1
|
Kemmerling LR, Darst AL, Adabag M, Koch NM, Snell-Rood EC. Lead (Pb) concentrations across 22 species of butterflies correlate with soil and air lead and decreased wing size in an urban field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178900. [PMID: 40024041 DOI: 10.1016/j.scitotenv.2025.178900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Pollution is a global issue contributing to biodiversity loss, climate change, and human health concerns. Lead (Pb) has long been recognized as a toxic heavy metal pollutant but few studies have investigated the impact and routes of exposure to lead in field conditions and across multiple species. We collected 22 common species of butterflies across a gradient of lead pollution in the Twin Cities metropolitan area (Minneapolis and St. Paul, MN, USA). We measured their thorax lead concentrations and their body condition including wing area, number of eggs, and brain mass. We quantified lead in the soil, host plant leaves, and air (through lichen bio-monitors) at sites where the butterflies were collected to investigate potential routes of exposure. We found a negative correlation between sublethal lead concentrations and butterfly wing size across all species. Contrary to expectations from previous literature, we did not find correlations between butterfly lead concentration and number of eggs or brain mass. Our data indicate that routes of lead exposure for butterflies are particularly pronounced through soil and air, relative to exposure through their host plants, as there were positive correlations between butterfly lead and lead in nearby soil and air, but not that of host plants. Such sublethal effects of lead, even at low levels of pollution, underline the importance of continuing to reduce emissions and impacts of pollutants to protect biodiversity.
Collapse
Affiliation(s)
- Lindsey R Kemmerling
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA.
| | - Ashley L Darst
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; Michigan State University, Department of Integrative Biology, East Lansing, MI, USA; Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - Mina Adabag
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA; University of California, Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA, USA
| | - Natália M Koch
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| | - Emilie C Snell-Rood
- University of Minnesota, Department of Ecology, Evolution, and Behavior, St. Paul, MN, USA
| |
Collapse
|
2
|
Meinzen TC, Burkle LA, Debinski DM. Roadside habitat: Boon or bane for pollinating insects? Bioscience 2024; 74:54-64. [PMID: 38313561 PMCID: PMC10831221 DOI: 10.1093/biosci/biad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Pollinators, which provide vital services to wild ecosystems and agricultural crops, are facing global declines and habitat loss. As undeveloped land becomes increasingly scarce, much focus has been directed recently to roadsides as potential target zones for providing floral resources to pollinators. Roadsides, however, are risky places for pollinators, with threats from vehicle collisions, toxic pollutants, mowing, herbicides, and more. Although these threats have been investigated, most studies have yet to quantify the costs and benefits of roadsides to pollinators and, therefore, do not address whether the costs outweigh the benefits for pollinator populations using roadside habitats. In this article, we address how, when, and under what conditions roadside habitats may benefit or harm pollinators, reviewing existing knowledge and recommending practical questions that managers and policymakers should consider when planning pollinator-focused roadside management.
Collapse
Affiliation(s)
- Thomas C Meinzen
- Ecology Department, Montana State University, Bozeman, Montana, United States
| | - Laura A Burkle
- Ecology Department, Montana State University, Bozeman, Montana, United States
| | - Diane M Debinski
- Ecology Department, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
3
|
Shephard AM, Knudsen K, Snell-Rood EC. Anthropogenic sodium influences butterfly responses to nitrogen-enriched resources: implications for the nitrogen limitation hypothesis. Oecologia 2023; 201:941-952. [PMID: 36971819 DOI: 10.1007/s00442-023-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Humans are increasing the environmental availability of historically limited nutrients, which may significantly influence organismal performance and behavior. Beneficial or stimulatory responses to increases in nitrogen availability (i.e., nitrogen limitation) are generally observed in plants but less consistently in animals. One possible explanation is that animal responses to nitrogen enrichment depend on how nitrogen intake is balanced with sodium, a micronutrient crucial for animals but not plants. We tested this idea in the cabbage white butterfly (Pieris rapae), a species that frequently inhabits nutrient-enriched plants in agricultural settings and roadside verges. We asked (1) whether anthropogenic increases in sodium influence how nitrogen enrichment affects butterfly performance and (2) whether individuals can adaptively adjust their foraging behavior to such effects. Larval nitrogen enrichment enhanced growth of cabbage white larvae under conditions of low but not high sodium availability. In contrast, larval nitrogen enrichment increased egg production of adult females only when individuals developed with high sodium availability. Ovipositing females preferred nitrogen-enriched leaves regardless of sodium availability, while larvae avoided feeding on nitrogen-enriched leaves elevated in sodium. Our results show that anthropogenic increases in sodium influence whether individuals benefit from and forage on nitrogen-enriched resources. Yet, different nitrogen-to-sodium ratios are required to optimize larval and adult performance. Whether increases in sodium catalyze or inhibit benefits of nitrogen enrichment may depend on how evolved nutrient requirements vary across stages of animal development.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Kyle Knudsen
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| |
Collapse
|
4
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
5
|
Local vehicles add nitrogen to moss biomonitors in a low-traffic protected wilderness area as revealed by a long-term isotope study. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Santiago‐Rosario LY, Harms KE, Craven D. Contrasts among cationic phytochemical landscapes in the southern United States. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:226-241. [PMID: 37283990 PMCID: PMC10168053 DOI: 10.1002/pei3.10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/08/2023]
Abstract
Understanding the phytochemical landscapes of essential and nonessential chemical elements to plants provides an opportunity to better link biogeochemical cycles to trophic ecology. We investigated the formation and regulation of the cationic phytochemical landscapes of four key elements for biota: Ca, Mg, K, and Na. We collected aboveground tissues of plants in Atriplex, Helianthus, and Opuntia and adjacent soils from 51, 131, and 83 sites, respectively, across the southern United States. We determined the spatial variability of these cations in plants and soils. Also, we quantified the homeostasis coefficient for each cation and genus combination, by using mixed-effect models, with spatially correlated random effects. Additionally, using random forest models, we modeled the influence of bioclimatic, soil, and spatial variables on plant cationic concentrations. Sodium variability and spatial autocorrelation were considerably greater than for Ca, Mg, or K. Calcium, Mg, and K exhibited strongly homeostatic patterns, in striking contrast to non-homeostatic Na. Even so, climatic and soil variables explained a large proportion of plants' cationic concentrations. Essential elements (Ca, Mg, and K) appeared to be homeostatically regulated, which contrasted sharply with Na, a nonessential element for most plants. In addition, we provide evidence for the No-Escape-from-Sodium hypothesis in real-world ecosystems, indicating that plant Na concentrations tend to increase as substrate Na levels increase.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Dylan Craven
- Centro de Modelación y Monitoreo de EcosistemasFacultad de Ciencias, Universidad MayorSantiago de ChileChile
| |
Collapse
|
7
|
Shephard AM, Brown NS, Snell‐Rood EC. Anthropogenic Zinc Exposure Increases Mortality and Antioxidant Gene Expression in Monarch Butterflies with Low Access to Dietary Macronutrients. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1286-1296. [PMID: 35119130 PMCID: PMC9314993 DOI: 10.1002/etc.5305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Biologists seek to understand why organisms vary in their abilities to tolerate anthropogenic contaminants, such as heavy metals. However, few studies have considered how tolerance may be affected by condition-moderating factors such as dietary resource availability. For instance, the availability of crucial limiting macronutrients, such as nitrogen and phosphorous, can vary across space and time either naturally or due to anthropogenic nutrient inputs (e.g., agricultural fertilizers or vehicle emissions). Organisms developing in more macronutrient-rich environments should be of higher overall condition, displaying a greater ability to tolerate metal contaminants. In monarch butterflies (Danaus plexippus), we factorially manipulated dietary macronutrient availability and exposure to zinc, a common metal contaminant in urban habitats that can be toxic but also has nutritional properties. We tested whether (1) the ability to survive zinc exposure depends on dietary macronutrient availability and (2) whether individuals exposed to elevated zinc levels display higher expression of antioxidant genes, given the roles of antioxidants in combatting metal-induced oxidative stress. Exposure to elevated zinc reduced survival only for monarchs developing on a low-macronutrient diet. However, for monarchs developing on a high-macronutrient diet, elevated zinc exposure tended to increase survival. In addition, monarchs exposed to elevated zinc displayed higher expression of antioxidant genes when developing on the low-macronutrient diet but lower expression when developing on the high-macronutrient diet. Altogether, our study shows that organismal survival and oxidative stress responses to anthropogenic zinc contamination depend on the availability of macronutrient resources in the developmental environment. In addition, our results suggest the hypothesis that whether zinc acts as a toxicant or a nutrient may depend on macronutrient supply. Environ Toxicol Chem 2022;41:1286-1296. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Noah S. Brown
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| |
Collapse
|
8
|
Lalonde S, McCune JL, Rivest SA, Kharouba HM. Decline in common milkweed along roadsides around Ottawa, Canada. ECOSCIENCE 2022. [DOI: 10.1080/11956860.2021.1943930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jenny L. McCune
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
9
|
Santiago‐Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021; 11:14231-14249. [PMID: 34707851 PMCID: PMC8525147 DOI: 10.1002/ece3.8138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Bret D. Elderd
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Pamela B. Hart
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
10
|
Shephard AM, Mitchell TS, Snell-Rood EC. Monarch caterpillars are robust to combined exposure to the roadside micronutrients sodium and zinc. CONSERVATION PHYSIOLOGY 2021; 9:coab061. [PMID: 34386239 PMCID: PMC8354372 DOI: 10.1093/conphys/coab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Human activities are increasing the environmental availability of micronutrients, including sodium and some essential metals. Micronutrients are often limiting in animal diets but may have negative effects when consumed in excess. Though prior research has documented how elevated exposure to individual micronutrients can impact organismal development and fitness, we know less about combined effects of multiple micronutrients. In the wild, monarch butterfly larvae (Danaus plexippus) commonly consume plants in roadside habitats that contain elevated levels of sodium (from road salt) and zinc (from vehicle wear-and-tear). We reared monarch caterpillars to adulthood to test individual and combined effects of dietary sodium and zinc on components of fitness, sodium-linked phenotypes (proxies for neural and flight muscle development) and concentrations of sodium and zinc in adult butterflies. Monarch survival was not impacted by elevated sodium or zinc individually or in combination. Yet, monarchs feeding on sodium-treated milkweed developed relatively larger eyes, consistent with a positive effect of sodium on neural development. Measurements of element concentrations in butterfly and plant tissue indicated that monarchs had higher zinc levels than those present in zinc-treated milkweed but lower sodium levels than those present in sodium-treated milkweed. Monarchs developing on sodium-treated milkweed also had prolonged development time, which might be a cost associated with developing extra neural tissue or investing in mechanisms to excrete excess dietary sodium during the larval stage. Our results indicate that sodium, more than zinc, is likely influencing phenotypic development and performance of insect pollinators in roadside habitats. Yet, in contrast to previous work, our experiment suggests that the highest levels of sodium found along roads are not always harmful for developing monarchs. Future work could consider how potentially stressful effects of micronutrients could be mitigated by increased macronutrient availability or how developmental factors such as migratory status might increase micronutrient requirements.
Collapse
Affiliation(s)
- Alexander M Shephard
- Corresponding author: Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.
| | - Timothy S Mitchell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Saint Paul, MN 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Phillips BB, Bullock JM, Gaston KJ, Hudson‐Edwards KA, Bamford M, Cruse D, Dicks LV, Falagan C, Wallace C, Osborne JL. Impacts of multiple pollutants on pollinator activity in road verges. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn UK
| | | | - Meg Bamford
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Dave Cruse
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Lynn V. Dicks
- School of Biological Sciences University of East Anglia Norwich UK
- Department of Zoology University of Cambridge Cambridge UK
| | - Carmen Falagan
- Environment and Sustainability Institute University of Exeter Penryn UK
| | - Claire Wallace
- School of Biological Sciences University of East Anglia Norwich UK
| | - Juliet L. Osborne
- Environment and Sustainability Institute University of Exeter Penryn UK
| |
Collapse
|