1
|
de Araújo KR, Sawakuchi HO, Bertassoli DJ, Bastviken D, Pereira TS, Sawakuchi AO. Operational effects on aquatic carbon dioxide and methane emissions from the Belo Monte hydropower plant in the Xingu River, eastern Amazonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174100. [PMID: 38908589 DOI: 10.1016/j.scitotenv.2024.174100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Operational demands and the natural inflow of water actively drive biweekly fluctuations in water levels in hydropower reservoirs. These daily to weekly fluctuations could have major effects on methane (CH4) and carbon dioxide (CO2) emissions via release of bubbles from reservoir bottom sediments (ebullition) or organic matter inputs, respectively. The impact of transient fluctuations in water levels on GHG emissions is poorly understood and particularly so in tropical run-of-the-river reservoirs. These reservoirs, characterized by high temperatures and availability of labile organic matter, are usually associated with extensive CH4 generation within bottom sediments. The aim of this study is to determine how water level fluctuations resulting from the operation of the Belo Monte hydropower plant on the Xingu River, eastern Amazon River Basin, affect local CO2 and CH4 emissions. Between February and December 2022, we monitored weekly fluxes and water concentrations of CO2 and CH4 in a site on the margin of the Xingu reservoir. Throughout the study period, fluxes of CO2 and CH4 were 118 ± 137 and 3.62 ± 8.47 mmol m-2 d-1 (average ± 1SD) while concentrations were 59 ± 29.77 and 0.30 ± 0.12 μM, respectively. The fluxes and water concentrations of CO2 were clearly correlated with the upstream discharge, and the variation observed was more closely associated with a seasonal pattern than with biweekly fluctuations in water level. However, CH4 fluxes were significantly correlated with biweekly water level fluctuations. The variations observed in CH4 fluxes occurred especially during the high-water season (February-April), when biweekly water level fluctuations were frequent and had higher amplitude, which increased CH4 ebullition. Reducing water level fluctuations during the high-water season could decrease ebullitive pulses and, consequently, total flux of CH4 (TFCH4) in the reservoir margins. This study underscores the critical role of water level fluctuations in near-shore CH4 emissions within tropical reservoirs and highlights significant temporal variability. However, additional research is necessary to understand how these findings can be applied across different spatial scales.
Collapse
Affiliation(s)
- Kleiton R de Araújo
- Programa de Pós Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil.
| | - Henrique O Sawakuchi
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping 581 83, Sweden
| | - Dailson J Bertassoli
- Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil
| | - David Bastviken
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping 581 83, Sweden
| | - Tatiana S Pereira
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira 68372 - 040, Brazil
| | - André O Sawakuchi
- Programa de Pós Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil; Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil
| |
Collapse
|
2
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
Affiliation(s)
- Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, PR China
| | - Qiang Xu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 15030, PR China
| | - Jiaju Liu
- Research Center for Integrated Control of Watershed Water Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ting Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
3
|
Duan X, Yin P, Tsona N, Cao K, Xie Y, He X, Chen B, Chen J, Gao F, Yang L, Lv S. Biogenic methane in coastal unconsolidated sediment systems: A review. ENVIRONMENTAL RESEARCH 2023; 227:115803. [PMID: 37003546 DOI: 10.1016/j.envres.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
Marine sediments are the world's largest known reservoir of methane. In many coastal regions, methane is trapped in sediments buried at depths ranging from centimeters to hundreds of meters below the seafloor, in the forms of gas pockets, dispersed gas bubbles and dissolved gas, also known as shallow gas (methane-dominated gas mixture). The existence of shallow gas affects the engineering geological environment and threatens the safety of artificial facilities. The escape of shallow gas from sediments into the atmosphere can even threaten ecosystem security and affect global climate change. However, until now, shallow gas has remained a mystery to the scientific community. For example, how it is generated, how it distributes and migrates in sediments, and what are the factors that influence these processes that are still unclear. In the context of increasingly intense offshore development and global warming, there is a huge gap between existing scientific understanding of shallow gas and the need to develop scientific solutions for related problems. Based on this, this paper systematically collects the information on all aspects of shallow gas mentioned above, comprehensively summarizes the current scientific understanding, and analyzes the existing shortcomings, which will provide systematic references for the research on environmental disaster prevention, engineering technology, climate change, and other fields.
Collapse
Affiliation(s)
- Xiaoyong Duan
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China.
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China.
| | - Narcisse Tsona
- Environment Research Institute, Shandong University. Qingdao, 266237, China
| | - Ke Cao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Yongqing Xie
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China; Zhejiang Institute of Marine Geology Survey, Zhoushan, Zhejiang, 316021, China; Zhejiang Engineering Survey and Design Institute Group CO. LTD, Ningbo, Zhejiang, 315012, China
| | - Xingliang He
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Bin Chen
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Junbing Chen
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo, 315012, China
| | - Fei Gao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Lei Yang
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China; Zhejiang Institute of Marine Geology Survey, Zhoushan, Zhejiang, 316021, China; Zhejiang Engineering Survey and Design Institute Group CO. LTD, Ningbo, Zhejiang, 315012, China
| | - Shenghua Lv
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| |
Collapse
|
4
|
Hilderbrand RH, Bambakidis T, Crump BC. The Roles of Microbes in Stream Restorations. MICROBIAL ECOLOGY 2023; 85:853-861. [PMID: 36695828 DOI: 10.1007/s00248-023-02179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/18/2023] [Indexed: 05/04/2023]
Abstract
The goods and services provided by riverine systems are critical to humanity, and our reliance increases with our growing population and demands. As our activities expand, these systems continue to degrade throughout the world even as we try to restore them, and many efforts have not met expectations. One way to increase restoration effectiveness could be to explicitly design restorations to promote microbial communities, which are responsible for much of the organic matter breakdown, nutrient removal or transformation, pollutant removal, and biomass production in river ecosystems. In this paper, we discuss several design concepts that purposefully create conditions for these various microbial goods and services, and allow microbes to act as ecological restoration engineers. Focusing on microbial diversity and function could improve restoration effectiveness and overall ecosystem resilience to the stressors that caused the need for the restoration. Advances in next-generation sequencing now allow the use of microbial 'omics techniques (e.g., metagenomics, metatranscriptomics) to assess stream ecological conditions in similar fashion to fish and benthic macroinvertebrates. Using representative microbial communities from stream sediments, biofilms, and the water column may greatly advance assessment capabilities. Microbes can assess restorations and ecosystem function where animals may not currently be present, and thus may serve as diagnostics for the suitability of animal reintroductions. Emerging applications such as ecological metatranscriptomics may further advance our understanding of the roles of specific restoration designs towards ecological services as well as assess restoration effectiveness.
Collapse
Affiliation(s)
- Robert H Hilderbrand
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA.
| | - Ted Bambakidis
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
5
|
Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management. LAND 2022. [DOI: 10.3390/land11071026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cultivating ecological benefits in agricultural systems through greenhouse gas emission reduction will offer extra economic benefits for farmers. The reported studies confirmed that organic fertilizer application could promote soil carbon sequestration and mitigate greenhouse gas emissions under suitable tillage practices in a short period of time. Here, a field experiment was conducted using a two-factor randomized block design (organic fertilizers and tillage practices) with five treatments. The results showed that the application of microbial fertilizers conserved soil heat and moisture, thereby significantly reducing CO2 emissions (6.9–18.9%) and those of N2O and CH4 fluxes during corn seasons, compared with chemical fertilizer application. Although deep tillage increased total CO2 emissions by 4.9–37.7%, it had no significant effect on N2O and CH4 emissions. Application of microbial organic fertilizer increased corn yield by 21.5%, but it had little effect on the yield of wheat. Overall, application of microbial fertilizers significantly reduced soil GHG emission and concurrently increased yield under various tillage practices in a short space of time. With this, it was critical that microbial fertilizer be carefully studied for application in wheat–corn cropping systems.
Collapse
|
6
|
Wang C, Xiao R, Guo Y, Wang Q, Cui Y, Xiu Y, Ma Z, Zhang M. Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143996. [PMID: 33360338 DOI: 10.1016/j.scitotenv.2020.143996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The dynamic changes of soil microorganisms after Phragmites australis straw addition in the incubation tubes were analyzed by phospholipid fatty acid stable isotope probing (PLFA-SIP). After comparing soils from different freshwater pumping areas in the Yellow River Estuary (10-year pumping area, 15-year pumping area and natural salt marsh without pumping), the results showed that the total PLFA contents significantly increased by 59.99%-146.93% after the addition of straw to surface soils (0-10 cm) in the pumping areas, whereas the changes in deeper soils (10-20 cm) were not significant. In particular, the PLFA results showed that bacteria and fungi were significantly increased after 10 days with straw addition. Straw treatment also improved the ratio of fungi to bacteria (F:B) in the surface soils of all sampling sites. The soil microorganisms directly absorbed straw-derived 13C, where Gram-negative bacteria (GN) were found to have the highest PLFA-13C values during the 40-day decomposition process. Soil characteristics can significantly affect microbial community composition. Accordingly, soil organic carbon (SOC) was found to be significantly positively related to bacterial, fungal and other microbial biomasses, while moisture, electric conductivity (EC) and soil aggregate composition were important factors of influence on the microbial community. The findings indicated that both fungi and bacteria were essential microbial communities in straw decomposition, the significant increase of fungi biomass and the absorption of straw-derived 13C by bacteria were the main changes of microbial community. Long-term freshwater pumping can promote straw decomposition by increasing microbial biomass and changing microbial community composition.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Rong Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350116, China.
| | - Yutong Guo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Qian Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yujiao Xiu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Ma
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Mingxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Pinto R, Weigelhofer G, Brito AG, Hein T. Effects of dry-wet cycles on nitrous oxide emissions in freshwater sediments: a synthesis. PeerJ 2021; 9:e10767. [PMID: 33614277 PMCID: PMC7883693 DOI: 10.7717/peerj.10767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background Sediments frequently exposed to dry-wet cycles are potential biogeochemical hotspots for greenhouse gas (GHG) emissions during dry, wet and transitional phases. While the effects of drying and rewetting on carbon fluxes have been studied extensively in terrestrial and aquatic systems, less is known about the effects of dry-wet cycles on N2O emissions from aquatic systems. As a notable part of lotic systems are temporary, and small lentic systems can substantially contribute to GHG emissions, dry-wet cycles in these ecosystems can play a major role on N2O emissions. Methodology This study compiles literature focusing on the effects of drying, rewetting, flooding, and water level fluctuations on N2O emissions and related biogeochemical processes in sediments of lentic and lotic ecosystems. Results N2O pulses were observed following sediment drying and rewetting events. Moreover, exposed sediments during dry phases can be active spots for N2O emissions. The general mechanisms behind N2O emissions during dry-wet cycles are comparable to those of soils and are mainly related to physical mechanisms and enhanced microbial processing in lotic and lentic systems. Physical processes driving N2O emissions are mainly regulated by water fluctuations in the sediment. The period of enhanced microbial activity is driven by increased nutrient availability. Higher processing rates and N2O fluxes have been mainly observed when nitrification and denitrification are coupled, under conditions largely determined by O2 availability. Conclusions The studies evidence the driving role of dry-wet cycles leading to temporarily high N2O emissions in sediments from a wide array of aquatic habitats. Peak fluxes appear to be of short duration, however, their relevance for global emission estimates as well as N2O emissions from dry inland waters has not been quantified. Future research should address the temporal development during drying-rewetting phases in more detail, capturing rapid flux changes at early stages, and further explore the functional impacts of the frequency and intensity of dry-wet cycles.
Collapse
Affiliation(s)
- Renata Pinto
- Instituto Superior de Agronomia, University of Lisbon, LEAF - Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal.,University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| | - Gabriele Weigelhofer
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| | - António Guerreiro Brito
- Instituto Superior de Agronomia, University of Lisbon, LEAF - Linking Landscape, Environment, Agriculture and Food, Lisbon, Portugal
| | - Thomas Hein
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria.,WasserCluster Lunz GmbH -Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Austria
| |
Collapse
|