1
|
Catalina Suarez Murcia J, Sambusiti C, Grassl B, Monlau F. Contaminants, biochemical methane potential, and biodegradability of different bio-waste categories: guidance for anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 411:131294. [PMID: 39153699 DOI: 10.1016/j.biortech.2024.131294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study evaluated the anaerobic digestion suitability of bio-waste from different sources by comparing their biochemical methane potential (BMP), biodegradability (BI), and content of contaminants (heavy metals and physical impurities) - an often-overlooked factor but one of particular concern in bio-waste. Predominant heavy metals included Cu and Zn, while recurring physical impurities comprised plastics and organic non-biodegradable matter. Food waste from food processing plants were most suitable, exhibiting low contamination and high biogas conversion (BMP > 549 NmLCH4/gVS and BI > 86 %). Conversely, organic fractions from mechanical biological treatment were highly contaminated, while green waste displayed low biogas conversion (BMP < 368 NmLCH4/gVS and BI < 72 %). Food waste from households and medium/large-sized producers also demonstrated high biogas conversion, but variable contamination levels could compromise their suitability. Assessing contaminants alongside BMP and BI provides a comprehensive approach for selecting suitable bio-waste feedstocks that can be introduced in biogas plants.
Collapse
Affiliation(s)
- Juliana Catalina Suarez Murcia
- Université de Pau et des Pays de l'Adour, CNRS/UPPA, IPREM - Technopôle Helioparc, 2 Avenue du Président Pierre Angot, 64053 Pau, France; TotalEnergies, Onetech, CSTJF - Avenue Larribau, 64018, Pau, France; TotalEnergies, Onetech, PERL ESD - Pôle Economique 2, BP 47 - RD 817, 64170, Lacq, France
| | | | - Bruno Grassl
- Université de Pau et des Pays de l'Adour, CNRS/UPPA, IPREM - Technopôle Helioparc, 2 Avenue du Président Pierre Angot, 64053 Pau, France
| | - Florian Monlau
- TotalEnergies, Onetech, PERL ESD - Pôle Economique 2, BP 47 - RD 817, 64170, Lacq, France.
| |
Collapse
|
2
|
Tix J, Moll F, Krafft S, Betsch M, Tippkötter N. Hydrogen Production from Enzymatic Pretreated Organic Waste with Thermotoga neapolitana. ENERGIES 2024; 17:2938. [DOI: 10.3390/en17122938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L−1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83% could be measured in the overhead space.
Collapse
Affiliation(s)
- Julian Tix
- Bioprocess Engineering, FH Aachen University of Applied Sciences, Campus Juelich, 52428 Juelich, Germany
| | - Fabian Moll
- Bioprocess Engineering, FH Aachen University of Applied Sciences, Campus Juelich, 52428 Juelich, Germany
| | - Simone Krafft
- Bioprocess Engineering, FH Aachen University of Applied Sciences, Campus Juelich, 52428 Juelich, Germany
| | | | - Nils Tippkötter
- Bioprocess Engineering, FH Aachen University of Applied Sciences, Campus Juelich, 52428 Juelich, Germany
| |
Collapse
|
3
|
Garg A, Basu S, Shetti NP, Bhattu M, Alodhayb AN, Pandiaraj S. Biowaste to bioenergy nexus: Fostering sustainability and circular economy. ENVIRONMENTAL RESEARCH 2024; 250:118503. [PMID: 38367840 DOI: 10.1016/j.envres.2024.118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.
Collapse
Affiliation(s)
- Anushka Garg
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| | - Monika Bhattu
- Department of Chemistry, University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Chapleur O, Guenne A, Rutledge DN, Puig-Castellví F. Monitoring of cellulose-rich biowaste co-digestion with 3D fluorescence spectroscopy and mass spectrometry-based metabolomics. CHEMOSPHERE 2024; 349:140824. [PMID: 38040263 DOI: 10.1016/j.chemosphere.2023.140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic digestion (AD) is a promising waste management strategy that reduces landfilling while generating biogas. Anaerobic co-digestion involves mixing two or more substrates to enhance the nutrient balance required for microorganism growth and thus improve the degradation. Monitoring AD is crucial for comprehending the biological process, optimizing process stability, and achieving efficient biogas production. In this work, we have used three dimensional excitation emission fluorescence spectroscopy and mass spectrometry metabolomics, two complementary techniques, to monitor the anaerobic co-digestion (AcoD) of cellulose, ash wood or oak wood with food waste. The two approaches were compared together and to the biogas production records. Results of this experiment demonstrated the complementarity of both analytical techniques with the measurement of the biogas production since 3D fluorescence spectroscopy and MS metabolomics revealed the earlier molecular changes occurring in the bioreactors, mainly associated with the hydrolysis step, whereas the biogas production data reflected the biological activity in the last step of the digestion. Moreover, in all cases, the three data sets effectively delineated the differences among the substrates. While the two wood substrates were poorly degradable as they were richer in aromatic compounds, cellulose was highly degradable and was characterized by the production of several glycolipids. Then, the three tested AcoDs resulted in a similar 3D EEM fluorescence and metabolomics profiles, close to the one observed for the AD of food waste alone, indicating that the incorporation of the food waste drove the molecular degradation events in the AcoDs. Substrate-specific differences were appreciated from the biogas production data. The overall results of this research are expected to provide insight into the design of guidelines for monitoring AcoD.
Collapse
Affiliation(s)
- Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France
| | - Douglas N Rutledge
- Faculté de Pharmacie, Université Paris-Saclay, 91400, Orsay, France; Muséum National D'Histoire Naturelle, 75005, Paris, France
| | - Francesc Puig-Castellví
- Université Paris-Saclay, INRAE, PRocédés BiOtechnologiques Au Service de L'Environnement, 92761, Antony, France; Université Paris-Saclay, INRAE AgroParisTech, UMR SayFood, 75005, Paris, France.
| |
Collapse
|
5
|
Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-Petriciolet A, Aminabhavi TM. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117410. [PMID: 36731419 DOI: 10.1016/j.jenvman.2023.117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The mother earth is a source of natural resources that, in conjunction with anthropogenic activities, generates a wide spectrum of different biowastes. These biomaterials can be used as low-cost raw feedstock to produce bioenergy, value-added products, and other commodities. However, the improper management and disposal of these biowastes can generate relevant environmental impacts. Consequently, it is imperative to explore alternative technologies for the valorization and exploitation of these wastes to obtain benefits for the society. This review covers different aspects related to valorization of biowastes and their applications in water pollution, soil fertility and green energy generation. The classification and characteristics of different biowastes (biosolids, animal wastes and effluents, plant biomass, wood and green wastes) including their main generation sources are discussed. Different technologies (e.g., pyrolysis, hydrothermal carbonization, anaerobic digestion, gasification, biodrying) for the transformation and valorization of these residues are also analyzed. The application of biowastes in soil fertility, environmental pollution and energy production are described and illustrative examples are provided. Finally, the challenges related to implement low-cost and sustainable biowaste management strategies are highlighted. It was concluded that reliable simulation studies are required to optimize all the logistic stages of management chain of these residues considering the constraints generated from the economic, environmental and social aspects of the biowaste generation sources and their locations. The recollection and sorting of biowastes are key parameters to minimize the costs associated to their management and valorization. Also, the concepts of Industry 4.0 can contribute to achieve a successful commercial production of the value-added products obtained from the biowaste valorization. Overall, this review provides a general outlook of biowaste management and its valorization in the current context of circular economy.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM) (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR 7019 - CNRS, Université de Lorraine, Nancy, France
| | - Adrián Bonilla-Petriciolet
- Chemical Engineering Department, Instituto Tecnológico de Aguascalientes, 20256, Aguascalientes, Mexico.
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
6
|
Rasi S, Vainio M, Blasco L, Kahala M, Leskinen H, Tampio E. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114640. [PMID: 35124316 DOI: 10.1016/j.jenvman.2022.114640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasing demand for low carbon-footprint bioproducts in the markets, innovative processes technologies and products are needed. The objective of this study was to assess the quality and potential of food waste (FW) from the hospitality sector to produce volatile fatty acids (VFAs). A batch type acid fermentation system was used to study VFA production in different process conditions (a decreased pH and increased organic loading rate). The evolution of VFAs and long-chain fatty acids was followed. Amplicon sequencing of the 16S rRNA gene was used to investigate the bacterial and archaeal community, and elucidate microbial communities in different FW and process conditions. The results show that high VFA concentrations (of up to 18 g/L) were achieved in overloaded conditions, which were also affected by the activity and composition of the inoculum. FW played an important role in modulating microbial composition, especially the bacterial communities belonging to the lactic acid bacteria group.
Collapse
Affiliation(s)
- S Rasi
- Natural Resources Institute Finland (Luke), Production Systems, Survontie 9 A, FI-40500, Jyväskylä, Finland.
| | - M Vainio
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - L Blasco
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - M Kahala
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - H Leskinen
- Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, FI-31600, Jokioinen, Finland.
| | - E Tampio
- Natural Resources Institute Finland (Luke), Production Systems, Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| |
Collapse
|
7
|
Moreira de Oliveira M, Moretti P, Malinowsky C, Bayard R, Buffière P, Borges de Castilhos Júnior A, de Araujo Morais Júnior J, Athayde Júnior GB, Gourdon R. Mechanical pre-treatment of source-collected municipal biowaste prior to energy recovery by anaerobic digestion. CHEMOSPHERE 2022; 292:133376. [PMID: 34952009 DOI: 10.1016/j.chemosphere.2021.133376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Pre-treatments are usually necessary to prepare biowaste to anaerobic digestion. The major objectives are (i) to remove undesirable materials such as plastics and metals, which may contaminate the biowaste even if separated source-collection systems are implemented, and (ii) to extract the most readily biodegradable organic fractions from the waste stream. In this study, two wet mechanical pre-treatments, namely air-compressed press and worm screw press, were investigated on urban household biowaste. Two liquid to solid ratios were tested in each pre-treatment. Anaerobic digestion of pre-treated biowaste was studied by measuring their biomethane potentials and by controlled experiments in a continuously stirred-tank reactor with a feed load of 3.5 gVS.L-1.d-1. It was observed that increasing liquid to solid ratio in the pre-treatments allowed to increase the proportion of biodegradable organic matter extracted from the biowaste, up to 949 gCOD.kgTS-1 from household biowaste. The biomethane potentials of pre-treated waste were very high (up 525 LCH4.kgVS-1) and COD (949 gCOD.kg-1TS) from household biowaste. Anaerobic digestion in continuously stirred-tank reactor showed a very strong conversion of COD load (81%) and a high methane production up to 345 LCH4.kgVS-1.
Collapse
Affiliation(s)
- Mariana Moreira de Oliveira
- University Lyon, INSA Lyon, DEEP, EA7429, 69621, Villeurbanne, France; Federal University of Paraíba, Department of Civil and Environmental Engineering, João Pessoa, CEP 58051-900, Paraíba State, Brazil.
| | - Paul Moretti
- University Lyon, INSA Lyon, DEEP, EA7429, 69621, Villeurbanne, France
| | - Carina Malinowsky
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, CEP 88040-970, Santa Catarina State, Brazil
| | - Rémy Bayard
- University Lyon, INSA Lyon, DEEP, EA7429, 69621, Villeurbanne, France
| | - Pièrre Buffière
- University Lyon, INSA Lyon, DEEP, EA7429, 69621, Villeurbanne, France
| | - Armando Borges de Castilhos Júnior
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, CEP 88040-970, Santa Catarina State, Brazil
| | - Joacio de Araujo Morais Júnior
- Federal University of Paraíba, Department of Civil and Environmental Engineering, João Pessoa, CEP 58051-900, Paraíba State, Brazil
| | - Gilson Barbosa Athayde Júnior
- Federal University of Paraíba, Department of Civil and Environmental Engineering, João Pessoa, CEP 58051-900, Paraíba State, Brazil
| | - Rémy Gourdon
- University Lyon, INSA Lyon, DEEP, EA7429, 69621, Villeurbanne, France
| |
Collapse
|
8
|
Boutoute A, Di Miceli Raimondi N, Guilet R, Cabassud M, Amodeo C, Benbelkacem H, Buffiere P, Teixeira Franco R, Hattou S. Development of a Sensitivity Analysis method to highlight key parameters of a dry Anaerobic Digestion reactor model. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cazaudehore G, Monlau F, Gassie C, Lallement A, Guyoneaud R. Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146972. [PMID: 33892320 DOI: 10.1016/j.scitotenv.2021.146972] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable plastics market is increasing these last decades, including for coffee capsules. Anaerobic digestion, as a potential end-of-life scenario for plastic waste, has to be investigated. For this purpose, mesophilic (38 °C) and thermophilic (58 °C) anaerobic digestion tests on three coffee capsules made up with biodegradable plastic (Beanarella®, Launay® or Tintoretto®) and spent coffee (control) were compared by their methane production and the microbial communities active during the process. Mesophilic biodegradation of the capsules was slow and did not reach completion after 100 days, methane production ranged between 67 and 127 NL (CH4) kg-1 (VS). Thermophilic anaerobic digestion resulted in a better biodegradation and reached completion around 100 days, methane productions were between 257 and 294 NL (CH4) kg-1 (VS). The microbial populations from the reactors fed with plastics versus spent coffee grounds were significantly different, under both the mesophilic and the thermophilic conditions. However, the different biodegradable plastics only had a small impact on the main microbial community composition at a similar operational temperature and sampling time. Interestingly, the genus Tepidimicrobium was identified as a potential key microorganisms involved in the thermophilic conversion of biodegradable plastic in methane.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France; Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - F Monlau
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France
| | - C Gassie
- Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - A Lallement
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France.
| |
Collapse
|
10
|
Moretti P, de Oliveira MM, Bayard R, Buffiere P, de Araujo JM, de Castilhos AB, Gourdon R. Mechanical pretreatment of municipal biowaste to produce an aqueous slurry dedicated to anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20586-20597. [PMID: 33410064 DOI: 10.1007/s11356-020-11836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present study investigated a wet mechanical pretreatment to improve methane production by anaerobic digestion from biowaste material by separating a biodegradable aqueous slurry fraction (ASF) from a more recalcitrant particulate fraction (PF). Four source-sorted municipal biowastes were studied, namely household (HBW), supermarket (SBW), restaurant (RBW), and green biowaste (GBW). The treatment consisted in soaking the waste in water and then pressing the slurry through a grid with 3-mm openings to separate the two fractions. Methane production of ASF and PF obtained from the four biowastes were measured using the BMP protocol and compared to the potential of the respective untreated biowaste. Results were very different for GBW as compared to the other three BWs. With GBW, which was the most lignocellulosic of the BW studied, only 17% of the initial methane potential was recovered in the ASF. The extraction was much better on the other biowastes and increased in the following order: HBW (58%) ≃ RBW (57%) < SBW (67%). The ASF from these biowastes exhibited low total solid contents and high BMPs (416, 408, and 423 NLCH4.g-1vs for HBW, RBW, and SBW respectively). The experimental results obtained in this study therefore showed that wet pressing separation was an efficient pretreatment to improve and facilitate methane production by anaerobic digestion of biowaste such as HBW, RBW, and SBW.
Collapse
Affiliation(s)
- Paul Moretti
- INSA Lyon, DEEP Laboratory, Université de Lyon, 20, Avenue A. Einstein, 69621, Villeurbanne Cedex, France
| | | | - Rémy Bayard
- INSA Lyon, DEEP Laboratory, Université de Lyon, 20, Avenue A. Einstein, 69621, Villeurbanne Cedex, France.
| | - Pierre Buffiere
- INSA Lyon, DEEP Laboratory, Université de Lyon, 20, Avenue A. Einstein, 69621, Villeurbanne Cedex, France
| | | | - Armando Borges de Castilhos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina State, CEP 88040-970, Brazil
| | - Rémy Gourdon
- INSA Lyon, DEEP Laboratory, Université de Lyon, 20, Avenue A. Einstein, 69621, Villeurbanne Cedex, France
| |
Collapse
|
11
|
Brewer's Spent Grains-Valuable Beer Industry By-Product. Biomolecules 2020; 10:biom10121669. [PMID: 33322175 PMCID: PMC7764043 DOI: 10.3390/biom10121669] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The brewing sector is a significant part of the global food industry. Breweries produce large quantities of wastes, including wastewater and brewer’s spent grains. Currently, upcycling of food industry by-products is one of the principles of the circular economy. The aim of this review is to present possible ways to utilize common solid by-product from the brewing sector. Brewer’s spent grains (BSG) is a good material for sorption and processing into activated carbon. Another way to utilize spent grains is to use them as a fuel in raw form, after hydrothermal carbonization or as a feedstock for anaerobic digestion. The mentioned by-products may also be utilized in animal and human nutrition. Moreover, BSG is a waste rich in various substances that may be extracted for further utilization. It is likely that, in upcoming years, brewer’s spent grains will not be considered as a by-product, but as a desirable raw material for various branches of industry.
Collapse
|
12
|
Gullón P, Gullón B, Muñiz-Mouro A, Lú-Chau TA, Eibes G. Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139143. [PMID: 32417529 DOI: 10.1016/j.scitotenv.2020.139143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
A biorefinery scheme for the valorization of horse chestnut biowastes (a municipal solid waste) into added value bioactive compounds is proposed in this work. The bur fraction of horse chestnut was evaluated as a novel and cheap renewable feedstock to obtain valuable compounds suitable for their use in industrial applications. The integrated valorization scheme comprised an initial hydroethanolic extraction of antioxidant compounds (optimized through surface response methodology), the alkaline delignification of the exhausted solid to obtain a lignin-enriched fraction, and the enzymatic digestibility of the remaining cellulose fraction to produce fermentable sugars. In addition, the structural characterization of the extract by FT-IR and TGA was performed, and the analysis by UPLC-DAD-ESI-MS allowed the tentative identification of eleven antioxidant phenolic compounds. The application of this multiproduct valorization approach led to the production of 13 kg antioxidant extracted compounds, 33.2 kg lignin and 14.5 kg glucose per each 100 kg of horse chestnut burs, which demonstrates the great potential of this residue as a biorefinery substrate.
Collapse
Affiliation(s)
- Patricia Gullón
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello, 6, 36208 Vigo, Pontevedra, Spain.
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain.
| | - Abel Muñiz-Mouro
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thelmo A Lú-Chau
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|