it. Remarkably, the composite maintains high removal efficiency, over 82%, even after 7 recycling tests, underscoring its potential for practical applications in water treatment systems. The proposed mechanism involves the contribution of electrostatic attractions, ion exchange, complexation, and the reduction of Cr(VI) to Cr(III) in the removal process. This study not only offers a potent solution for Cr(VI) remediation but also contributes to sustainable water resource management.
Collapse
Affiliation(s)
- Eman N Hammad
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, Ibra, Oman.
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Saeyda A Abouelenein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gehan El-Subruiti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Zhou B, Fan B, Gong Z, Shao S, Zhou D, Gao S. Optimized preparation of Ni-Fe bm bimetallic particles by ball milling NiSO 4 and iron powder for efficient removal of triclosan. CHEMOSPHERE 2024; 360:142359. [PMID: 38782133 DOI: 10.1016/j.chemosphere.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 μM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.
Collapse
Affiliation(s)
- Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Shahnazarova G, Al Hoda Al Bast N, Ramirez JC, Nogues J, Esteve J, Fraxedas J, Serra A, Esplandiu MJ, Sepulveda B. Fe/Au galvanic nanocells to generate self-sustained Fenton reactions without additives at neutral pH. MATERIALS HORIZONS 2024; 11:2206-2216. [PMID: 38415289 DOI: 10.1039/d3mh01935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The generation of reactive oxygen species (ROS) via the Fenton reaction has received significant attention for widespread applications. This reaction can be triggered by zero-valent metal nanoparticles by converting externally added H2O2 into hydroxyl radicals (˙OH) in acidic media. To avoid the addition of external additives or energy supply, developing self-sustained catalytic systems enabling onsite production of H2O2 at a neutral pH is crucial. Here, we present novel galvanic nanocells (GNCs) based on metallic Fe/Au bilayers on arrays of nanoporous silica nanostructures for the generation of self-sustained Fenton reactions. These GNCs exploit the large electrochemical potential difference between the Fe and Au layers to enable direct H2O2 production and efficient release of Fe2+ in water at neutral pH, thereby triggering the Fenton reaction. Additionally, the GNCs promote Fe2+/Fe3+ circulation and minimize side reactions that passivate the iron surface to enhance their reactivity. The capability to directly trigger the Fenton reaction in water at pH 7 is demonstrated by the fast degradation and mineralization of organic pollutants, by using tiny amounts of catalyst. The self-generated H2O2 and its transformation into ˙OH in a neutral environment provide a promising route not only in environmental remediation but also to produce therapeutic ROS and address the limitations of Fenton catalytic nanostructures.
Collapse
Affiliation(s)
- Gubakhanim Shahnazarova
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
- Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Nour Al Hoda Al Bast
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
- Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jessica C Ramirez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
- Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Josep Nogues
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jaume Esteve
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona, 08193, Spain.
| | - Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
| | - Albert Serra
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria J Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
| | - Borja Sepulveda
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona, 08193, Spain.
| |
Collapse
|
7
|
Chen W, Li B, Yin W, Zeng W, Li P, Wu J. Promoted iron corrosion and subsequent hexavalent chromium removal in zero-valent iron systems by oxidant activation. CHEMOSPHERE 2024; 352:141391. [PMID: 38325615 DOI: 10.1016/j.chemosphere.2024.141391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Zero-valent iron (ZVI), as an effective medium, is widely used to eliminate heavy metal ions in filter tanks. However, it will react with Cr(VI) to generate Fe-Cr precipitates with low conductivity on its surface, resulting in slow iron corrosion and low Cr(VI) removal efficiency. In this study, three oxidants (KMnO4, NaClO, and Na2S2O8) were employed to promote iron corrosion in ZVI systems for enhanced Cr(VI) removal at a concentration of 5 mg/L through batch tests and column experiments. The ZVI/KMnO4, ZVI/NaClO, and ZVI/Na2S2O8 systems achieved significantly higher Cr(VI) removal rates of 31.5%, 52.8%, and 65.9% than the ZVI system (9.8%). Solid phase characterization confirmed that these improvements were attributed to promoted iron corrosion and secondary mineral formation (e.g., lepidocrocite, ferrihydrite, and magnetite) by oxidants. Those minerals offered more reaction sites for Cr(VI) reduction, adsorption, and sequestration. Cycle experiments indicated that ZVI/oxidant systems could stably remove Cr(VI). In long-term column experiment, the ZVI/NaClO column showed a much longer life-span and exhibited a 34.8 times higher Cr(VI) removal capacity than that of the ZVI column. These findings demonstrated that ZVI in combination with a reasonable amount of oxidants was a promising method for removing Cr(VI) in practical filter tanks and provided a new insight to enhance Cr(VI) removal.
Collapse
Affiliation(s)
- Weiting Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Weilong Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
9
|
Liu L, Ruan X, Liu H, Fan X, Dong J. Dechlorination of 2,4-dichlorophenol by Fe/Ni nanoparticles: the pathway and the effect of pH and the Ni mass ratio. ENVIRONMENTAL TECHNOLOGY 2023; 44:3676-3684. [PMID: 35442165 DOI: 10.1080/09593330.2022.2068383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTThe dechlorination of 2,4-dichlorophenol (2,4-DCP) by a nanoscale Fe/Ni material was investigated at room temperature. 2,4-DCP can be removed more quickly by an Fe/Ni material with 2% Ni. Fe/Ni exhibited excellent adsorption and reduction efficiency toward 2,4-DCP in an aqueous solution over a wide range of pH values. The removal rate of 2,4-DCP exceeded 95% in 60 min in the pH range of 3.0-9.0, and more than 75% was dechlorinated to phenol (CA). The degradation pathway of 2,4-DCP was confirmed based on analysis of the intermediate and end products. A portion of 2,4-DCP was first dechlorinated with a chlorine atom to produce 2-chlorophenol and 4-chlorophenol, and then dechlorination was performed sequentially to form CA. The other portion of 2,4-DCP was dechlorinated to remove two chlorine atoms simultaneously to generate CA. The investigations are essential to the application of iron-based remediation technology.
Collapse
Affiliation(s)
- Lujian Liu
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| | - Xia Ruan
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| | - Hong Liu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xianyuan Fan
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Dong
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| |
Collapse
|
10
|
Chen A, Huang Y, Liu H. Fabrication of Chitin microspheres supported sulfidated nano zerovalent iron and their performance in Cr (VI) removal. CHEMOSPHERE 2023; 338:139609. [PMID: 37482322 DOI: 10.1016/j.chemosphere.2023.139609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has been extensively studied for the reductive removal of Cr(VI), but its applicability is limited by agglomeration and unexpected efficiency reduction. In this study, chitin microsphere supported sulfidated nanoscale zero-valent iron (S-nZVI@Chi-M) was prepared by in-situ one-step reduction method and used to remove Cr(VI) from water. Compared to chitin and chitosan powder, Chi-M with nanofibrous structure and large surface area performed best in stabilizing S-nZVI with a Fe0 loading content of 3.01 wt%. The S-nZVI particles were homogeneously distributed on the surface of Chi-M, effectively avoiding agglomeration. Compared with bare nanoparticles and supported nZVI, S-nZVI@Chi-M showed significantly enhanced Cr(VI) removal capacity (924.5 mg Cr(VI) for per gram of effective Fe0). The influences of sulfidation degree, dosages, initial Cr(VI) concentration, pH, DO, humic acid and typical ions on Cr(VI) removal kinetics were further studied. S-nZVI@Chi-M could be recycled for at least 4 times with acceptable reactivity. The mechanism investigation results indicated that the Cr(VI) removal was a complex process of reduction, adsorption and co-precipitation under the synergistic effect of Chi-M and S-nZVI. This work provides new ideas for the continuous fabrication of highly reactive nanoparticles, hopefully expanding the application scope of biomass resources in pollution remediation.
Collapse
Affiliation(s)
- Aikui Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
11
|
Campisi S, Leone M, Papacchini M, Evangelisti C, Polito L, Postole G, Gervasini A. Multifunctional interfaces for multiple uses: Tin(II)-hydroxyapatite for reductive adsorption of Cr(VI) and its upcycling into catalyst for air protection reactions. J Colloid Interface Sci 2023; 630:473-486. [PMID: 36334484 DOI: 10.1016/j.jcis.2022.10.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
Abstract
Evidence collected to date by our group has demonstrated that tin(II)-functionalized hydroxyapatites (Sn/HAP) are a newly discovered class of ecofriendly reductive adsorbents for Cr(VI) removal from wastewaters. In this work an upgraded series of Sn/HAP materials assured a maximum removal capacity of ≈ 20 mgCr/g, doubling the previously reported value for Sn/HAP materials, thanks to higher Sn-dispersion as proved by X-ray photoelectron spectroscopy and electron microscopy. Insights on kinetics and thermodynamics of the reductive adsorption process are provided and the influence of pH, dosage, and nature of Cr(VI) precursors on chromium removal performances have been investigated. Pseudo-second-order kinetics described the interfacial reductive adsorption process on Sn/HAP, characterized by low activation energy (21 kJ mol-1), when measured in the 278-318 K range. Tests performed in the 2-6 pH interval showed similar efficiency in terms of Cr(VI) removal. Conventional procedures of recycling and regeneration resulted ineffective in restoring the pristine performances of the samples due to surface presence of both Sn(IV) and Cr(III). To overcome these weaknesses, the used samples (Sn + Cr/HAP) were upcycled into catalysts in a circular economy perspective. Used samples were tested as catalysts in gas-phase catalytic processes for air pollution remediation: selective catalytic reduction of NOx (NH3-SCR), NH3 selective catalytic Oxidation (NH3-SCO), and selective catalytic oxidation of methane to CO2. Catalytic tests enlightened the interesting activity of the upcycled Sn + Cr/HAP samples in catalytic oxidation processes, being able to selectively oxidize methane to CO2 at relatively low temperature.
Collapse
Affiliation(s)
- Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| | - Mirko Leone
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Evangelisti
- CNR - ICCOM - Istituto di Chimica dei Composti OrganoMetallici, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Laura Polito
- CNR - Consiglio Nazionale delle Ricerche, SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Georgeta Postole
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Antonella Gervasini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
12
|
Shen H, Zhong D, Xu Y, Chang H, Wang H, Xu C, Mou J, Zhong N. Polyacrylate stabilized ZVI/Cu bimetallic nanoparticles for removal of hexavalent chromium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5847-5860. [PMID: 35984560 DOI: 10.1007/s11356-022-22609-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, a magnetic core-shell composite zero-valent iron/copper-polyacrylate (ZVI/Cu-PAA) was synthesized by a simple liquid-phase reduction process and used for hexavalent chromium Cr(VI) removal from wastewater. The optimization experiments show that the optimal dosages of polyacrylate and Cu are 7.00 wt% and 8.25 wt%, respectively. The maximum adsorption capacity and removal rate of Cr(VI) by ZVI/Cu-PAA reached 106.12 mg g-1 and 99.05% at pH 5.5, respectively. Furthermore, the presence of coexisting ions such as Ca2+, Mg2+, Na+, and NO3- had no significant effect on its Cr(VI) removal performance. The excellent performance of ZVI/Cu-PAA is attributed to that the modification of polyacrylate can not only give more active sites but also inhibit agglomeration of nano-metallic particles, while Cu doping promotes the electron generation and transformation of Fe(III)/Fe(II) and Cu(II)/Cu(I) redox cycles. This makes ZVI/Cu-PAA has rich active sites and excellent stability, and has broad application prospects in the remediation of Cr (VI) polluted wastewater. The magnetic core-shell composite ZVI/Cu-PAA has excellent Cr (VI) removal performance because of its rich active sites and high electron transformation efficiency.
Collapse
Affiliation(s)
- Hongyu Shen
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Haixing Chang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui Wang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunzi Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiaxing Mou
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
13
|
Ultrasmall FeMoNi Tri-Metal Nanoparticles Confined by Tannic Acid-Derived Carbon as Bi-Functional Electrocatalyst for Oxygen Evolution and Urea Oxidation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Wang S, Zhong D, Xu Y, Zhong N. Adsorption and Reductive Removal of Hexavalent Chromium from Aqueous Solution by Nanoscale Iron‐modified Dual Surfactants. ChemistrySelect 2022. [DOI: 10.1002/slct.202201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Wang
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Dengjie Zhong
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yunlan Xu
- Prof. Dr. School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Nianbing Zhong
- Prof. Dr. School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing 400054 China
| |
Collapse
|
15
|
Su J, Jin X, Chen H, Xue F, Li J, Yang Q, Yang Z. Constructing Ni 4/Fe@Fe 3O 4-g-C 3N 4 nanocomposites for highly efficient degradation of carbon tetrachloride from aqueous solution. CHEMOSPHERE 2022; 307:136169. [PMID: 36037964 DOI: 10.1016/j.chemosphere.2022.136169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Catalytic hydrodechlorination is one of the most potential remediation methods for chlorinated organic pollutants. In this study, Ni4/Fe@Fe3O4-g-C3N4 (NFFOCN) nanocomposites were synthesized for carbon tetrachloride (CT) removal and characterized by SEM, XPS and FTIR. The characterization results demonstrated that the special functional groups of g-C3N4, especially NH groups, effectively alleviated the aggregation of nanoparticles. In addition, the C and N groups of g-C3N4 enhanced the catalytic dechlorination of CT by providing binding sites. The experimental results showed that NFFOCN could effectively remove CT over a wide initial pH range of 3-9, and the CT removal efficiency reached 94.7% after 35 min with only 0.15 g/L of NFFOCN at pH 5.5. The Cl-, SO42-, and HCO3- promoted the removal of CT, while HA and NO3- had the opposite effect. Furthermore, good sequential CT removal by NFFOCN nanocomposites was observed, and the CT removal efficiency reached 77.3% after four cycles. Based on the identification of products, a possible degradation pathway of CT was proposed. Moreover, the main mechanisms regarding CT removal included the direct reduction of nZVI (about 40.51%), adsorption (around 34.79%), and hydrodechlorination of CT by Ni0 using H2 (about 19.40%).
Collapse
Affiliation(s)
- Junjie Su
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Xin Jin
- Department of Architecture and Civil Engineering, West Anhui University, Liu An, 237012, PR China.
| | - Hai Chen
- CGN Dasheng Technology Co., Ltd., Suzhou, 215214, PR China.
| | - Fenglan Xue
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China; Beijing Drainage Equipment Co., Ltd., Beijing 100176, PR China.
| | - Jingran Li
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Zhilin Yang
- Department of Biological and Agricultural Engineering, Texas A&M University, 126 Hobgood, 2117 TAMU, College Station, TX, 77843-2117, USA.
| |
Collapse
|
16
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
17
|
Xing X, Ren X, Alharbi NS, Chen C. Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Xing X, Ren X, Alharbi NS, Chen C. Efficient adsorption and reduction of Cr(VI) from aqueous solution by Santa Barbara Amorphous-15 (SBA-15) supported Fe/Ni bimetallic nanoparticles. J Colloid Interface Sci 2022; 629:744-754. [DOI: 10.1016/j.jcis.2022.08.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
|
19
|
New insights into iron/nickel-carbon ternary micro-electrolysis toward 4-nitrochlorobenzene removal: Enhancing reduction and unveiling removal mechanisms. J Colloid Interface Sci 2022; 612:308-322. [PMID: 34998191 DOI: 10.1016/j.jcis.2021.12.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022]
Abstract
The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.
Collapse
|
20
|
Wei X, Zhu N, Huang J, Kang N, Li F, Wu P, Dang Z. Rapid and efficient reduction of chromate by novel Pd/Fe@biomass derived from Enterococcus faecalis. ENVIRONMENTAL RESEARCH 2022; 204:112005. [PMID: 34499894 DOI: 10.1016/j.envres.2021.112005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Efficient reduction of chromate is highly desirable for its detoxification and remediation of the contaminated environment. This study described a fusion of the concepts of precious metal biorecovery and fabrication of Pd/Fe@biomass derived from simulated wastewater. The effectiveness of Pd/Fe@biomass during reduction process of Cr(VI) was evaluated by comparing with pure nZVI, E. faecalis and Pd@biomass. Results showed that Pd(II) could be recovered by E. faecalis with Fe(II) as the electron donor, and precipitation could yield nZVI anchored onto Pd-loaded E. faecalis. The nano particles (NPs) on Pd/Fe@biomass were well-dispersed, which provided 2.70 folds specific surface area comparing with nZVI. Efficient Cr(VI) reduction could be achieved at a higher catalyst dosage, the most appropriated Pd/Fe molar ratio of 2% and a wide pH range. Typically, 0.5 mM Cr(VI) could be completely reduced in 5 min driven by Pd/Fe@biomass under the conditions of dosage of 1.0 g/L and pH 3. Moreover, the mechanisms of Cr(VI) reduction by Pd/Fe@biomass were proposed, which intimately related to nZVI electron donating capacities, Pd catalysis for hydrogenation and galvanic cell effects between Fe and Pd. Therefore, Pd/Fe@biomass could be an alternative for rapid and complete reduction of Cr(VI).
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Junlin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Naixin Kang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
21
|
Huang J, Zhao D, Zhao Y, Tu Y, Wang R. Polyvinylpyrrolidone supported nZVI/Ni bimetallic nanoparticles for enhanced high-performance removal of aqueous Cr(VI). Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Experimental Identification of the Roles of Fe, Ni and Attapulgite in Nitroreduction and Dechlorination of p-Chloronitrobenzene by Attapulgite-Supported Fe/Ni Nanoparticles. MATERIALS 2022; 15:ma15031254. [PMID: 35161200 PMCID: PMC8840558 DOI: 10.3390/ma15031254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023]
Abstract
The porous-material loading and noble-metal doping of nanoscale zero-valent iron (nFe) have been widely used as countermeasures to overcome its limitations. However, few studies focused on the experimental identification of the roles of Fe, the carrier and the doped metal in the application of nFe. In this study, the nitroreduction and dechlorination of p-chloronitrobenzene (p-CNB) by attapulgite-supported Fe/Ni nanoparticles (ATP-nFe/Ni) were investigated and the roles of Fe, Ni and attapulgite were examined. The contributions of Ni are alleviating the oxidization of Fe, acting as a catalyst to trigger the conversion of H2 to H*(active hydrogen atom) and promoting electron transfer of Fe. The action mechanisms of Fe in reduction of -NO2 to -NH2 were confirmed to be electron transfer and to produce H2 via corrosion. When H2 is catalyzed to H* by Ni, the production H* leads to the nitroreduction. In additon, H* is also responsible for the dechlorination of p-CNB and its nitro-reduced product, p-chloroaniline. Another corrosion product of Fe, Fe2+, is incapable of acting in the nitroreduction and dechlorination of p-CNB. The roles of attapulgite includes providing an anoxic environment for nFe, decreasing nFe agglomeration and increasing reaction sites. The results indicate that the roles of Fe, Ni and attapulgite in nitroreduction and dechlorination of p-CNB by ATP-nFe/Ni are crucial to the application of iron-based technology.
Collapse
|
23
|
Wang H, Zhuang M, Shan L, Wu J, Quan G, Cui L, Zhang Y, Yan J. Bimetallic FeNi nanoparticles immobilized by biomass-derived hierarchically porous carbon for efficient removal of Cr(VI) from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127098. [PMID: 34523485 DOI: 10.1016/j.jhazmat.2021.127098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is an effective material for Cr(VI) treatment, however excessive agglomeration and surface oxidation limit its application. Herein, straw derived hierarchically porous carbon supported FeNi bimetallic nanoparticles (FeNi@HPC) was prepared for effective removal of Cr(VI) from water. FeNi nanoparticles were successfully loaded onto HPC with good dispersibility, and HPC caused an increase in specific surface area of FeNi nanoparticles. FeNi@HPC exhibited a significantly enhanced removal efficiency for Cr(VI) in comparison to Fe@HPC and FeNi NPs. The Ni doping content was further optimized, and the best Ni content in bimetallic NPs was estimated as 10 wt%. The conditions optimal for the activity of FeNi@HPC were assessed, and the highest removal efficiency equivalent to 30 mg L-1 of Cr(VI) was achieved at pH= 4.0 in 360 min with a dosage of 0.5 g L-1. Higher temperatures favored the removal of Cr(VI) and FeNi@HPC manifested the lowest activation energy as compared to Fe@HPC and FeNi NPs. The action mechanisms of FeNi@HPC presumably involved electron transfer from Fe0, Fe2+and atomic hydrogen. This work not only provide a cost-effective and available HPC material to stabilize nZVI but also revealed that using FeNi@HPC is a promising approach for the remediation of water pollution.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Yancheng Environmental Engineering Technology Research and Development Center, School of Environment, Tsinghua University, Yancheng 224051, PR China
| | - Min Zhuang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Liang Shan
- Yancheng Environmental Engineering Technology Research and Development Center, School of Environment, Tsinghua University, Yancheng 224051, PR China
| | - Jie Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
24
|
Wang Y, Gong Y, Lin N, Yu L, Du B, Zhang X. Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci 2022; 606:941-952. [PMID: 34487941 DOI: 10.1016/j.jcis.2021.08.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption-desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe0/Cu0 (nFe0/Cu0) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu0 and Fe0 acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe0. MMT-nFe0/Cu0 as an excellent carrier had good functions in dispersing nFe0 and Cu0 particles, pH buffering and could keep nFe0 and Cu0 particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution.
Collapse
Affiliation(s)
- Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baobao Du
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
25
|
Su X, Lv H, Gong J, Zhou M. Bi/mZVI Combined with Citric Acid and Sodium Citrate to Mineralize Multiple Sulfa Antibiotics: Performance and Mechanism. Antibiotics (Basel) 2022; 11:antibiotics11010051. [PMID: 35052928 PMCID: PMC8773326 DOI: 10.3390/antibiotics11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/02/2022] Open
Abstract
The oxidative mineralization of sulfanilamide drugs (SAs) using micro-size zero-valent iron (mZVI) cooperated with a citric acid buffer solution was evaluated. In this study SM2, SMX, and SD could be removed at 66%, 89%, and 83%, respectively, in a 0.5% Bi/mZVI+CA+NaCA system within 2 h. Based on our analysis, the produced ·OH could be ascribed from the complexation between citrate iron (Fe(II)[Cit]−) and the generated H2O2 resulting from the activation of O2 on the mZVI surface in the Bi/mZVI+CA+NaCA system, further inducing the mineralization of antibiotics. The related possible degradation pathways were proposed. Two similar degradation pathways of SM2, SMX, and SD in the mixed liquid, including hydroxylation and SO2 extrusion, were solved. Meanwhile, there was an additional proposed degradation pathway for SMX to be degraded more effectively, as reflected in the opening of the N-O bond on the benzene ring. Therefore, this work provides an experimental basis and theoretical support for the efficient treatment of antibiotic wastewater in real industry by using an iron-based method.
Collapse
Affiliation(s)
- Xiaoming Su
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
| | - Hao Lv
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
| | - Jianyu Gong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
- Correspondence: (J.G.); (M.Z.)
| | - Man Zhou
- Hubei Electromechanical Research Institute Co., Ltd., Wuhan 430070, China
- Correspondence: (J.G.); (M.Z.)
| |
Collapse
|
26
|
Zhu X, Le TT, Du J, Xu T, Cui Y, Ling H, Kim SH. Novel core-shell sulfidated nano-Fe(0) particles for chromate sequestration: Promoted electron transfer and Fe(II) production. CHEMOSPHERE 2021; 284:131379. [PMID: 34225108 DOI: 10.1016/j.chemosphere.2021.131379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale valent iron in form of FeS/Fe (0) shell-core nanoparticle has the aptitude to be a promising remediation material toward reductive removal of metal oxyanions. However, disrupted contact between Fe (0) core and FeS shell by thick iron oxides limited its reactivity improvement, and its mechanism of electron transfer remains unveiled. In this study, a novel sulfidated nZVI core-shell particles (FeS/Fe (0)) was fabricated via a modified post sulfidation approach to achieve a more uniform coverage of FeS for aqueous Cr(VI) sequestration. SEM and STEM tests confirmed the formation of the core-shell FeS/Fe (0) structure with a more solid interaction between FeS layer and Fe (0) core. The highest Cr(VI) removal rate was offered at optimal S/Fe molar ratio of 1/25 that the most chelated Fe2+ was also observed. The improved performance was due to that FeS shell with greater electronegativity could significantly accelerate the corrosion of Fe (0), facilitate the electron transfer form Fe (0) core to FeS shell according to the electrochemical tests. Moreover, FeS shell provided a protective layer for Fe (0) core so as to alleviate its anoxic passivation in water that FeS/Fe (0) had a better longevity for Cr(VI) removal than nFe (0). Characterizations of STEM and XPS revealed that Cr(VI) was reduced to Cr(III) and evenly coprecipitated with surface Fe(II)/Fe(III).
Collapse
Affiliation(s)
- Xiaowei Zhu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Thao Thi Le
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jiangkun Du
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China.
| | - Tiantian Xu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Yayun Cui
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Haibo Ling
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Hubei Academy of Environmental Sciences, Wuhan, 430072, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
27
|
Yang W, Xi D, Li C, Yang Z, Lin Z, Si M. "In-situ synthesized" iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126540. [PMID: 34252675 DOI: 10.1016/j.jhazmat.2021.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Anionic Cr(VI) and cationic heavy metals generally co-exist in industrial effluents and threaten the public health. Zero-valent iron (ZVI) particles tent to passivate rapidly, which results in a gradual drop in its reactivity. In this work, a strategy of "in-situ synthesized" iron-based bimetal was first developed to stimulate the self-activation of passivated ZVI. During this process, ZVI-loaded hydroxyapatite (ZVI/HAP) was prepared to enhance the affinity for co-existing Cu2+, which promoted the in-situ Cu0 deposition on ZVI/HAP to form a Fe-Cu bimetal. The deposited Cu0 significantly decreased the activation energy (Ea) of Cr(VI) reduction by 24.9%, and its corresponding Cr(VI) removal (96.53%) was much higher that of single Cr(VI) system (68.67%) within 9 h. More importantly, the removal of Cr(VI) and Cu2+ were synchronously achieved. Systematical electrochemical characterizations were first introduced to explore the galvanic behaviors of iron-based bimetal. The charge transfer resistance and the negative open circuit potential of ZVI/HAP significantly decreased with the Cu0 deposition, thereby accelerating the electron transfer from Fe0 to Cu2+. The enhanced electron transfer further facilitated the Fe(II) release to promote Cr(VI) reduction. This "in-situ synthesized" iron-based bimetal strategy provides a novel pattern for ZVI activation and exhibits practical application in remediation of combined contaminant.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chaofang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
28
|
Wang Y, Lin N, Gong Y, Wang R, Zhang X. Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. CHEMOSPHERE 2021; 280:130663. [PMID: 33971416 DOI: 10.1016/j.chemosphere.2021.130663] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Porous hydrogel, as a high-efficiency adsorbent for heavy metals, suffers the drawbacks of the use of expensive and toxic reagents during the process of preparation, further limiting its application ranges. Besides, the heavy metals couldn't be transformed into nontoxic species, which leads to the environmental pollution risk. Herein, a three-dimensionally (3D) structured Cu-Fe embedded cross-linked cellulose hydrogel (nFeCu-CH) was innovatively fabricated by a novel self-assembly and in-situ reduction method, which exhibited exceptionally enhanced adsorption-reduction property towards Cr(VI) wastewater. The results of degradation experiment exhibited that the removal reaction followed Langmuir-Hinshelwood first order kinetic model and the degradation rate constant decreased with solution pH and initial Cr(VI) concentration, while increased with nFeCu-CH dosage and temperature. Regeneration studies demonstrated that more than 88% of Cr(VI) was removed by nFeCu-CH even after five times of cycling. nFeCu-CH exhibited excellent reductive activity, which had a close connection with the superiority of 3D crosslinked architectures and bimetallic synergistic effect. And 97.1% of Cr(VI) could be removed when nFeCu-CH dosage was 9.5 g/L, pH was 5, initial concentration of Cr(VI) was 20 mg/L and temperature was 303 K. Combined with cellulose hydrogel not only could provide additional active sites, but also could restrain the crystallite growth and agglomeration of nano-metallic particles, leading to the promotion of Cr(VI) removal. In addition, coating with Cu facilitated the generation and transformation of electrons according to the continuous redox cycles of Fe(III)/Fe(II) and Cu(II)/Cu(I), leading to the further improvement of the reductivity of nFeCu-CH. Multiple interaction mechanisms including adsorption, reduction and co-precipitation between nFeCu-CH and Cr(VI) were realized. The current work suggested that nFeCu-CH with highly reactive sites, excellent stability and recyclability was considered as an potential material for remediation of Cr(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
29
|
Zhuang M, Shi W, Wang H, Cui L, Quan G, Yan J. Carbothermal Synthesis of Ni/Fe Bimetallic Nanoparticles Embedded into Graphitized Carbon for Efficient Removal of Chlorophenol. NANOMATERIALS 2021; 11:nano11061417. [PMID: 34072183 PMCID: PMC8226776 DOI: 10.3390/nano11061417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022]
Abstract
The reactivity of nanoscale zero-valent iron is limited by surface passivation and particle agglomeration. Here, Ni/Fe bimetallic nanoparticles embedded into graphitized carbon (NiFe@GC) were prepared from Ni/Fe bimetallic complex through a carbothermal reduction treatment. The Ni/Fe nanoparticles were uniformly distributed in the GC matrix with controllable particle sizes, and NiFe@GC exhibited a larger specific surface area than unsupported nanoscale zero-valent iron/nickel (FeNi NPs). The XRD results revealed that Ni/Fe bimetallic nanoparticles embedded into graphitized carbon were protected from oxidization. The NiFe@GC performed excellently in 2,4,6-trichlorophenol (TCP) removal from an aqueous solution. The removal efficiency of TCP for NiFe@GC-50 was more than twice that of FeNi nanoparticles, and the removal efficiency of TCP increased from 78.5% to 94.1% when the Ni/Fe molar ratio increased from 0 to 50%. The removal efficiency of TCP by NiFe@GC-50 can maintain 76.8% after 10 days of aging, much higher than that of FeNi NPs (29.6%). The higher performance of NiFe@GC should be ascribed to the significant synergistic effect of the combination of NiFe bimetallic nanoparticles and GC. In the presence of Ni, atomic H* generated by zero-valent iron corrosion can accelerate TCP removal. The GC coated on the surface of Ni/Fe bimetallic nanoparticles can protect them from oxidation and deactivation.
Collapse
Affiliation(s)
- Min Zhuang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
| | - Wen Shi
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
- Correspondence: (H.W.); (J.Y.)
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
| | - Jinlong Yan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (W.S.); (L.C.); (G.Q.)
- Correspondence: (H.W.); (J.Y.)
| |
Collapse
|
30
|
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123535. [PMID: 33254738 PMCID: PMC7382355 DOI: 10.1016/j.jhazmat.2020.123535] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Waseem Akram
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|