1
|
Lavrichenko DS, Chelebieva ES, Kladchenko ES. The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111057. [PMID: 39662678 DOI: 10.1016/j.cbpb.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.
Collapse
Affiliation(s)
- Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| |
Collapse
|
2
|
Fuster L, Bonnefoy C, Fildier A, Geffard A, Arnaudguilhem C, Mounicou S, Dedourge-Geffard O, Daniele G, Vulliet E. The iodinated contrast agent diatrizoic acid has an impact on the metabolome of the mollusc Dreissena polymorpha. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107087. [PMID: 39293296 DOI: 10.1016/j.aquatox.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
The occurrence of iodinated contrast agents (ICAs) in the aquatic environment is relatively well documented, showing that these compounds can be found at several µg/L in natural waters, and up to hundreds of µg/L in waste water treatment plants inlets. Nevertheless, only few studies address their potential impacts and fate in aquatic organisms mainly because these compounds are considered non-toxic due to their intrinsic properties. However, as aquatic organisms are continuously exposed to these compounds, they could nonetheless induce some adverse effects on aquatic populations like filter feeder organisms. To verify this, we exposed model organisms, Dreissena polymorpha mollusks, to 100 µg/L of an ICA, diatrizoic acid (DTZ), to determine the potential biological effects caused by this compound using a non-targeted metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry. Metabolic profiles showed a slight effect of DTZ, with some metabolome variations linked to exposure. Indeed, to avoid any misinterpretation of DTZ effects, we also studied the natural evolution of the metabolome over time in unexposed mussels, showing that control mussels exhibited metabolomic changes over the exposure period. During DTZ exposure, we showed that the carnitine shuttle pathway of fatty acids and pyrimidine metabolisms were impacted, leading to dysregulation of mussels' energy metabolism. Thus, this study demonstrates for the first time that compounds considered non-toxic like ICAs can have an impact on aquatic organisms such as bivalves by slightly modulating their metabolome.
Collapse
Affiliation(s)
- Laura Fuster
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélie Fildier
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Alain Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | | | - Sandra Mounicou
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Odile Dedourge-Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Gaëlle Daniele
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| | - Emmanuelle Vulliet
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
3
|
Cubillos VM, Salas-Yanquin LP, Mardones-Toledo DA, Ramírez-Kuschel EF, Paredes-Molina FJ, Büchner-Miranda JA, Chaparro OR. Location also matters: The oxidative response of the intertidal purple mussel Perumytilus purpuratus during tidal cycle. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106562. [PMID: 38870558 DOI: 10.1016/j.marenvres.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.
Collapse
Affiliation(s)
- V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - L P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - D A Mardones-Toledo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - E F Ramírez-Kuschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
5
|
Dong M, Song H, Xie C, Zhang Y, Huang H, Zhang H, Wei L, Wang X. Polystyrene microplastics photo-aged under simulated sunlight influences gonadal development in the Pacific oyster. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106367. [PMID: 38277815 DOI: 10.1016/j.marenvres.2024.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-β genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.
Collapse
Affiliation(s)
- MeiYun Dong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - HongCe Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - ChaoYi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - YuXuan Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haifeng Huang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haikun Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - XiaoTong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
6
|
Mredul MMH, Sokolov EP, Kong H, Sokolova IM. Spawning acts as a metabolic stressor enhanced by hypoxia and independent of sex in a broadcast marine spawner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168419. [PMID: 37979860 DOI: 10.1016/j.scitotenv.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Broadcast spawners, like the blue mussel Mytilus edulis, experience substantial energy expenditure during spawning due to extensive gamete release that can divert energy from other functions. This energetic cost might be intensified by environmental stressors, including hypoxia that suppress aerobic metabolism. However, the energy implications of spawning in marine broadcast spawners have not been well studied. We examined the effects of short-term hypoxia (7 days) and spawning on mitochondrial activity, reactive oxygen species (ROS) production, and cellular energy allocation (ratio of tissue energy reserves to energy demand) in somatic tissues of M. edulis. Under normoxic conditions, post-spawning (72 h) recovery correlated with increased phosphorylation (OXPHOS) rate in mitochondria from the digestive gland, while hypoxia inhibited this response. Regardless of oxygen levels, mitochondrial ROS production decreased after spawning, indicating M. edulis' ability to prevent oxidative stress. Spawning led to reduced energy reserves in somatic tissues (the gills and the digestive gland), highlighting significant energy cost of spawning primarily fueled by lipid and protein breakdown. Additionally, cellular energy allocation dropped 3 h post-spawning, indicating a shift in energy demand and supply. Normoxic conditions allowed recovery in 72 h, but hypoxia hindered recuperation. These findings underscore spawning's bioenergetic challenge for broadcast spawners like M. edulis, potentially elevating post-spawning mortality risk, especially in hypoxic coastal habitats.
Collapse
Affiliation(s)
- Md Mahamudul Hasan Mredul
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, Germany
| | - Hui Kong
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
7
|
Baratange C, Baali H, Gaillet V, Bonnard I, Delahaut L, Gaillard JC, Grandjean D, Sayen S, Gallorini A, Le Bris N, Renault D, Breider F, Loizeau JL, Armengaud J, Cosio C. Bioaccumulation and molecular effects of carbamazepine and methylmercury co-exposure in males of Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165379. [PMID: 37423277 DOI: 10.1016/j.scitotenv.2023.165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 μg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 μg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Hugo Baali
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Dominique Grandjean
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex, 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Nathalie Le Bris
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - David Renault
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France.
| |
Collapse
|
8
|
Louis F, Rioult D, Rocher B, Gaillet V, Delahaut L, Paris-Palacios S, David E. Dreissena polymorpha responses under thermal and hypoxic stress: New insights in the tolerance of this freshwater sentinel species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106586. [PMID: 37247577 DOI: 10.1016/j.aquatox.2023.106586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Dreissena polymorpha is a sentinel freshwater mussel providing key functional ecosystemic services like nutrient recycling and suspended matter filtration. Global warming and especially extreme events imply rapid fluctuations of environmental parameters that sessile organisms could not escape. The increase occurrence of heat waves and the subsequent expansion of hypoxic areas could challenge the survival of mussels. This study provided a deeper knowledge of energy management and cellular function during thermal (+15 °C) or hypoxic (30% of dissolved oxygen saturation) stress for 7 days. A potential metabolic rate depression was highlighted in D. polymorpha under hypoxia through a decline in the mitochondrial activity and a constant AMP content over time. A contrasted pattern of response was observed in thermal-stressed mussels between 24 h and 7 days of exposure. A global increase of metabolic activity was noticed in mussels after 24 h while a return to control level was noticed at the end of the experiment. Although D. polymorpha is considered as a temperature tolerant species, a significant increase of ADP:ATP ratio, related to a decrease of mitochondrial activity and density, suggested an overwhelming of organisms. This study pointed to the importance of considering time of exposure to natural factor variations in tolerance window of organisms in a long-term changing environment. The apparent short-term tolerance of D. polymorpha could hide much more deleterious consequences, i.e. mortality, if abiotic stresses persist, as suggested by climate change models.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France
| | - Damien Rioult
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France; Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, 51687 Reims Cedex 02, France
| | - Béatrice Rocher
- Université Le Havre Normandie (ULHN), UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 25 rue Philippe Le Bon, Le Havre, 76600, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France
| | - Elise David
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims Cedex 02, France.
| |
Collapse
|
9
|
Gostyukhina OL, Yu AA, Chelebieva ES, Vodiasova EA, Lantushenko AO, Kladchenko ES. Adaptive potential of the Mediterranean mussel Mytilus galloprovincialis to short-term environmental hypoxia. FISH & SHELLFISH IMMUNOLOGY 2022; 131:654-661. [PMID: 36330874 DOI: 10.1016/j.fsi.2022.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Environmental hypoxia naturally occurs in coastal ecosystems and bivalve mollusks have to frequently face fluctuations of dissolved oxygen concentrations. Exposure to hypoxia is often associated with the change of the antioxidant and functional status in bivalves, and restoration of the normal oxygen supply is considered to induce oxidative stress in tissues of mollusks. The study investigates changes in the activity of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), as well as the expression level of SOD and CAT genes in gills of the Mediterranean mussel, Mytilus galloprovincialis, under exposure to low dissolved oxygen concentration (2.2 mg L-1) for 24 h and 72 h, and 24 h reoxygenation period. We also evaluated the intracellular level of reactive oxygen species (ROS), mortality and changes in mitochondrial membrane potential in hemocytes following hypoxia-reoxygenation cycle. 24 h exposure to hypoxia significantly decreased activity of both enzymes, which then recovered up to control levels at the end of 72 h experimental period for SOD and after reoxygenation for CAT. Expression of antioxidant enzyme genes was up-regulated following the 72 h hypoxic exposure period and returned to the basal normoxic level after 24 h reoxygenation. Hypoxia demonstrated a time-dependent effect on the functional state of hemocytes. The 24 h exposure period did not influence aerobic respiration of hemocytes, but prolonged hypoxia (72 h) was associated with a substantial decrease in mitochondrial membrane potential of hemocytes. The intracellular ROS level and mortality of hemocytes did not change under hypoxia. Reoxygenation period was accompanied with a significant decrease of intracellular ROS level. This study indicated that hypoxia did not induce the pronounced oxidative stress in gills and the changes in the antioxidant status were reversible within 24 h of reoxygenation. Hemolymph demonstrated a stable functional state indicating the tolerance of mussels to short-time hypoxia.
Collapse
Affiliation(s)
- O L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - Andreyeva A Yu
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E A Vodiasova
- Marine Biodiversity and Functional Genomics Laboratory, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - A O Lantushenko
- Department of Physics, Sevastopol State University, Sevastopol, 299053, Russia
| | - E S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Mannai A, Hmida L, Bouraoui Z, Guerbej H, Gharred T, Jebali J. Does thermal stress modulate the biochemical and physiological responses of Ruditapes decussatus exposed to the progestin levonorgestrel? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85211-85228. [PMID: 35794321 DOI: 10.1007/s11356-022-21786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the effects of 1000 ng/l levonorgestrel (LNG) alone or combined with increased temperature of 20, 24, and 28 °C on the biochemical and physiological responses of the clam (Ruditapes decussatus) for 28 days. Our results revealed that female clams treated with levonorgestrel (LNG) alone showed enhancement of the antioxidant defense against oxidative stress related to the inductions of catalase (CAT), gluthatione -S -transferase (GST), and protein sulfhydryl (PSH), while the elevated temperatures of 20, 24, and 28 °C diminished most of the specific responses to LNG and was the main factor in the determining the responses to combine exposures. The responses of lysosomal membrane stability, alkaline phosphatase, and NADP+-dependent isocitrate dehydrogenase detected were the most common signs of an adverse effect in all exposures. Female clams' testosterone and estradiol responses to LNG were the most particular manifestations depending on the exposure. Overall, these findings showed clearly that chronic warming stress caused disruption in physiological, biochemical parameters of the female clam R. decussatus, and this may have implications for the whole organism and populations.
Collapse
Affiliation(s)
- Asma Mannai
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Leila Hmida
- Research Unit Ecosystems & Aquatic Resources (UR13AGRO1), National Agronomic Institute of Tunisia (INAT), University of Carthage, Charles Nicolle Avenue 43, Mahrajene City, 1082, Tunis, Tunisia
| | - Zied Bouraoui
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Tahar Gharred
- Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Jamel Jebali
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
11
|
Zieritz A, Sousa R, Aldridge DC, Douda K, Esteves E, Ferreira‐Rodríguez N, Mageroy JH, Nizzoli D, Osterling M, Reis J, Riccardi N, Daill D, Gumpinger C, Vaz AS. A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. Biol Rev Camb Philos Soc 2022; 97:1967-1998. [PMID: 35770724 PMCID: PMC9545824 DOI: 10.1111/brv.12878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Identification of ecosystem services, i.e. the contributions that ecosystems make to human well-being, has proven instrumental in galvanising public and political support for safeguarding biodiversity and its benefits to people. Here we synthesise the global evidence on ecosystem services provided and disrupted by freshwater bivalves, a heterogenous group of >1200 species, including some of the most threatened (in Unionida) and invasive (e.g. Dreissena polymorpha) taxa globally. Our systematic literature review resulted in a data set of 904 records from 69 countries relating to 24 classes of provisioning (N = 189), cultural (N = 491) and regulating (N = 224) services following the Common International Classification of Ecosystem Services (CICES). Prominent ecosystem services included (i) the provisioning of food, materials and medicinal products, (ii) knowledge acquisition (e.g. on water quality, past environments and historical societies), ornamental and other cultural contributions, and (iii) the filtration, sequestration, storage and/or transformation of biological and physico-chemical water properties. About 9% of records provided evidence for the disruption rather than provision of ecosystem services. Synergies and trade-offs of ecosystem services were observed. For instance, water filtration by freshwater bivalves can be beneficial for the cultural service 'biomonitoring', while negatively or positively affecting food consumption or human recreation. Our evidence base spanned a total of 91 genera and 191 species, dominated by Unionida (55% of records, 76% of species), Veneroida (21 and 9%, respectively; mainly Corbicula spp.) and Myoida (20 and 4%, respectively; mainly Dreissena spp.). About one third of records, predominantly from Europe and the Americas, related to species that were non-native to the country of study. The majority of records originated from Asia (35%), with available evidence for 23 CICES classes, as well as Europe (29%) and North America (23%), where research was largely focused on 'biomonitoring'. Whilst the earliest record (from 1949) originated from North America, since 2000, annual output of records has increased rapidly in Asia and Europe. Future research should focus on filling gaps in knowledge in lesser-studied regions, including Africa and South America, and should look to provide a quantitative valuation of the socio-economic costs and benefits of ecosystem services shaped by freshwater bivalves.
Collapse
Affiliation(s)
- Alexandra Zieritz
- School of GeographyUniversity of NottinghamUniversity Park, Sir Clive Granger BuildingNG7 2RDNottinghamUK
| | - Ronaldo Sousa
- CBMA – Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoCampus Gualtar4710‐057BragaPortugal
| | - David C. Aldridge
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PragueKamýcká129PragueCzech Republic
| | - Eduardo Esteves
- Departamento de Engenharia Alimentar, Instituto Superior de Engenharia and CCMAR Centre of Marine SciencesUniversidade do AlgarveEstr. da Penha8005‐139FaroPortugal
| | - Noé Ferreira‐Rodríguez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de BioloxíaUniversidade de VigoCampus As Lagoas – Marcosende36310VigoSpain
| | - Jon H. Mageroy
- Norwegian Institute of Nature Research, OsloSognsveien 680855OsloNorway
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaViale delle Scienze, 11/A43124ParmaItaly
| | - Martin Osterling
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityUniversitetsgatan 2651 88KarlstadSweden
| | - Joaquim Reis
- Faculdade de Ciências da Universidade de LisboaMARE – Marine and Environmental Sciences CentreCampo Grande1749‐016LisbonPortugal
| | - Nicoletta Riccardi
- CNR‐IRSA Water Research InstituteCorso Tonolli, 5028922Verbania Pallanza (VB)Italy
| | - Daniel Daill
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Clemens Gumpinger
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Ana Sofia Vaz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do Porto4485‐661VairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do Porto4099‐002PortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão4485‐661VairãoPortugal
| |
Collapse
|
12
|
Pousse É, Munroe D, Hart D, Hennen D, Cameron LP, Rheuban JE, Wang ZA, Wikfors GH, Meseck SL. Dynamic energy budget modeling of Atlantic surfclam, Spisula solidissima, under future ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105602. [PMID: 35462229 DOI: 10.1016/j.marenvres.2022.105602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
A dynamic energy budget (DEB) model integrating pCO2 was used to describe ocean acidification (OA) effects on Atlantic surfclam, Spisula solidissima, bioenergetics. Effects of elevated pCO2 on ingestion and somatic maintenance costs were simulated, validated, and adapted in the DEB model based upon growth and biological rates acquired during a 12-week laboratory experiment. Temperature and pCO2 were projected for the next 100 years following the intergovernmental panel on climate change representative concentration pathways scenarios (2.6, 6.0, and 8.5) and used as forcing variables to project surfclam growth and reproduction. End-of-century water warming and acidification conditions resulted in simulated faster growth for young surfclams and more energy allocated to reproduction until the beginning of the 22nd century when a reduction in maximum shell length and energy allocated to reproduction was observed for the RCP 8.5 scenario.
Collapse
Affiliation(s)
- Émilien Pousse
- National Research Council Post-Doctoral Associate at NOAA NMFS, 212 Rogers Ave, Milford, CT, 06418, USA
| | - Daphne Munroe
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave, Port Norris, NJ, 08349, USA
| | - Deborah Hart
- NOAA/NMFS, 166 Water St, Woods Hole, MA, 02543, USA
| | | | - Louise P Cameron
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Jennie E Rheuban
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Zhaohui Aleck Wang
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA
| | - Shannon L Meseck
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA.
| |
Collapse
|
13
|
Baratange C, Paris-Palacios S, Bonnard I, Delahaut L, Grandjean D, Wortham L, Sayen S, Gallorini A, Michel J, Renault D, Breider F, Loizeau JL, Cosio C. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118933. [PMID: 35122922 DOI: 10.1016/j.envpol.2022.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 μg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Dominique Grandjean
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Laurence Wortham
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Michel
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR, 6553, Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France.
| |
Collapse
|
14
|
Catteau A, Porcher JM, Bado-Nilles A, Bonnard I, Bonnard M, Chaumot A, David E, Dedourge-Geffard O, Delahaut L, Delorme N, François A, Garnero L, Lopes C, Nott K, Noury P, Palluel O, Palos-Ladeiro M, Quéau H, Ronkart S, Sossey-Alaoui K, Turiès C, Tychon B, Geffard O, Geffard A. Interest of a multispecies approach in active biomonitoring: Application in the Meuse watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152148. [PMID: 34864038 DOI: 10.1016/j.scitotenv.2021.152148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.
Collapse
Affiliation(s)
- Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| | - Jean-Marc Porcher
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Elise David
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Christelle Lopes
- Université de Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne 69622, France
| | - Katherine Nott
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Patrice Noury
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Olivier Palluel
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Hervé Quéau
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Sébastien Ronkart
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Khadija Sossey-Alaoui
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Cyril Turiès
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Bernard Tychon
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| |
Collapse
|
15
|
Khoma V, Martinyuk V, Matskiv T, Gnatyshyna L, Baranovsky V, Gladiuk M, Gylytė B, Manusadžianas L, Stoliar O. Environmental concentrations of Roundup in combination with chlorpromazine or heating causes biochemical disturbances in the bivalve mollusc Unio tumidus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14131-14142. [PMID: 34601683 PMCID: PMC8487405 DOI: 10.1007/s11356-021-16775-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Bivalve molluscs represent the most recognized bioindicators of freshwater pollution. However, their ability to indicate specific xenobiotics in complex exposures is unclear. In this study, we aimed to track the particular effects of the pesticide Roundup (Rnd) and the antipsychotic drug chlorpromazine (Cpz) on the mussel Unio tumidus at the simpler environmentally relevant models. We treated the mussels by Rnd (17 μg L-1), Cpz (18 μg L-1), the mixture of Rnd and Cpz at 18 °C (RndCpz), and Rnd at 25 °C (RndT) and examined their digestive glands after 14 days of exposure. We analyzed total antioxidant capacity, glutathione (GSH&GSSG) and protein carbonyls levels, total and Zn-related concentrations of metallothioneins (MT and Zn-MT, respectively), the activities of CYP450-related EROD, glutathione S-transferase, cholinesterase, caspase-3, citrate synthase (CS), lysosomal membrane integrity (NRR), and Zn level in the tissue. Shared responses were indicated as the increase of the antioxidant, Zn-MT, and EROD levels, whereas the changes of Zn concentration, NRR, and caspase-3 activity were most diverse compared to control. According to discriminant analysis, complex exposures abolished the individual response traits and intensified the harmful effects that caused a decrease in the Zn level in the RndCpz- and RndT-groups and the loss of lysosomal integrity in the RndT-group. We concluded that multi-marker expertise with the application of integrated indices had benefits when evaluating the effects of complex exposures.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Tetyana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Mykola Gladiuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
16
|
Determination of Adenylate Nucleotides in Amphipod Gammarus fossarum by Ion-Pair Reverse Phase Liquid Chromatography: Possibilities of Positive Pressure Micro-Solid Phase Extraction. SEPARATIONS 2021. [DOI: 10.3390/separations8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adenine nucleotides—adenosine monophosphate, diphosphate, and triphosphate—are of utmost importance to all living organisms, where they play a critical role in the energy metabolism and are tied to allosteric regulation in various regulatory enzymes. Adenylate energy charge represents the precise relationship between the concentrations of adenosine monophosphate, diphosphate, and triphosphate and indicates the amount of metabolic energy available to an organism. The experimental conditions of adenylate extraction in freshwater amphipod Gammarus fossarum are reported here for the first time and are crucial for the qualitative and quantitative determination of adenylate nucleotides using efficient and sensitive ion-pair reverse phase LC. It was shown that amphipod calcified exoskeleton impeded the neutralization of homogenate. The highest adenylate yield was obtained by homogenization in perchloric acid and subsequent addition of potassium hydroxide and phosphate buffer to achieve a pH around 11. This method enables separation and accurate detection of adenylates. Our study provides new insight into the complexity of adenylate extraction and quantification that is crucial for the application of adenylate energy charge as a confident physiological measure of environmental stress and as a health index of G. fossarum.
Collapse
|
17
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
18
|
Louis F, Delahaut L, Gaillet V, Bonnard I, Paris-Palacios S, David E. Effect of reproduction cycle stage on energy metabolism responses in a sentinel species (Dreissena polymorpha) exposed to cadmium: What consequences for biomonitoring? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105699. [PMID: 33290890 DOI: 10.1016/j.aquatox.2020.105699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Metal trace elements such as cadmium (Cd) are commonly present in ecosystems and could lead to impairment of mitochondrial functions and energy imbalance in aquatic organisms including molluscs. Combined exposure to increasing temperatures and Cd could enhance such an impact on animals. Seasonal fluctuations, such as temperature, and the corresponding reproduction cycle can affect biomarker responses. However, the reproduction cycle stage is rarely taken into account in ecotoxicological studies. Thus, this work aimed at understanding energy metabolism responses in a sentinel species, Dreissena polymorpha. Mussels were collected during the rest and the reproduction periods and were exposed to 10 μg.L-1 of cadmium (Cd) at two temperatures (in situ temperature and in situ temperature + 5°C) during 7 days. Energy metabolism was monitored by measuring reserves and energy nucleotides charge and by assessing aerobic and anaerobic metabolism markers, and upstream regulation pathways. Markers related to OXPHOS activity revealed seasonal variations under laboratory conditions. Conversely, adenylate nucleotides, glycogen, lipid and transcript levels of AMP-activated protein kinase, citrate synthase, ATP synthase and cytochrome b encoding genes remained steady after the acclimation period. No evident effect of Cd on energy metabolism markers was noticed for both exposures although the transcript level of succinate dehydrogenase and citrate synthase encoding genes decreased with Cd during the rest period. Cellular stress, revealed by lipid peroxidation and catalase mRNA levels, only occurred in Cd and warming co-exposed mussels during the reproduction period. These results suggest that contaminant impact might differ according to the reproduction cycle stage. The effect of confounding factors on biomarker variations should be further investigated to have a deeper knowledge of metabolism responses under laboratory conditions.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| |
Collapse
|