1
|
Martinez I Quer A, Arias CA, Ellegaard-Jensen L, Johansen A, Paulsen ML, Pastor A, Carvalho PN. Saturated constructed wetlands for the remediation of cylindrospermopsin and microcystin-LR: Plants, microbes, and biodegradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174745. [PMID: 39032754 DOI: 10.1016/j.scitotenv.2024.174745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs. Mesocosms were fed with synthetic lake water and spiked periodically with two cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), at environmentally relevant cyanotoxins concentrations (10 μg L-1). The influence of various design factors, including plant species, porous media, and seasonality, was explored. The mesocosms achieved maximum MC-LR and CYN mass removal rates of 95 % and 98 %, respectively. CYN removal is reported for the first time in CWs mimicking horizontal sub-surface flow CWs. Planted mesocosms consistently outperformed unplanted mesocosms, with Phragmites australis exhibiting superior cyanotoxin mass removal compared to Juncus effusus. Considering evapotranspiration, J. effusus yielded the least cyanotoxin-concentrated effluent due to the lower water losses in comparison with P. australis. Using the P-kC* model, different scaling-up scenarios for future piloting were calculated and discussed. Additionally, bacterial community structure was analyzed through correlation matrices and differential taxa analyses, offering valuable insights into their removal of cyanotoxins. Nevertheless, attempts to validate microcystin-LR biotransformation via the known mlrA gene degradation pathway were unfruitful, indicating alternative enzymatic degradation pathways occurring in such complex CW systems. Further investigation into the precise molecular mechanisms of removal and the identification of transformation products is needed for the comprehensive understanding of cyanotoxin mitigation in CW. This study points towards the feasibility of horizontal sub-surface flow CWs to be employed to control cyanotoxins in irrigation or recreational waters.
Collapse
Affiliation(s)
- Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Carlos Alberto Arias
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, C, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus, C, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus, C, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus, C, Denmark
| | - Maria Lund Paulsen
- Arctic Research Centre, Department of Biology, Ole Worms Allé 1, 8000, Aarhus, C, Denmark; Marine Microbiology, Bergen University, Thormøhlens gate, 53, Bergen, Norway
| | - Ada Pastor
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, C, Denmark; Group of Continental Aquatic Ecology Research (GRECO), Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus, C, Denmark.
| |
Collapse
|
2
|
Jiang BN, Zhang YY, Zhang ZY, Yang YL, Song HL. Tree-structured parzen estimator optimized-automated machine learning assisted by meta-analysis for predicting biochar-driven N 2O mitigation effect in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120335. [PMID: 38368804 DOI: 10.1016/j.jenvman.2024.120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Biochar is a carbon-neutral tool for combating climate change. Artificial intelligence applications to estimate the biochar mitigation effect on greenhouse gases (GHGs) can assist scientists in making more informed solutions. However, there is also evidence indicating that biochar promotes, rather than reduces, N2O emissions. Thus, the effect of biochar on N2O remains uncertain in constructed wetlands (CWs), and there is not a characterization metric for this effect, which increases the difficulty and inaccuracy of biochar-driven alleviation effect projections. Here, we provide new insight by utilizing machine learning-based, tree-structured Parzen Estimator (TPE) optimization assisted by a meta-analysis to estimate the potency of biochar-driven N2O mitigation. We first synthesized datasets that contained 80 studies on global biochar-amended CWs. The mitigation effect size was then calculated and further introduced as a new metric. TPE optimization was then applied to automatically tune the hyperparameters of the built extreme gradient boosting (XGBoost) and random forest (RF), and the optimum TPE-XGBoost obtained adequately achieved a satisfactory prediction accuracy for N2O flux (R2 = 91.90%, RPD = 3.57) and the effect size (R2 = 92.61%, RPD = 3.59). Results indicated that a high influent chemical oxygen demand/total nitrogen (COD/TN) ratio and the COD removal efficiency interpreted by the Shapley value significantly enhanced the effect size contribution. COD/TN ratio made the most and the second greatest positive contributions among 22 input variables to N2O flux and to the effect size that were up to 18% and 14%, respectively. By combining with a structural equation model analysis, NH4+-N removal rate had significant negative direct effects on the N2O flux. This study implied that the application of granulated biochar derived from C-rich feedstocks would maximize the net climate benefit of N2O mitigation driven by biochar for future biochar-based CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
3
|
Mosquera-Romero S, Ntagia E, Rousseau DP, Esteve-Núñez A, Prévoteau A. Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100265. [PMID: 37101565 PMCID: PMC10123341 DOI: 10.1016/j.ese.2023.100265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, BOX9050, Ecuador
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
| | - Diederik P.L. Rousseau
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Alcalá de Henares, Spain
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Yeruva DK, S VM. Electrogenic engineered flow through tri-phasic wetland system for azo dye treatment: Microbial dynamics and functional metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122107. [PMID: 37369299 DOI: 10.1016/j.envpol.2023.122107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Electrogenic engineered flow through tri-phasic wetland (EEFW) system based on nature-based ecological principles was studied by integrating successive biological microenvironments. The potential mechanism of the plant root-based microbial community and its functional diversity with the influence of plant-microbe-electrode synergism towards dye degradation was evaluated. The EEFW system was operated at three varied dye loads of 10, 25 and 50 mg L-1, where the results from the cumulative outlets revealed a maximum dye removal efficiency of 96%, 96.5% and 93%, respectively. Microbial community analysis depicted synergistic dependence on the plant-microbe-electrode interactions, influencing their functional diversity and metabolism towards detoxification of pollutants. The core microbial taxa enriched against the microenvironment variation were mostly associated with carbon and dye removal viz., Desulfomonile tiedjei and Rhodopseudomonas palustris in Tank 1 and Chloroflexi bacterium and Steroidobacter denitrificans in Tank 2. The degradation of polycyclic aromatic hydrocarbons, chloroalkane/chloroalkene, nitrotoluene, bisphenol, caprolactam and 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) were observed to be predominant in Tank 1. EEFW system could be one of the option for utilizing nature-based processes for the treatment of wastewater by self-induced bioelectrogenesis to augment process efficiency.
Collapse
Affiliation(s)
- Dileep Kumar Yeruva
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Mohan S
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Barros DJ, Carvalho GA, de Chaves MG, Vanzela LS, Kozusny-Andreani DI, Guarda EA, Neu V, de Morais PB, Tsai SM, Navarrete AA. Microbial metabolic activity in Amazon floodplain forest and agricultural soils. Front Microbiol 2023; 14:1144062. [PMID: 37293212 PMCID: PMC10244710 DOI: 10.3389/fmicb.2023.1144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Microorganisms play an essential role in ecosystem functions. An increasingly used method for conducting functional analyses of a soil microbial community is based on the physiological profile at the community level. This method allows the metabolic capacity of microorganisms to be assessed based on patterns of carbon consumption and derived indices. In the present study, the functional diversity of microbial communities was assessed in soils from seasonally flooded-forest (FOR) and -traditional farming systems (TFS) in Amazonian floodplains flooded with black, clear, and white water. The soils of the Amazon floodplains showed differences in the metabolic activity of their microbial communities, with a general trend in activity level of clear water floodplain > black water floodplain > white water floodplain. The redundancy analysis (RDA) indicated that soil moisture (flood pulse) was the most important environmental parameter in determining the metabolic activity of the soil microbial communities in the black, clear, and white floodplains. In addition, the variance partitioning analysis (VPA) indicated that the microbial metabolic activity of the soil was more influenced by water type (41.72%) than by seasonality (19.55%) and land use type (15.28%). The soil microbiota of the white water floodplain was different from that of the clear water and black water floodplains in terms of metabolic richness, as the white water floodplain was mainly influenced by the low substrate use during the non-flooded period. Taken together, the results show the importance of considering soils under the influence of flood pulses, water types, and land use as environmental factors when recognizing functional diversity and ecosystem functioning in Amazonian floodplains.
Collapse
Affiliation(s)
- Dayane J. Barros
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Glauber A. Carvalho
- Faculty of Engineering, Architecture and Urbanism, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Miriam G. de Chaves
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Luiz S. Vanzela
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| | | | - Emerson A. Guarda
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Vania Neu
- Federal Rural University of Amazonia (UFRA), Belém, Brazil
| | - Paula B. de Morais
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Acacio A. Navarrete
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| |
Collapse
|
6
|
Niu Y, Qu M, Du J, Wang X, Yuan S, Zhang L, Zhao J, Jin B, Wu H, Wu S, Cao X, Pang L. Effects of multiple key factors on the performance of petroleum coke-based constructed wetland-microbial fuel cell. CHEMOSPHERE 2023; 315:137780. [PMID: 36623598 DOI: 10.1016/j.chemosphere.2023.137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In this study, two constructed wetland-microbial fuel cells (CW-MFC), including a closed-circuit system (CCW-MFC) and an open-circuit system (OCW-MFC) with petroleum coke as electrode and substrate, were constructed to explore the effect of multiple key factors on their operation performances. Compared to a traditional CW, the CCW-MFC system showed better performance, achieving an average removal efficiency of COD, NH4+-N, and TN of 94.49 ± 1.81%, 94.99 ± 4.81%, and 84.67 ± 5.6%, respectively, when the aeration rate, COD concentration, and hydraulic retention time were 0.4 L/min, 300 mg/L, and 3 days. The maximum output voltage (425.2 mV) of the CCW-MFC system was achieved when the aeration rate was 0.2 L/min. In addition, the CCW-MFC system showed a greater denitrification ability due to the higher abundance of Thiothrix that might attract other denitrifying bacteria, such as Methylotenera and Hyphomicrobium, to participate in the denitrifying process, indicating the quorum sensing could be stimulated within the denitrifying microbial community.
Collapse
Affiliation(s)
- Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shuaikang Yuan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lingyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jianguo Zhao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong University, Qingdao, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Long Pang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| |
Collapse
|
7
|
Du J, Niu Y, Wu H, Konnerup D, Wu S, Ramírez-Vargas CA, Yang Y, Brix H, Arias CA. Effects of electroconductive materials on treatment performance and microbial community structure in biofilter systems with silicone tubings. CHEMOSPHERE 2022; 307:135828. [PMID: 35944690 DOI: 10.1016/j.chemosphere.2022.135828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Biofilter systems coupling with microbial electrochemical technology can enhance the removal performance of pollutants. In this study, two types of coke (PK-A and PK-LSN) were used as electroconductive substrates in biofilter systems with silicone tubings. The results showed that the silicone tubings were beneficial for removing NH4+-N. The PK-A systems reached removal efficiencies up to 83.5-85.3% for NH4+-N without aeration. Compared to gravel systems, significantly higher removal efficiencies of NO3--N (84.8-95.4%) were obtained in coke systems, and better removal of PO43--P (91.9-95.7%) was also simultaneously achieved in PK-A systems. Redundancy analysis (RDA) indicated that the better performances of coke systems rely on the functions of both electroactive (Trichococcus and Sulfurovum) and non-electroactive bacteria (Clostridium_sensu_stricto_1, Propionicicella, and Acinetobacter). These findings highlight the important contribution of silicone tubings to oxygen supply and provide useful guidance for the application of coke in composite matrix systems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Department of Biology, Aarhus University, Aarhus, Denmark; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| | - Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Haiming Wu
- Department of Biology, Aarhus University, Aarhus, Denmark; School of Environmental Science & Engineering, Shandong University, Qingdao, China
| | - Dennis Konnerup
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Carlos A Ramírez-Vargas
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Yanqin Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Fang YK, Sun Q, Fang PH, Li XQ, Zeng R, Wang HC, Wang AJ. Integrated constructed wetland and bioelectrochemistry system approach for simultaneous enhancment of p-chloronitrobenzene and nitrogen transformations performance. WATER RESEARCH 2022; 217:118433. [PMID: 35429886 DOI: 10.1016/j.watres.2022.118433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.
Collapse
Affiliation(s)
- Ying-Ke Fang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan-Hao Fang
- China Railway Fifth Survey And Design Institute Group Co., LTD. Zhengzhou Branch, Zhengzhou, 450000, China
| | - Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ran Zeng
- Nanjing Tech University, College of Civil Engineering, Nanjing, 211816, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ai-Jie Wang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Peñacoba-Antona L, Ramirez-Vargas CA, Wardman C, Carmona-Martinez AA, Esteve-Núñez A, Paredes D, Brix H, Arias CA. Microbial Electrochemically Assisted Treatment Wetlands: Current Flow Density as a Performance Indicator in Real-Scale Systems in Mediterranean and Northern European Locations. Front Microbiol 2022; 13:843135. [PMID: 35450282 PMCID: PMC9016324 DOI: 10.3389/fmicb.2022.843135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A METland is an innovative treatment wetland (TW) that relies on the stimulation of electroactive bacteria (EAB) to enhance the degradation of pollutants. The METland is designed in a short-circuit mode (in the absence of an external circuit) using an electroconductive bed capable of accepting electrons from the microbial metabolism of pollutants. Although METlands are proven to be highly efficient in removing organic pollutants, the study of in situ EAB activity in full-scale systems is a challenge due to the absence of a two-electrode configuration. For the first time, four independent full-scale METland systems were tested for the removal of organic pollutants and nutrients, establishing a correlation with the electroactive response generated by the presence of EAB. The removal efficiency of the systems was enhanced by plants and mixed oxic-anoxic conditions, with an average removal of 56 g of chemical oxygen demand (COD) mbed material -3 day-1 and 2 g of total nitrogen (TN) mbed material -3 day-1 for Ørby 2 (partially saturated system). The estimated electron current density (J) provides evidence of the presence of EAB and its relationship with the removal of organic matter. The tested METland systems reached the max. values of 188.14 mA m-2 (planted system; IMDEA 1), 223.84 mA m-2 (non-planted system; IMDEA 2), 125.96 mA m-2 (full saturated system; Ørby 1), and 123.01 mA m-2 (partially saturated system; Ørby 2). These electron flow values were remarkable for systems that were not designed for energy harvesting and unequivocally show how electrons circulate even in the absence of a two-electrode system. The relation between organic load rate (OLR) at the inlet and coulombic efficiency (CE; %) showed a decreasing trend, with values ranging from 8.8 to 53% (OLR from 2.0 to 16.4 g COD m-2 day-1) for IMDEA systems and from 0.8 to 2.5% (OLR from 41.9 to 45.6 g COD m-2 day-1) for Ørby systems. This pattern denotes that the treatment of complex mixtures such as real wastewater with high and variable OLR should not necessarily result in high CE values. METland technology was validated as an innovative and efficient solution for treating wastewater for decentralized locations.
Collapse
Affiliation(s)
- Lorena Peñacoba-Antona
- IMDEA Water, Parque Científico Tecnológico, Universidad de Alcalá, Madrid, Spain
- METfilter S.L., Seville, Spain
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Carlos Andres Ramirez-Vargas
- WATEC, Aarhus University, Aarhus, Denmark
- Department of Biology—Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Colin Wardman
- IMDEA Water, Parque Científico Tecnológico, Universidad de Alcalá, Madrid, Spain
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | | | - Abraham Esteve-Núñez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Diego Paredes
- Water and Sanitation Research Group (GIAS), Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Hans Brix
- WATEC, Aarhus University, Aarhus, Denmark
- Department of Biology—Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Carlos Alberto Arias
- WATEC, Aarhus University, Aarhus, Denmark
- Department of Biology—Aquatic Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Maximizing Benefits to Nature and Society in Techno-Ecological Innovation for Water. SUSTAINABILITY 2021. [DOI: 10.3390/su13116400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nature-based solutions (NbS) build upon the proven contribution of well-managed and diverse ecosystems to enhance resilience of human societies. They include alternatives to techno-industrial solutions that aim to enhance social-ecological integration by providing simultaneous benefits to nature (such as biodiversity protection and green/blue space) and society (such as ecosystem services and climate resiliency). Yet, many NbS exhibit aspects of a technological or engineered ecosystem integrated into nature; this techno-ecological coupling has not been widely considered. In this work, our aim is to investigate this coupling through a high-level and cross-disciplinary analysis of NbS for water security (quantity, quality, and/or water-related risk) across the spectrums of naturalness, biota scale, and benefits to nature and society. Within the limitations of our conceptual analysis, we highlight the clear gap between “nature” and “nature-based” for most NbS. We present a preliminary framework for advancing innovation efforts in NbS towards maximizing benefits to both nature and society, and offer examples in biophysical innovation and innovation to maximize techno-ecological synergies (TES).
Collapse
|
11
|
Wang H, Tian T, Gong Y, Ma S, Altaf MM, Wu H, Diao X. Both environmental and spatial variables affect bacterial functional diversity in mangrove sediments at an island scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142054. [PMID: 32896729 DOI: 10.1016/j.scitotenv.2020.142054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Sediment microorganisms are influenced by various biotic and abiotic factors. However, information concerning the spatial factors that determine the functional diversity of sediment bacterial communities at an island scale is limited. Here, we conducted an island-scale study to assess the driving forces governing the functional diversity of sediment bacterial communities in different mangroves around the coast of Hainan Island, southern China. For mangrove sediments in Hainan Island, differences in the metabolic activity and functional diversity among four sites were context dependent, while that showed a trend of East > North > West > South. Furthermore, total carbon, nitrite nitrogen, and salinity are important environmental factors that determine the metabolic functional diversity of bacterial communities. This study also provided important insights for explaining the metabolic functional diversity of bacterial communities in tropical mangrove sediments. The metabolic activity had a significantly response to environmental variables (13.2% of pure variance was explained) and spatial variables (12.4%). More importantly, given that spatial variables may contribute to the bacterial functional as important as environmental variables, this spatial variety of bacterial functional provides new insight into studying bacterial functional biogeographic patterns and impacts on sediment-associated function.
Collapse
Affiliation(s)
- Haihua Wang
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Tian Tian
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Ying Gong
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Siyuan Ma
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Hongping Wu
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China; School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China.
| |
Collapse
|