1
|
de Amaral M, Von Dentz MC, Cubas GK, de Oliveira DR, Simões LAR, Model JFA, Oliveira GT, Kucharski LC. Coping with dry spells: Investigating oxidative balance and metabolic responses in the subtropical tree frog Boana pulchella (Hylidae) during dehydration and rehydration exposure. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111728. [PMID: 39147093 DOI: 10.1016/j.cbpa.2024.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In the face of climate change, understanding the metabolic responses of vulnerable animals to abiotic stressors like anurans is crucial. Water restriction and subsequent dehydration is a condition that can threaten populations and lead to species decline. This study examines metabolic variations in the subtropical frog Boana pulchella exposed to dehydration resulting in a 40% loss of body water followed by 24 h of rehydration. During dehydration, the scaled mass index decreases, and concentrations of metabolic substrates alter in the brain and liver. The activity of antioxidant enzymes increases in the muscle and heart, emphasizing the importance of catalase in the rehydration period. Glycogenesis increases in the muscle and liver, indicating a strategy to preserve tissue water through glycogen storage. These findings suggest that B. pulchella employs specific metabolic mechanisms to survive exposure to water restriction, highlighting tissue-specific variations in metabolic pathways and antioxidant defenses. These findings contribute to a deeper understanding of anuran adaptation to water stress and emphasize the importance of further research in other species to complement existing knowledge and provide physiological tools to conservation.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Kasper Cubas
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo Reis de Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Felipe Argenta Model
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Moreira DC, Hermes-Lima M. Dynamics of Redox Metabolism during Complete Metamorphosis of Insects: Insights from the Sunflower Caterpillar Chlosyne lacinia (Lepidoptera). Antioxidants (Basel) 2024; 13:959. [PMID: 39199204 PMCID: PMC11351957 DOI: 10.3390/antiox13080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Complete insect metamorphosis requires substantial metabolic and physiological adjustments. Although oxidative stress has been implicated in metamorphosis, details on redox metabolism during larva-to-pupa and pupa-to-adult remain scarce. This study explores redox metabolism during metamorphosis of a lepidopteran (Chlosyne lacinia), focusing on core metabolism, antioxidant systems and oxidative stress. The larva-to-pupa transition was characterized by increased lactate dehydrogenase and glutathione peroxidase (GPX) activities, coupled with depletion of reduced glutathione (GSH), high disulfide-to-total-glutathione ratio (GSSG/tGSH), and increased lipid peroxidation. As metamorphosis progressed, metabolic enzyme activities, citrate synthase and glucose 6-phosphate dehydrogenase increased, indicating heightened oxidative metabolism associated with adult development. Concurrently, GSH and GPX levels returned to larval levels and GSSG/tGSH reached its most reduced state right before adult emergence. Adult emergence was marked by a further increase in oxidative metabolism, accompanied by redox imbalance and enhanced antioxidant mechanisms. These findings highlight a fluctuation in redox balance throughout metamorphosis, with periods of oxidative eustress followed by compensatory antioxidant responses. This study is the first to identify concurrent changes in metabolism, antioxidants, redox balance and oxidative stress throughout metamorphosis. Our findings extend knowledge on redox metabolism adjustments and highlight redox adaptations and oxidative stress as natural components of complete insect metamorphosis.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
- Cell Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, Brazil;
| | - Marcelo Hermes-Lima
- Cell Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia 70910-900, Brazil;
| |
Collapse
|
3
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
4
|
Shekhovtsov SV, Vorontsova YL, Slepneva IA, Smirnov DN, Khrameeva EE, Shatunov A, Poluboyarova TV, Bulakhova NA, Meshcheryakova EN, Berman DI, Glupov VV. The Impact of Long-Term Hypoxia on the Antioxidant Defense System in the Siberian Frog Rana amurensis. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:441-450. [PMID: 38648764 DOI: 10.1134/s0006297924030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 04/25/2024]
Abstract
The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Yana L Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Irina A Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry N Smirnov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Alexey Shatunov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Tatiana V Poluboyarova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nina A Bulakhova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Ekaterina N Meshcheryakova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Daniil I Berman
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630091, Russia
| |
Collapse
|
5
|
Moreira DC, Aurélio da Costa Tavares Sabino M, Minari M, Torres Brasil Kuzniewski F, Angelini R, Hermes-Lima M. The role of solar radiation and tidal emersion on oxidative stress and glutathione synthesis in mussels exposed to air. PeerJ 2023; 11:e15345. [PMID: 37193036 PMCID: PMC10183164 DOI: 10.7717/peerj.15345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Preparation for oxidative stress (POS) is a widespread adaptive response to harsh environmental conditions, whose hallmark is the upregulation of antioxidants. In contrast to controlled laboratory settings, animals are exposed to multiple abiotic stressors under natural field conditions. Still, the interplay between different environmental factors in modulating redox metabolism in natural settings remains largely unexplored. Here, we aim to shed light on this topic by assessing changes in redox metabolism in the mussel Brachidontes solisianus naturally exposed to a tidal cycle. We compared the redox biochemical response of mussels under six different natural conditions in the field along two consecutive days. These conditions differ in terms of chronology, immersion/emersion, and solar radiation, but not in terms of temperature. Animals were collected after being exposed to air early morning (7:30), immersed during late morning and afternoon (8:45-15:30), and then exposed to air again late afternoon towards evening (17:45-21:25), in two days. Whole body homogenates were used to measure the activity of antioxidant (catalase, glutathione transferase and glutathione reductase) and metabolic (glucose 6-phosphate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and pyruvate kinase) enzymes, reduced (GSH) and disulfide (GSSG) glutathione levels, and oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances). Air and water temperature remained stable between 22.5 °C and 26 °C during both days. Global solar radiation (GSR) greatly differed between days, with a cumulative GSR of 15,381 kJ/m2 for day 1 and 5,489 kJ/m2 for day 2, whose peaks were 2,240 kJ/m2/h at 14:00 on day 1 and 952 kJ/m2/h at 12:00 on day 2. Compared with animals underwater, emersion during early morning did not elicit any alteration in redox biomarkers in both days. Air exposure for 4 h in the late afternoon towards evening caused oxidative damage to proteins and lipids and elicited GSH synthesis in animals that had been previously exposed to high GSR during the day. In the following day, when GSR was much lower, exposure to air under the same conditions (duration, time, and temperature) had no effect on any redox biomarker. These findings suggest that air exposure under low-intensity solar radiation is not sufficient to trigger POS in B. solisianus in its natural habitat. Thus, natural UV radiation is possibly a key environmental factor that combined to air exposure induces the POS-response to the stressful event of tidal variation in this coastal species.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Marina Minari
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Ronaldo Angelini
- Department of Civil and Environmental Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
6
|
Moreira DC, Carvajalino-Fernández JM, Navas CA, de Carvalho JE, Hermes-Lima M. Metabolic and Redox Biomarkers in Skeletal Muscle Underlie Physiological Adaptations of Two Estivating Anuran Species in a South American Semi-arid Environment. Front Physiol 2021; 12:769833. [PMID: 34955885 PMCID: PMC8696254 DOI: 10.3389/fphys.2021.769833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022] Open
Abstract
The upregulation of endogenous antioxidants (i.e., preparation for oxidative stress, POS) is part of the biochemical responses underlying the adaptation of animals to adverse environments. Despite the phylogenetic diversity of animals in which POS has been described, most studies focus on animals under controlled laboratory conditions. To address this limitation, we have recently assessed the redox metabolism in the skeletal muscle of Proceratophrys cristiceps estivating under natural settings in the Caatinga. Here, we analyzed biochemical biomarkers in the muscle of another Caatinga species, Pleurodema diplolister, during the rainy (active) and dry (estivating frogs) seasons. We aimed to determine whether P. diplolister enhances its antioxidants during estivation under field conditions and to identify any effect of species on the biochemical responses of P. diplolister and P. cristiceps associated with estivation. To do so, we measured the activities of representative enzymes of intermediary metabolism and antioxidant systems, as well as glutathione and protein carbonyl levels, in the skeletal muscle of P. diplolister. Our findings revealed the suppression of oxidative metabolism and activation of antioxidant enzymes in estivating P. diplolister compared with active specimens. No changes in oxidative damage to proteins were observed and estivating P. diplolister had lower levels of disulfide glutathione (GSSG) and disulfide-to-total glutathione ratio (GSSG/tGSH) than those observed in active individuals. When data for P. diplolister and P. cristiceps were assembled and analyzed, significant effects of species were detected on the activities of metabolic enzymes (citrate synthase, isocitric dehydrogenase, malic enzyme, and creatine kinase) and antioxidant enzymes (catalase, glutathione peroxidase and glutathione transferase), as well as on GSSG/tGSH ratio. Such effects might underlie the physiological and behavioral differences between these two species that share the same microhabitat and survival strategy (i.e., to estivate) during the dry season. Despite some peculiarities, which reflect the physiological diversity of the mechanisms associated with estivation in the Brazilian Caatinga, both P. diplolister and P. cristiceps seem to balance the suppression of oxidative pathways, the maintenance of the capacity of oxygen-independent pathways, and the activation of endogenous antioxidants to preserve muscle function and be ready to resume activity whenever the unpredictable rainy period arrives.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Juan M. Carvajalino-Fernández
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Carlos A. Navas
- Departamento de Fisiologia, Biosciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - José E. de Carvalho
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, Brazil
| | - Marcelo Hermes-Lima
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
7
|
Vicente-Ferreira GS, Martins GS, Chaves NA, Silva DGH, Bonini-Domingos CR. Oxidative and osmotolerant effects in Salvator merianae (Squamata: Teiidae) red blood cells during hibernation. BRAZ J BIOL 2021; 84:e249617. [PMID: 34730698 DOI: 10.1590/1519-6984.249617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
Hibernation is a natural condition of animals that lives in the temperate zone, although some tropical lizards also experience hibernation annually, such as the lizard native from South America, Salvator merianae, or "tegu" lizard. Even though physiological and metabolic characteristic associated with hibernation have been extensively studied, possible alterations in the red blood cells (RBC) integrity during this period remains unclear. Dehydration and fasting are natural consequences of hibernating for several months and it could be related to some cellular modifications. In this study, we investigated if the osmotic tolerance of RBCs of tegu lizard under hibernation is different from the cells obtained from animals while normal activity. Additionally, we indirectly investigated if the RBCs membrane of hibernating tegus could be associated with oxidation by quantifying oxidized biomolecules and the activity of antioxidant enzymes. Our findings suggest that RBCs are more fragile during the hibernation period, although we did not find evidence of an oxidative stress scenario associated with the accentuated fragility. Even though we did not exclude the possibility of oxidative damage during hibernation, we suggested that an increased RBCs volume as a consequence of hypoosmotic blood during hibernation could also affect RBCs integrity as noted.
Collapse
Affiliation(s)
- G S Vicente-Ferreira
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil.,Fundação Parque Tecnológico Itaipu (PTI), Foz do Iguaçu, PR, Brasil
| | - G S Martins
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| | - N A Chaves
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| | - D G H Silva
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Departamento de Química e Ciências Ambientais, São José do Rio Preto, SP, Brasil.,Universidade Federal de Mato Grosso do Sul - UFMS, Câmpus de Três Lagoas, Três Lagoas, MS, Brasil
| | - C R Bonini-Domingos
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| |
Collapse
|
8
|
Patnaik P, Sahoo DD. Variations in oxidative stress and antioxidant defense level during different phases of hibernation in common Asian toad, Duttaphrynus melanostictus. Biol Open 2021; 10:bio058567. [PMID: 34350459 PMCID: PMC8353263 DOI: 10.1242/bio.058567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
To assess redox status during hibernation with metabolic depression, oxidative stress parameters and antioxidant defense were assessed during different phases of hibernation including active period, hibernation, arousal, and post-arousal period, in the liver and brain tissues of Duttaphrynus melanostictus. We hypothesized low levels of oxidative stress and antioxidant defense during the hibernation period in comparison to the summer active period, due to hypometabolism and their subsequent increase during the arousal period following an increase in body temperature and metabolism. Contrary to our hypothesis, increased oxidative stress with significantly higher lipid peroxidation, protein carbonylation, oxidized glutathione (GSSG): glutathione (GSH) ratio, and elevated antioxidants defense consisting of higher catalase activity and high ascorbic acid content to control oxidative stress were found during hibernation. However, GSH and uric acid levels were found low with super oxide dismutase (SOD) activities at a steady level during hibernation. Supporting our hypothesis, increased oxidative stress with high lipid peroxidation and GSSG:GSH ratio were found during arousal from hibernation owing to increased oxygen consumption and rewarming. Augmented catalase and SOD activities and nonenzymatic antioxidants (GSH, ascorbic acid, and uric acid) level were found to counteract oxidative stress during arousal periods as it was expected. A steady level of protein carbonylation, indicating no oxidative damage during arousal from hibernation due to elevated antioxidant defense, shows the significance of hibernation to overcome food and water scarcity and cold climatic condition. Decrease in antioxidants levels accompanying coming down of lipid peroxidation, protein carbonylation, and GSSG:GSH ratio to their lower levels during the post-arousal period showing normalcy in redox status as it was during active period indicates controllability of oxidative stress in hibernating toads.
Collapse
Affiliation(s)
- Prabhati Patnaik
- Assistant Scientific Officer, Regional Forensic Science Laboratory, Berhampur, Odisha 760007, India
| | - Deba Das Sahoo
- Post-Graduate Department of Zoology, S.C.S Autonomous College, Puri, Odisha 752001, India
| |
Collapse
|
9
|
Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN, Vázquez-Medina JP. Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110929. [PMID: 33647461 DOI: 10.1016/j.cbpa.2021.110929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - B Gabriela Arango
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
10
|
Prokić MD, Petrović TG, Despotović SG, Vučić T, Gavrić JP, Radovanović TB, Gavrilović BR. The effect of short-term fasting on the oxidative status of larvae of crested newt species and their hybrids. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110819. [PMID: 33022409 DOI: 10.1016/j.cbpa.2020.110819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
In nature, animals often face periods without food caused by seasonal fluctuations and/or prey scarcity. An organism's physiological response to imposed energetic limitations is followed by changes in mitochondrial functioning (adjustment of energy metabolism) and a reduction of non-essential processes. However, this energy-saving strategy can have its costs. In this study, we examined oxidative stress as one of the possible physiological costs of short-term, two-week-long food deprivation on developing amphibian larvae of the crested newts Triturus macedonicus and Triturus ivanbureschi and their hybrids. We investigated whether this exogenous factor additionally affected the oxidative status (fitness-related trait) of hybrid individuals. The fasting treatment led to lower growth and a lower body mass and body condition index of individuals. The results revealed that the antioxidant system (AOS) of food-deprived larvae could not cope in a proper manner with reactive oxygen species production under limited energy availability, leading to higher lipid oxidative damage. The lowest AOS response was observed for H2O2 scavenging parameters (catalase, glutathione peroxidase, and total glutathione), which together with the elevated activity of superoxide dismutase suggested increased H2O2 concentrations. Comparison between parental species and their hybrids showed that hybrid individuals suffered greater oxidative damage (as demonstrated by higher concentrations of lipid peroxides), indicating that they were more susceptible to fasting-induced oxidative stress. Overall, this study illustrates that: (i) an oxidative event is one of the costs amphibian larvae face during short-term periods of fasting, (ii) hybrids are less capable of dealing with this stressful condition, which can lower their chances of survival in a changing environment.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Vučić
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia; Faculty of Biology, Institute for Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|