1
|
Márquez-Borrás F, Sewell MA. Long-term study of the combined effects of ocean acidification and warming on the mottled brittle star, Ophionereis fasciata. J Exp Biol 2024; 227:jeb249426. [PMID: 39318332 DOI: 10.1242/jeb.249426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The global ocean is rapidly changing, posing a substantial threat to the viability of marine populations due to the co-occurrence of multiple drivers, such as ocean warming (OW) and ocean acidification (OA). To persist, marine species must undergo some combination of acclimation and adaptation in response to these changes. Understanding such responses is essential to measure and project the magnitude and direction of current and future vulnerabilities in marine ecosystems. Echinoderms have been recognised as a model in studies of OW-OA effects on marine biota. However, despite their global diversity, vulnerability and ecological importance in most marine habitats, brittle stars (ophiuroids) are poorly studied. A long-term mesocosm experiment was conducted on adult mottled brittle star (Ophionereis fasciata) as a case study to investigate the physiological response and trade-offs of marine organisms to ocean acidification, ocean warming and the combined effect of these two drivers. Long-term exposure of O. fasciata to high temperature and low pH affected survival, respiration and regeneration rates, growth rate, calcification/dissolution and righting response. Higher temperatures increased stress and respiration, and decreased regeneration and growth rates as well as survival. Conversely, changes in pH had more subtle or no effect, affecting only respiration and calcification. Our results indicate that exposure to a combination of high temperature and low pH produces complex responses for respiration, righting response and calcification. We address the knowledge gap of the impact of a changing ocean on ophiuroids in the context of echinoderm studies, proposing this class as an ideal alternative echinoderm for future research.
Collapse
Affiliation(s)
- Francisco Márquez-Borrás
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mary A Sewell
- School of Biological Sciences , University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Martins Medeiros IP, Souza MM. Acid times in physiology: A systematic review of the effects of ocean acidification on calcifying invertebrates. ENVIRONMENTAL RESEARCH 2023; 231:116019. [PMID: 37119846 DOI: 10.1016/j.envres.2023.116019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
The reduction in seawater pH from rising levels of carbon dioxide (CO2) in the oceans has been recognized as an important force shaping the future of marine ecosystems. Therefore, numerous studies have reported the effects of ocean acidification (OA) in different compartments of important animal groups, based on field and/or laboratory observations. Calcifying invertebrates have received considerable attention in recent years. In the present systematic review, we have summarized the physiological responses to OA in coral, echinoderm, mollusk, and crustacean species exposed to predicted ocean acidification conditions in the near future. The Scopus, Web of Science, and PubMed databases were used for the literature search, and 75 articles were obtained based on the inclusion criteria. Six main physiological responses have been reported after exposure to low pH. Growth (21.6%), metabolism (20.8%), and acid-base balance (17.6%) were the most frequent among the phyla, while calcification and growth were the physiological responses most affected by OA (>40%). Studies show that the reduction of pH in the aquatic environment, in general, supports the maintenance of metabolic parameters in invertebrates, with redistribution of energy to biological functions, generating limitations to calcification, which can have severe consequences for the health and survival of these organisms. It should be noted that the OA results are variable, with inter and/or intraspecific differences. In summary, this systematic review offers important scientific evidence for establishing paradigms in the physiology of climate change in addition to gathering valuable information on the subject and future research perspectives.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil.
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Li J, Xue S, Mao Y. Seawater carbonate parameters function differently in affecting embryonic development and calcification in Pacific abalone (Haliotis discus hannai). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106450. [PMID: 36827830 DOI: 10.1016/j.aquatox.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
pH or pCO2 are usually taken to study the impact of ocean acidification on molluscs. Here we studied the different impact of seawater carbonate parameters on embryonic development and calcification of the Pacific abalone (Haliotis discus hannai). Early embryonic development was susceptible to elevated pCO2 level. Larvae hatching duration was positively and hatching rate was negatively correlated with the pCO2 level, respectively. Calcium carbonate (CaCO3) deposition of larval shell was found to be susceptible to calcium carbonate saturation state (Ω) rather than pCO2 or pH. Most larvae incubated in seawater with Ωarag = 1.5 succeeded in shell formation, even when seawater pCO2 level was higher than 3700 μatm and pHT was close to 7.4. Nevertheless, larvae failed to generate CaCO3 in seawater with Ωarag ≤ 0.52 and control level of pCO2, while seawater DIC level was lowered (≤ 852 μmol/kg). Surprisingly, some larvae completed CaCO3 deposition in seawater with Ωarag = 0.6 and slightly elevated DIC (2266 μmol/kg), while seawater pCO2 level was higher than 2700 μatm and pHT was lower than 7.3. This indicates that abalone may be capable of regulating carbonate chemistry to support shell formation, however, the capability was limited as surging pCO2 level lowered growth rate and jeopardized the integrity of larval shells. Larvae generated thicker shell in seawater with Ωarag = 5.6, while adult abalone could not deposit CaCO3 in seawater with Ωarag = 0.29 and DIC = 321 μmol/kg. This indicates that abalone may lack the ability to directly remove or add inorganic carbon at the calcifying sites. In conclusion, different seawater carbonate parameters play different roles in affecting early embryonic development and shell formation of the Pacific abalone, which may exhibit limited capacity to regulate carbonate chemistry.
Collapse
Affiliation(s)
- Jiaqi Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Suyan Xue
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuze Mao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
4
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
5
|
Effects of Seawater Acidification on Echinoid Adult Stage: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The continuous release of CO2 in the atmosphere is increasing the acidity of seawater worldwide, and the pH is predicted to be reduced by ~0.4 units by 2100. Ocean acidification (OA) is changing the carbonate chemistry, jeopardizing the life of marine organisms, and in particular calcifying organisms. Because of their calcareous skeleton and limited ability to regulate the acid–base balance, echinoids are among the organisms most threatened by OA. In this review, 50 articles assessing the effects of seawater acidification on the echinoid adult stage have been collected and summarized, in order to identify the most important aspects to consider for future experiments. Most of the endpoints considered (i.e., related to calcification, physiology, behaviour and reproduction) were altered, highlighting how various and subtle the effects of pH reduction can be. In general terms, more than 43% of the endpoints were modified by low pH compared with the control condition. However, animals exposed in long-term experiments or resident in CO2-vent systems showed acclimation capability. Moreover, the latitudinal range of animals’ distribution might explain some of the differences found among species. Therefore, future experiments should consider local variability, long-term exposure and multigenerational approaches to better assess OA effects on echinoids.
Collapse
|
6
|
Voulgaris K, Varkoulis A, Zaoutsos S, Stratakis A, Vafidis D. Mechanical defensive adaptations of three Mediterranean sea urchin species. Ecol Evol 2021; 11:17734-17743. [PMID: 35003635 PMCID: PMC8717311 DOI: 10.1002/ece3.8247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
In the Mediterranean, Paracentrotus lividus and Sphaerechinus granularis are important drivers of benthic ecosystems, often coexisting in sublittoral communities. However, the introduction of the invasive diadematoid Diadema setosum, which utilizes venomous spines, may affect these communities. To describe the mechanical properties of the test and spines of these three species, specimens were collected in winter of 2019 from the sublittoral zone of the Dodecanese island complex, southeastern Aegean Sea. This region serves as a gateway for invasive species to the Mediterranean Sea. Crushing test was conducted on live individuals, while 3-point bending test was used to estimate spine stiffness. Porosity and mineralogy of the test and spine, thickness of the test, and breaking length of the spine were measured and compared, while the microstructural architecture was also determined. The test of S. granularis was the most robust (194.35 ± 59.59 N), while the spines of D. setosum (4.76 ± 2.13 GPa) exhibited highest flexibility. Increased porosity and thickness of the test were related to increased robustness, whereas increased flexibility of the spine was attributed to high porosity, indicating that porosity in the skeleton plays a key role in preventing fracture. The spines of S. granularis exhibited highest length after fracture % (71.54 ± 5.5%). D. setosum exhibited higher values of Mg concentration in the test (10%) compared with the spines (4%). For the first time, the mineralogy of an invasive species is compared with its native counterpart, while a comparison of the mechanical properties of different species of the same ecosystem also takes place. This study highlights different ways, in which sea urchins utilize their skeleton and showcases the ecological significance of these adaptations, one of which is the different ways of utilization of the skeleton for defensive purposes, while the other is the ability of D. setosum to decrease the Mg % of its skeleton degrading its mechanical properties, without compromising its defense, by depending on venomous bearing spines. This enables this species to occupy not only tropical habitats, where it is indigenous, but also temperate like the eastern Mediterranean, which it has recently invaded.
Collapse
Affiliation(s)
- Konstantinos Voulgaris
- Department of Ichthyology and Aquatic EnvironmentNea Ionia, University of ThessalyVolosGreece
| | - Anastasios Varkoulis
- Department of Ichthyology and Aquatic EnvironmentNea Ionia, University of ThessalyVolosGreece
| | | | - Antonios Stratakis
- School of Mineral Resources EngineeringCrete Technical University of CreteChaniaGreece
| | - Dimitris Vafidis
- Department of Ichthyology and Aquatic EnvironmentNea Ionia, University of ThessalyVolosGreece
| |
Collapse
|
7
|
Asnicar D, Novoa-Abelleira A, Minichino R, Badocco D, Pastore P, Finos L, Munari M, Marin MG. When site matters: Metabolic and behavioural responses of adult sea urchins from different environments during long-term exposure to seawater acidification. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105372. [PMID: 34058626 DOI: 10.1016/j.marenvres.2021.105372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
CO2-driven ocean acidification (OA) affects many aspects of sea urchin biology. However, even in the same species, OA effects are often not univocal due to non-uniform exposure setups or different ecological history of the experimental specimens. In the present work, two groups of adult sea urchins Paracentrotus lividus from different environments (the Lagoon of Venice and a coastal area in the Northern Adriatic Sea) were exposed to OA in a long-term exposure. Animals were maintained for six months in both natural seawater (pHT 8.04) and end-of-the-century predicted condition (-0.4 units pH). Monthly, physiological (respiration rate, ammonia excretion, O:N ratio) and behavioural (righting, sheltering) endpoints were investigated. Both pH and time of exposure significantly influenced sea urchin responses, but differences between sites were highlighted, particularly in the first months. Under reduced pH, ammonia excretion increased and O:N decreased in coastal specimens. Righting and sheltering were impaired in coastal animals, whereas only righting decreased in lagoon ones. These findings suggested a higher adaptation ability in sea urchins from a more variable environment. Interestingly, as the exposure continued, animals from both sites were able to acclimate. Results revealed plasticity in the physiological and behavioural responses of sea urchins under future predicted OA conditions.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | - Riccardo Minichino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, Padova, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia, Naples, Italy
| | | |
Collapse
|
8
|
Auzoux-Bordenave S, Chevret S, Badou A, Martin S, Di Giglio S, Dubois P. Acid-base balance in the hæmolymph of European abalone (Haliotis tuberculata) exposed to CO 2-induced ocean acidification. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110996. [PMID: 34058370 DOI: 10.1016/j.cbpa.2021.110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
Ocean acidification (OA) and the associated changes in seawater carbonate chemistry pose a threat to calcifying organisms. This is particularly serious for shelled molluscs, in which shell growth and microstructure has been shown to be highly sensitive to OA. To improve our understanding of the responses of abalone to OA, this study investigated the effects of CO2-induced ocean acidification on extra-cellular acid-base parameters in the European abalone Haliotis tuberculata. Three-year-old adult abalone were exposed for 15 days to three different pH levels (7.9, 7.7, 7.4) representing current and predicted near-future conditions. Hæmolymph pH and total alkalinity were measured at different time points during exposure and used to calculate the carbonate parameters of the extracellular fluid. Total protein content was also measured to determine whether seawater acidification influences the composition and buffer capacity of hæmolymph. Extracellular pH was maintained at seawater pH 7.7 indicating that abalones are able to buffer moderate acidification (-0.2 pH units). This was not due to an accumulation of HCO3- ions but rather to a high hæmolymph protein concentration. By contrast, hæmolymph pH was significantly decreased after 5 days of exposure to pH 7.4, indicating that abalone do not compensate for higher decreases in seawater pH. Total alkalinity and dissolved inorganic carbon were also significantly decreased after 15 days of low pH exposure. It is concluded that changes in the acid-base balance of the hæmolymph might be involved in deleterious effects recorded in adult H. tuberculata facing severe OA stress. This would impact both the ecology and aquaculture of this commercially important species.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle/CNRS/IRD/Sorbonne Université/UCN/UA, Station marine de Concarneau, 29900 Concarneau, France.
| | - Sandra Chevret
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle/CNRS/IRD/Sorbonne Université/UCN/UA, Station marine de Concarneau, 29900 Concarneau, France
| | - Aïcha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900 Concarneau, France
| | - Sophie Martin
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680 Roscoff Cedex, France
| | - Sarah Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP160/15, 1050, Brussels, Belgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP160/15, 1050, Brussels, Belgium
| |
Collapse
|
9
|
Di Giglio S, Agüera A, Pernet P, M'Zoudi S, Angulo-Preckler C, Avila C, Dubois P. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142669. [PMID: 33268256 DOI: 10.1016/j.scitotenv.2020.142669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Antarctic surface waters are expected to be the first to experience severe ocean acidification (OA) with carbonate undersaturation and large decreases in pH forecasted before the end of this century. Due to the long stability in environmental conditions and the relatively low daily and seasonal variations to which they are exposed, Antarctic marine organisms, especially those with a supposedly poor machinery to eliminate CO2 and protons and with a heavily calcified skeleton like echinoderms, are hypothesized as highly vulnerable to these environmental shifts. The opportunities offered by the natural pH gradient generated by vent activities in Deception Island caldera, Western Antarctic Peninsula, were used to investigate for the first time the acid-base physiologies, the impact of OA on the skeleton and the impact of pH on metal accumulation in the Antarctic sea star Odontaster validus and sea urchin Sterechinus neumayeri. The two species were sampled in four stations within the caldera, two at pH (total scale) 8.0-8.1 and two at reduced pH 7.8. Measured variables were pH, alkalinity, and dissolved inorganic carbon of the coelomic fluid; characteristic fracture force, stress and Young's modulus using Weibull statistics and Cd, Cu, Fe, Pb and Zn concentrations in the integument, gonads and digestive system. Recorded acid-base characteristics of both studied species fit in the general picture deduced from temperate and tropical sea stars and sea urchins but conditions and possibly confounding factors, principally food availability and quality, in the studied stations prevented definitive conclusions. Reduced seawater pH 7.8 and metals had almost no impact on the skeleton mechanical properties of the two investigated species despite very high Cd concentrations in O. validus integument. Reduced pH was correlated to increased contamination by most metals but this relation was weak. Translocation and caging experiments taking into account food parameters are proposed to better understand future processes linked to ocean acidification and metal contamination in Antarctic echinoderms.
Collapse
Affiliation(s)
- S Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.
| | - A Agüera
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium; Institute of Marine Research in Norway, Austevoll Research Station, Sauganeset 16, 5392, Norway
| | - Ph Pernet
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - S M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - C Angulo-Preckler
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - C Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Ph Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| |
Collapse
|
10
|
Bonaventura R, Zito F, Russo R, Costa C. A preliminary gene expression analysis on Paracentrotus lividus embryos exposed to UVB, Cadmium and their combination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105770. [PMID: 33581547 DOI: 10.1016/j.aquatox.2021.105770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Paracentrotus lividus is a Mediterranean and Eastern Atlantic sea urchin species, very sensitive to chemical and physical environmental changes and widely used in eco-toxicological studies. Here, we applied a high throughput screening approach on P. lividus embryos exposed to UVB radiation (UV), Cadmium Chloride (Cd) and their combination (Cd/UV), to deeply characterize the molecular responses adopted by embryos to cope with these stressors. in vitro eco-toxicological assays were performed by exposing embryos to Cd (10-4 M) soon after fertilization, to UV (200 and 400J/m2) at early stage of development, while in co-exposure experiments, Cd-exposed embryos were irradiated with UV at 200 J/m2. By NanoString nCounter technology, custom-made probes were developed and hybridized on total RNA extracted from exposed embryos at 51h after fertilization. By in silico analyses, we selected and retrieved at the NCBI nucleotide database a panel of P. lividus transcripts encoding for many regulatory and structural proteins that we ranked in categories, i.e., Apoptosis, Biomineralization, Defense, Development, Immunity, Signaling and Transcription Factors. The analysis of 127 transcripts highlighted the dysregulation of many genes, some specifically activated to cope with stress agents, others involved in the complex molecular network of genes that regulate embryo development. We revealed the downregulation of Biomineralization and Development genes and the upregulation of Defensive genes in Cd and Cd/UV embryos. Our approach, using sea urchin embryo as an in vivomodel, contributes to advance our knowledge about cellular responses to UV, Cd and their combination.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
11
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Pereira TM, Gnocchi KG, Merçon J, Mendes B, Lopes BM, Passos LS, Chippari Gomes AR. The success of the fertilization and early larval development of the tropical sea urchin Echinometra lucunter (Echinodermata: Echinoidea) is affected by the pH decrease and temperature increase. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105106. [PMID: 32861967 DOI: 10.1016/j.marenvres.2020.105106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The decrease in the pH of oceans and the increase in their temperature are the two main problems observed in the marine ecosystems due to the increasing emission of CO2 in the atmosphere. Both conditions can affect the ecological processes of reproduction, recruitment and survival of the marine biota. Thus, the objective of the present study was to evaluate the effects of pH decrease and temperature increase of seawater on the fertilization success and embryo-larval development of a species of tropical sea urchin. For this purpose, fertilization success (gametes) and embryo-larval development rate were determined by exposing gametes and embryos to decreasing pH values (8.0 (control), 7.7, and 7.4) and increasing temperatures (26 (control), 28, 30, 34, and 38 °C). These conditions were tested associated with each other (in synergy). The gamete test was sensitive to all investigated scenarios, the fertilization success was significantly reduced in the conditions of increased temperature (28, 30, 34, and 38 °C) associated with the ideal pH (pH 8.0) and the conditions of reduced pH (pH 7.7, and 7.4), remaining unchanged only in the ideal condition (pH 8.0 + 26 °C). However, the embryo test displayed enhanced sensitivity in the scenarios of temperature increase (28, 30, 34, and 38 °C) associated with pH decrease conditions. A significantly reduction of 29%, 23% and 10% was observed in all tested pH values at 38 °C, when compared to the control group (80%, 79.5% and 63%, respectively). Therefore, the present study suggests that the occurrence of both scenarios may have a significant impact, in the coming years, on the population of Echinometra lucunter.
Collapse
Affiliation(s)
- Tatiana Miura Pereira
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil.
| | - Karla Giavarini Gnocchi
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Julia Merçon
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Bruna Mendes
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Barbara Martins Lopes
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology (FISHLAB), University Vila Velha (UVV), Vila Velha, ES, Brazil
| | | |
Collapse
|