1
|
Yang L, He T, Yuan Y, Xiong Y, Lei H, Zhang M, Chen M, Yang L, Zheng C, Wang C. Enhancement of cold-adapted heterotrophic nitrification and denitrification in Pseudomonas sp. NY1 by cupric ions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 414:131574. [PMID: 39378533 DOI: 10.1016/j.biortech.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Cupric ions can restrain biological nitrogen removal processes, which comprise nitrite reductase and nitric oxide reductase. Here, Pseudomonas sp. NY1 can efficiently perform heterotrophic nitrification and aerobic denitrification with cupric ions at 15 °C. At optimal culturing conditions, low cupric ion levels accelerated nitrogen degradation, and ammonium and nitrite removal efficiencies increased by 2.33%-4.85% and 6.76%-12.30%, respectively. Moreover, the maximum elimination rates for ammonium and nitrite increased from 9.48 to 10.26 mg/L/h and 6.20 to 6.80 mg/L/h upon adding 0.05 mg/L cupric ions. Additionally, low cupric ion concentrations promoted electron transport system activity (ETSA), especially for nitrite reduction. However, high concentrations of cupric ions decreased the ETSA during nitrogen conversion processes. The crucial enzymes ammonia monooxygenase, nitrate reductase, and nitrite reductase possessed similarly trends as ETSA upon exposure to cupric ion. These findings deepen the understanding for the effect of cupric ions on nitrogen consumption and bioremediation in nitrogen-polluted waters.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Yulan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yufen Xiong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hongxue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunxia Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cerong Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
2
|
Zhou L, Zhang X, Zhang X, Wu P, Wang A. Insights into the carbon and nitrogen metabolism pathways in mixed-autotrophy/heterotrophy anammox consortia in response to temperature reduction. WATER RESEARCH 2024; 268:122642. [PMID: 39427349 DOI: 10.1016/j.watres.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
While the multi-coupled anammox system boasts a substantial research foundation, the specific characteristics of its synergistic metabolic response to decreased temperatures, particularly within the range of 13-15 °C, remained elusive. In this study, we delve into the intricate carbon and nitrogen metabolism pathways of mixed-autotrophy/heterotrophy anammox consortia under conditions of temperature reduction. Our macrogenomic analyses reveal a compelling phenomenon: the stimulation of functional genes responsible for complete denitrification, suggesting an enhancement of this process during temperature reduction. This adaptation likely contributes to maintaining system performance amidst environmental challenges. Further metabolic functional recombination analyses highlight a dramatic shift in microbial community composition, with denitrifying MAGs (metagenome-assembled genomes) experiencing a substantial increase in abundance (up to 200 times) compared to autotrophic MAGs. This proliferation underscores the strong stimulatory effect of temperature reduction on denitrifying species. Notably, autotrophic MAGs play a pivotal role in supporting the glycolytic processes of denitrifying MAGs, underscoring the intricate interdependencies within the consortia. Moreover, metabolic variations in amino acid composition among core MAGs emerge as a crucial adaptation mechanism. These differences facilitate the preservation of enzyme activity and enhance the consortia's resilience to low temperatures. Together, these findings offer a comprehensive understanding of the microbial synergistic metabolism within mixed-autotrophy/heterotrophy anammox consortia under temperature reduction, shedding light on their metabolic flexibility and resilience in dynamic environments.
Collapse
Affiliation(s)
- Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Fan Y, Yan D, Chen X, Ran X, Cao W, Li H, Wan J. Novel insights into the co-metabolism of pyridine with different carbon substrates: Performance, metabolism pathway and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133396. [PMID: 38176261 DOI: 10.1016/j.jhazmat.2023.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored. To treat 400 mg/L pyridine, all reactors achieved remarkably high removal efficiencies, surpassing 98.5%. And the co-metabolism reactors had much better pyridine-N removal performance. Batch experiments revealed that glucose supplementation bolstered nitrogen assimilation, thereby promoting the breakdown of pyridine, and resulting in the highest pyridine removal rate and pyridine-N removal efficiency. The high abundance of Saccharibacteria (15.54%) and the enrichment of GLU and glnA substantiated this finding. On the contrary, phenol delayed pyridine oxidation, potentially due to its higher affinity for phenol hydroxylase. Nevertheless, phenol proved valuable as a carbon source for denitrification, augmenting the elimination of pyridine-N. This was underscored by the abundant Thauera (30.77%) and Parcubacteria (7.21%) and the enriched denitrification enzymes (narH, narG, norB, norC, and nosZ, etc.). This study demonstrated that co-metabolic degradation can bolster the simultaneous conversion of pyridine and pyridine-N, and shed light on the underling mechanism.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoni Ran
- Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China.
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Wang L, Wang S, Chen C, Tang Y, Liu B. Multi-omics analysis to reveal key pathways involved in low C/N ratio stress response in Pseudomonas sp. LW60 with superior nitrogen removal efficiency. BIORESOURCE TECHNOLOGY 2023; 389:129812. [PMID: 37776911 DOI: 10.1016/j.biortech.2023.129812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In practical engineering, nitrogen removal at low temperatures or low C/N ratios is difficult. Although strains can remove nitrogen well at low temperatures, there is no research on the performance and deep mechanism of strains under low C/N ratio stress. In this study, Pseudomonas sp. LW60 with superior nitrogen removal efficiency under low C/N ratio stress was isolated at 4 °C. With a C/N ratio of 2-10, the NH4+-N removal efficiency was 40.02 %-100 % at 4 °C. Furthermore, the resistance mechanism of Pseudomonas sp. LW60 to low C/N ratio stress was deeply investigated by multi-omics. The results of transcriptome, proteome, and metabolome revealed that the resistance of strain LW60 to low C/N ratio stress was attributed to enhanced central carbon metabolism, amino acid metabolism, and ABC transporters, rather than nitrogen removal pathways. This study isolated a strain with low C/N ratio tolerance and deeply explored its tolerance mechanism by multi-omics.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Shipeng Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China.
| |
Collapse
|
5
|
Jiang S, Shang X, Chen G, Zhao M, Kong H, Huang Z, Zheng X. Effects of regular zooplankton supplement on the bacterial communities and process performance of biofilm for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118933. [PMID: 37690248 DOI: 10.1016/j.jenvman.2023.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Biofilm processing technologies were widely used for wastewater treatment due to its advantages of low cost and easy management. However, the aging biofilms inevitably decrease the purification efficiency and increase the sludge production, which limited the widely application of biofilms technologies in rural area. In this study, we proposed a novel strategy by introducing high-trophic organisms to prey on low-trophic organisms, and reduce the aged biofilms and enhance treatment efficiencies in rural wastewater treatment. The effect of three typical zooplankton (Paramecium, Daphnia, and Rotifer) supplement on the purification efficiency and biofilm properties in the contact oxidation process were investigated, and the reaction conditions were optimized by an orthogonal experiment. Under optimal conditions, the biofilms weight decreased 67.6%, the oxygen consumption rate of biofilms increased 9.4%, and wastewater treatment efficiency was obviously increased after zooplankton supplement. Microbial sequencing results demonstrated that the zooplankton optimize the contact oxidation process by altering the bacterial genera mainly Diaphorobacter, Thermomonas, Alicycliphilus and Comamonas. This research provides insight into mechanism of the zooplankton supplement in biological contact oxidation process and provides a feasible strategy for improving the rural sewage treatment technology.
Collapse
Affiliation(s)
- Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Xiao Shang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200135, PR China.
| | - Gong Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Hainan Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Zhao Huang
- Wenzhou Ecological Park Development and Construction Investment Group Co., Ltd, Wenzhou, Zhejiang, 325000, PR China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
6
|
Cheng H, Lee W, Wen C, Dai H, Cheng F, Lu X. A sustainable integrated anoxic/aerobic bio-contactor process for simultaneously in-situ deodorization and pollutants removal from decentralized domestic sewage. Heliyon 2023; 9:e22339. [PMID: 38045187 PMCID: PMC10689935 DOI: 10.1016/j.heliyon.2023.e22339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The integration of anoxic filter and aerobic rotating biological contactor shows promise in treating rural domestic sewage. It offers high efficiency, low sludge production, and strong shock resistance. However, further optimization is needed for odor control, pollutant removal, and power consumption. In this study, the investigation on a one-pump-drive lab-scale device of retention anoxic filter (RAF) integrated with hydraulic rotating bio-contactor (HRBC) and its optimal operation mode were conducted. During the 50-day operation, optimal operation parameters were investigated. These parameters included a 175 % reflux ratio (RR), 5-h hydraulic retention time in the RAF (HRTRAF), and 2.5-h hydraulic retention time in the HRBC (HRTHRBC). Those conditions characterized a micro-aerobic environment (DO: 0.6-0.8 mg/L) in RAF, inducing improved deodorization (89.3 % sulfide removal) and denitrification (85.9 % nitrate removal) simultaneously. During the operation period, 84.79 ± 3.87 % COD, 82.71± 2.06 % NH 4 + -N, 74.83 ± 2.06 % TN, 91.68± 2.12 % S2-, and 89.04 ± 1.68 % TON were removed in RAF-HRBC. Based on large amount of operational data, organic loading rate curves of RAF-HRBC were validated and calibrated as a crucial reference to aid in full-scale designs and applications. The richness of microbial community was improved in both RAF and HRBC. In the RAF, the autotrophic sulfide-oxidizing nitrate-reducing bacteria (a-son) and heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-son) were selectively enriched, which intensified the sulfide removal and denitrification process. In the two-stage HRBC system, the 1st stage RBC was primarily composed of organics degraders, while the 2nd stage RBC consisted mainly of ammonium oxidizers. Overall, the integrated RAF-HRBC process holds significant potential for simultaneously improving pollutant removal and in-situ odor mitigation in decentralized domestic sewage treatment. This process specifically contributes to enhancing environmental sustainability and operational efficiency.
Collapse
Affiliation(s)
- Helai Cheng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Wenhua Lee
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Cangxiang Wen
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| | - Hongliang Dai
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China
| | - Fangkui Cheng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
- ERC Taihu Lake Water Environment (Yixing, Wuxi), No. 1 Puzhubeilu Road, Yixing, Wuxi 214226, China
| |
Collapse
|
7
|
Wang S, Gong Z, Wang Y, Cheng F, Lu X. An anoxic-aerobic system combined with integrated vertical-flow constructed wetland to highly enhance simultaneous organics and nutrients removal in rural China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117349. [PMID: 36738718 DOI: 10.1016/j.jenvman.2023.117349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The biggest problem in the treatment of rural domestic sewage is that the existing treatment projects require the big investment and the high operation and maintenance costs. To overcome this problem, cost-effective, low-consuming, resource-recovering and easy-maintenance technologies are urgently demanded. To this end, a novel anoxic-aerobic system combined with integrated vertical-flow constructed wetland (IVFCW) with source separation was proposed for treating rural sewage in this study. The anoxic-aerobic system contained the anoxic filter (ANF), two-stage waterwheel driving rotating biological contactors (ts-WDRBCs). Key parameters of ts-WDRBCs were identified to be 0.6 m drop height and 4 r/min rotational speed found on oxygenated clean water experiments. Then, the optimal operating parameters were determined to be 200% reflux ratio and 3 h hydraulic retention time of ts-WDRBCs. During the 80-day operation, 91.58 ± 1.86% COD, 96.17 ± 0.92% NH4+-N, 82.71 ± 3.92% TN and 92.28 ± 2.78% TP were removed under the optimal operating parameters. Compared with other treatment technologies, this combined bio-ecological system could achieve the higher simultaneous organics and nutrients removal. The effluent NO3--N/NH4+-N concentration ratio of ts-WDRBCs was 2.15 ± 0.54, which was proved to be beneficial for plants growth. The microbial communities coexisted in each section ensured the desired removal performance of combined bio-ecological system. Summarily, high performance together with low investment costs and cheap operation costs are characteristics that make this system a promising and competitive alternative for rural sewage treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Ziao Gong
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Yunchen Wang
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Fangkui Cheng
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China
| | - Xiwu Lu
- Southeast University, School Energy and Environment, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Road, Wuxi, 214135, PR China.
| |
Collapse
|
8
|
Ai S, Du L, Nie Z, Liu W, Kang H, Wang F, Bian D. Characterization of a novel micro-pressure double-cycle reactor for low temperature municipal wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:394-406. [PMID: 34424135 DOI: 10.1080/09593330.2021.1972169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
To solve the deterioration of effluent caused by low temperature in urban sewage treatment plant in cold areas, a new type of reactor was proposed, the biochemical environmental and low-temperature operating characteristics of the reactor were studied. Through analysis of flow simulation and dissolved oxygen (DO) distribution when the aeration rate was 0.6 m3/h, it showed that there were many different DO environments in the reactor at the same time, which provided favourable conditions for various biochemical reactions. The operation test showed that the average effluent removal rate of COD, TN, NH4+-N and TP was 92.53%, 74.57%, 89.61% and 96.04%, respectively. And there were a variety of functional bacteria related to nitrogen and phosphorus removal in the system, most of them with strong adaptability at low temperatures. Among the dominant microorganisms, Flavobacterium and Rhodobacter were related to denitrification, Aeromonas and Thiothrix were related to phosphorous removal. Denitrifying phosphorus removal was the main way of phosphorus removal. Picrust2 results showed that the reactor operated well at low temperature, and the regional difference distribution of nitrification genes further confirmed the existence of functional zones in the reactor. The results showed that the Micro-pressure Double-cycle reactor worked well at low temperature, which provided a new idea and way for the upgrading of urban sewage treatment plants in cold areas.
Collapse
Affiliation(s)
- Shengshu Ai
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Linzhu Du
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Zebing Nie
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Wenai Liu
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Hua Kang
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Fan Wang
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Dejun Bian
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| |
Collapse
|
9
|
Ya T, Liu J, Zhang M, Wang Y, Huang Y, Hai R, Zhang T, Wang X. Metagenomic insights into the symbiotic relationship in anammox consortia at reduced temperature. WATER RESEARCH 2022; 225:119184. [PMID: 36206682 DOI: 10.1016/j.watres.2022.119184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Anammox as a promising biological nitrogen removal technology has attracted much attention. However, cold temperature would limit its wide application and little is known about the microbial interactions between anammox bacteria (AnAOB) and heterotrophic bacteria at cold temperature. Here, we observed reduced temperature (25-15 °C) promoted the secretion of EPS and thus stimulated bigger size of granular sludge in a laboratory-scale anammox reactor. We further combined co-occurrence network analysis and genome-centered metagenomics to explore the potential interactions between AnAOB and heterotrophic bacteria. Network analysis suggested 22 out of 25 positively related species were reported as definite heterotrophic bacteria in subnetwork of AnAOB. Genome-centered metagenomics analysis yielded 23 metagenomic assembly genomes (MAGs), and we found that Acidobacteriota-affiliated bacteria could biosynthesize most polysaccharides (PS) precursors and contain the most glycosyltransferases and transporters to facilitate exopolysaccharides biosynthesis, together with partial PS precursors produced by AnAOB. AMX1 as the only anammox genome could synthesize most amino acids and cross feed with some heterotrophs to affect the extracellular protein function. Additionally, Bacteroidota, Planctomycetota, Chloroflexota, and Proteobacteria could contribute folate and molybdopterin cofactor for AMX1 to benefit their activity and growth. Superphylum Patescibacteria could survive by cross-feeding with AnAOB and heterotrophic organisms about organic compounds (Glyceraldehyde-3P and lactate). These cross-feedings maintained the stability of anammox reactor performance and emphasize the importance of heterotrophs in anammox system at reduced temperature.
Collapse
Affiliation(s)
- Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
| | - Yan Huang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Nitrogen Removal Characteristics of a Cold-Tolerant Aerobic Denitrification Bacterium, Pseudomonas sp. 41. Catalysts 2022. [DOI: 10.3390/catal12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen pollution of surface water is the main cause of water eutrophication, and is considered a worldwide challenge in surface water treatment. Currently, the total nitrogen (TN) content in the effluent of wastewater treatment plants (WWTPs) is still high at low winter temperatures, mainly as a result of the incomplete removal of nitrate (NO3−-N). In this research, a novel aerobic denitrifier identified as Pseudomonas sp. 41 was isolated from municipal activated sludge; this strain could rapidly degrade a high concentration of NO3−-N at low temperature. Strain 41 completely converted 100 mg/L NO3−-N in 48 h at 15 °C, and the maximum removal rate reached 4.0 mg/L/h. The functional genes napA, nirS, norB and nosZ were successfully amplified, which provided a theoretical support for the aerobic denitrification capacity of strain 41. In particular, the results of denitrification experiments showed that strain 41 could perform aerobic denitrification under the catalysis of NAP. Nitrogen balance analysis revealed that strain 41 degraded NO3−-N mainly through assimilation (52.35%) and aerobic denitrification (44.02%), and combined with the gene amplification results, the nitrate metabolism pathway of strain 41 was proposed. Single-factor experiments confirmed that strain 41 possessed the best nitrogen removal performance under the conditions of sodium citrate as carbon source, C/N ratio 10, pH 8, temperature 15–30 °C and rotation speed 120 rpm. Meanwhile, the bioaugmentation test manifested that the immobilized strain 41 remarkably improved the denitrification efficiency and shortened the reaction time in the treatment of synthetic wastewater.
Collapse
|
11
|
Kallistova A, Nikolaev Y, Grachev V, Beletsky A, Gruzdev E, Kadnikov V, Dorofeev A, Berestovskaya J, Pelevina A, Zekker I, Ravin N, Pimenov N, Mardanov A. New Insight Into the Interspecies Shift of Anammox Bacteria Ca. "Brocadia" and Ca. "Jettenia" in Reactors Fed With Formate and Folate. Front Microbiol 2022; 12:802201. [PMID: 35185828 PMCID: PMC8851195 DOI: 10.3389/fmicb.2021.802201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of anaerobic ammonium-oxidizing (anammox) bacteria to environmental fluctuations is a frequent cause of reactor malfunctions. It was hypothesized that the addition of formate and folate would have a stimulating effect on anammox bacteria, which in turn would lead to the stability of the anammox process under conditions of a sharp increase in ammonium load, i.e., it helps overcome a stress factor. The effect of formate and folate was investigated using a setup consisting of three parallel sequencing batch reactors equipped with a carrier. Two runs of the reactors were performed. The composition of the microbial community was studied by the 16S rRNA gene profiling and metagenomic analysis. Among anammox bacteria, Ca. "Brocadia" spp. dominated during the first run. A stimulatory effect of folate on the daily nitrogen removal rate (dN) was identified. The addition of formate led to progress in dissimilatory nitrate reduction and stimulated the growth of Ca. "Jettenia" spp. The spatial separation of two anammox species was observed in the formate reactor: Ca. "Brocadia" occupied the carrier and Ca. "Jettenia"-the walls of the reactors. Biomass storage at low temperature without feeding led to an interspecies shift in anammox bacteria in favor of Ca. "Jettenia." During the second run, a domination of Ca. "Jettenia" spp. was recorded along with a stimulating effect of formate, and there was no effect of folate on dN. A comparative genome analysis revealed the patterns suggesting different strategies used by Ca. "Brocadia" and Ca. "Jettenia" spp. to cope with environmental changes.
Collapse
Affiliation(s)
- Anna Kallistova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Grachev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Berestovskaya
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pelevina
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nikolai Ravin
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Zhao T, Chen P, Zhang L, Zhang L, Gao Y, Ai S, Liu H, Liu X. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen. BIORESOURCE TECHNOLOGY 2021; 339:125620. [PMID: 34311410 DOI: 10.1016/j.biortech.2021.125620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
A novel strain was isolated from swinewastewater and identified as Acinetobacter sp. TAC-1 based on its phylogenetic and phenotypic characteristics. The strain TAC-1 was found to have a high ability to metabolize ammonium-N under low temperature condition. The strain TAC-1 could remove approximately 94.6% of ammonium-N (400 mg/L), 93.3% of nitrate-N (400 mg/L) and 42.4% of nitrite-N (400 mg/L) at 5 °C. The functional genes nitrate reductase gene (narG) and nitrite reductase gene (nirK, nirS) were successfully amplified by qPCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. TAC-1. The transcriptome data confirmed that the membrane transport protein and unsaturated fatty acid dehydrogenase-related genes of the strain TAC-1 were significantly up-regulated at 5 °C, enabling it to survive low temperatures. The high nitrogen removal ability at 5 °C makes this strain have a good application prospect.
Collapse
Affiliation(s)
- Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhui Gao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shuo Ai
- Chongqing Shiji Eco-environmental Science and Technology Co., Ltd, China
| | - Hao Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiangyang Liu
- Chongqing Shiji Eco-environmental Science and Technology Co., Ltd, China
| |
Collapse
|
13
|
Nie Z, Huo M, Wang F, Ai S, Sun X, Zhu S, Li Q, Bian D. Pilot study on urban sewage treatment with micro pressure swirl reactor. BIORESOURCE TECHNOLOGY 2021; 320:124305. [PMID: 33189044 DOI: 10.1016/j.biortech.2020.124305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to propose a new type of micro-pressure swirl reactor (MPSR) to treat urban sewage. The MPSR could form a stable swirl in the reactor, and realized the coexistence of anaerobic, anoxic, and aerobic zones in a single aeration tank. The pilot study showed that MPSR achieved high removal efficient of SS, COD, NH4+-N, TN, TP under the conditions of drastic fluctuation in influent quality and temperature, and the average removal rate were 88.58%, 93.32%, 94.47%, 73.19%, 96.16%. The relative high abundance of Thermomonas, Thaurea, and Dechloromonas, etc, guaranteed the denitrification efficiency of the MPSR, and Dechloromonas was the main phosphorus removal bacteria in the system. The study confirmed the rationality of the structural design of the MPSR, and it was excellent in sewage treatment and stability.
Collapse
Affiliation(s)
- Zebing Nie
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China.
| | - Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education (Jilin University), Changchun 130021, China
| | - Xuejian Sun
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Suiyi Zhu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Qingzhe Li
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| | - Dejun Bian
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012 China
| |
Collapse
|