1
|
Du S, Guo S, Yang J, Li A, Xiong W, Zhang C, Xu S, Shi Y, Ji B. Evaluating the efficacy of microalgal-bacterial granular sludge system in lake water remediation. Bioprocess Biosyst Eng 2025; 48:17-26. [PMID: 39316167 DOI: 10.1007/s00449-024-03090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The microalgal-bacterial granular sludge (MBGS) process is attracting attention as a green wastewater treatment technology. However, research on the application of MBGS in lake water remediation is limited. Thus, this experiment investigated the feasibility and the efficacy of the MBGS process for the treatment of natural lake water in a continuous-flow tubular reactor. The average removal efficiencies of COD, NH4+-N, NO3--N, NO2--N, TN, PO43--P, TP, and turbidity by MBGS system in the day/night cycles were 50.10/61.39%, 63.52/75.23%, 43.37/73.57%, 90.72/93.48%, 78.30/80.02%, 71.13/74.62%, 65.08/70.57%, 92.32/89.84%, respectively. As the experiment progressed, the total chlorophyll content in MBGS decreased as the granule size increased, while the extracellular polymeric substances content increased, suggesting that the lake water contributed to bacterial growth and favored the stability of MBGS. Moreover, the eukaryotic microorganisms were dominated by Chlorophyta and Rotifera, and prokaryotic microorganisms were dominated by Proteobacteria in MBGS. By promoting the decomposition of various organic compounds in the lake water and inhibiting sludge expansion, these microorganisms help the MBGS system to maintain excellent granular characteristics and performance. Overall, the MBGS system proved to be a feasible option for the remediation of natural lake waters.
Collapse
Affiliation(s)
- Siqi Du
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaodong Guo
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jieru Yang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wenxuan Xiong
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chi Zhang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shenghui Xu
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuting Shi
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Zhao C, Liu Y, Yan Z, Zhao W, Sun J. Combining effects of submerged macrophytes and lanthanum-modified bentonite on sediment enzyme activity: Evidence from mesocosm study. CHEMOSPHERE 2024; 364:143002. [PMID: 39097111 DOI: 10.1016/j.chemosphere.2024.143002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Lanthanum-modified bentonite (LMB) combined with submerged macrophytes (SM) has been a conventional means of eutrophication management in lakes in recent years, and is one of the most important methods for P removal. However, trends in nutrients and sediment enzymes at the water-sediment interface during this process have not been systematically assessed, and there are still some gaps in how abiotic properties drive changes in enzyme activity. Here, we show changes in aquatic environmental conditions under the action of different ratios of modified bentonite (0, 10%, 20%, and 30%) in combination with SM (Vallisneria natans, Potamogeton lucens, and Hydrilla verticillate) and quantify their effects on sediment enzyme activities. The results showed that the nutrient cycling at the water-sediment interface was facilitated by the combined effect of SM and LMB, which effectively reduced the overlying water nutrient concentration, increased the sediment enzyme activity and enhanced the N cycling process. Partial least squares structural equation model (PLS-SEM) showed that sediment parameters strongly influenced changes in enzyme activity, with NO3-N as the main controlling factors. Our study fills in the process of changing environmental conditions in lake water under geoengineered materials combined with macrophyte measures, especially the changes in biological properties enzyme activities, which contributes to a clearer understanding of nutrient fluxes during the management of eutrophication in lakes.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuling Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Zixuan Yan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Wangben Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayu Sun
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
3
|
Zhao B, Yuan A, Cao S, Dong Z, Sha H, Song Z. Advancing two-stage hydrogen production from corn stover via dark fermentation: Contributions of thermally modified maifanite to microbial proliferation and pH self-regulation. BIORESOURCE TECHNOLOGY 2024; 403:130853. [PMID: 38759895 DOI: 10.1016/j.biortech.2024.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
This study introduces a two-stage hydrogen production enhancement mechanism using natural particle additives, with a focus on the effects of thermally modified maifanite (TMM) and pH self-regulation on dark fermentation (DF). Initial single-factor experiments identified preliminary parameters for the addition of TMM, which were further optimized using a Box-Behnken design. The established optimal conditions which include mass of 5.5 g, particle size of 120 mesh, and temperature of 324 °C, resulted in a 28.7 % increase in cumulative hydrogen yield (CHY). During the primary hydrogen production stage, TMM significantly boosted the growth and activity of Clostridium_sensu_stricto_1, enhancing hydrogen output. Additionally, a pH self-regulating phenomenon was observed, capable of initiating secondary hydrogen production and further augmenting CHY. These findings presented a novel and efficient approach for optimizing biohydrogen production, offering significant implications for future research and application in sustainable energy technologies.
Collapse
Affiliation(s)
- Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ankai Yuan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zheng Dong
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hao Sha
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zijian Song
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
4
|
Zhang X, Zhen W, Cui S, Wang S, Chen W, Zhou Q, Jeppesen E, Liu Z. The effects of different doses of lanthanum-modified bentonite in combination with a submerged macrophyte (Vallisneria denseserrulata) on phosphorus inactivation and macrophyte growth: A mesocosm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120053. [PMID: 38211429 DOI: 10.1016/j.jenvman.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.
Collapse
Affiliation(s)
- Xiumei Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Wei Zhen
- Wuhan Changjiang Waterway Rescue and Salvage Bure, 430013, Wuhan, China
| | - Suzhen Cui
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Sen Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Weiqi Chen
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Qiong Zhou
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-6, 8600, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Center for Ecosystem Research and Implementation, Middle East Technical University, 06800, Ankara, Turkey; Institute of Marine Science, Middle East Technical University, Mersin, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 210008, Nanjing, China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| |
Collapse
|
5
|
Yan P, Peng Y, Fan Y, Zhang M, Chen J, Gu X, Sun S, He S. Effects of ferrous addition to Vallisneria natans: An attempt to apply ferrous to submerged macrophyte restoration. ENVIRONMENTAL RESEARCH 2023; 237:117022. [PMID: 37657608 DOI: 10.1016/j.envres.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Restoration of submerged macrophytes is an efficient way for endogenous nutrient control and aquatic ecological restoration, but slow growth and limited reproduction of submerged macrophytes still exist. In this research, the effect of ferrous on the seed germination and growth of Vallisneria natans (V. natans) were studied through aquatic simulation experiments and its influence on the rhizosphere microbial community was also explored. The seed germination, growth, and physiological and ecological parameters of V. natans were significantly affected by the ferrous treatments. Ferrous concentration above 5.0 mg/L showed significant inhibition of seed germination of V. natans and the best concentration for germination was 0.5 mg/L. During the growth of V. natans, after ferrous was added, a brief period of stress occurred, which then promoted the growth lasting for about 19 days under one addition. The diversity and richness of the rhizospheric microbial were increased after the ferrous addition. However, the function of the rhizospheric microbial community showed no significant difference between different concentrations of ferrous adding in the overlying water. Ferrous addition affected the growth condition of plants (content of CAT, Chl a, Chl b, etc.), thus indirectly affecting the rhizospheric microbial community of V. natans. These impacts on V. natans and rhizosphere microorganisms could generalize to other submerged macrophytes in freshwater ecosystems, particularly which have similar habits. These findings would contribute to the ecological evaluation of ferrous addition or iron-containing water, and provide a reference for submerged macrophytes restoration and ecological restoration in freshwater ecosystems.
Collapse
Affiliation(s)
- Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiajie Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
6
|
Wang R, Zhu J, Li B, Liu Y, Fang Q, Bai G, Tang Y, He F, Zhou Q, Wu Z, Zhang Y. Effects of attapulgite on the growth status of submerged macrophytes Vallisneria spiralis and sediment microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118496. [PMID: 37384996 DOI: 10.1016/j.jenvman.2023.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.
Collapse
Affiliation(s)
- Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiying Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beining Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingjun Fang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Wu Q, Xie M, Jin L, Dong H, Yuan D, Yang T, Pan Y. Water exchange unevenness alters the species dominance and community composition of submerged macrophytes in Erhai Lake and the potential mechanisms revealed by laboratory experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163624. [PMID: 37087000 DOI: 10.1016/j.scitotenv.2023.163624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Water exchange unevenness (WEU) is defined as the coefficient of variation in water exchange intensity over time. Although its influence on aquatic plant characteristics has been recently investigated, there is limited understanding regarding the effects of this hydrodynamic change on submerged vegetation. This study investigated the impacts of WEU on the species dominance and community composition of submerged macrophytes in three bays with different WEU conditions in Erhai Lake, China. Subsequently, a laboratory experiment was conducted to elucidate the mechanisms underlying these effects. The field investigation showed that the dominance values of submerged macrophytes were influenced by WEU. As WEU decreased, the average dominance value decreased for Vallisneria natans (by 34.54 %), Myriophyllum spicatum (16.82 %), and Hydrilla verticillata (12.84 %); showed no significant change for Potamogeton lucens; and increased for Potamogeton maackianus (14.22 %) and Ceratophyllum demersum (17.52 %). The laboratory experiment showed that lower WEU markedly inhibited the growth of V. natans, slightly inhibited that of M. spicatum, and stimulated that of P. maackianus, consistent with the field observations. The inhibitory effect was attributed to a reduced concentration of carbon dioxide in the water; adaptive strategies, i.e., plant height, biomass allocation, and root traits, were more effective for M. spicatum than for V. natans. The stimulated growth of P. maackianus was attributed to increased dissolved oxygen concentration, which promoted root growth and nutrient uptake. Our results indicate that WEU has significant effects on the growth and community characteristics of submerged macrophytes.
Collapse
Affiliation(s)
- Qihang Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank of Ecological Civilization, Kunming 650091, China
| | - Mingli Xie
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Ling Jin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank of Ecological Civilization, Kunming 650091, China
| | - Hongjuan Dong
- Education Technology Consulting Services Co., Ltd of Yunnan University, Kunming 650091, China
| | - Duanyang Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank of Ecological Civilization, Kunming 650091, China
| | - Tianmei Yang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank of Ecological Civilization, Kunming 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank of Ecological Civilization, Kunming 650091, China; Department of Bioscience, Aarhus University, Silkeborg, Denmark.
| |
Collapse
|
8
|
Lai JL, Li ZG, Wang Y, Xi HL, Luo XG. Tritium and Carbon-14 Contamination Reshaping the Microbial Community Structure, Metabolic Network, and Element Cycle in the Seawater Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5305-5316. [PMID: 36952228 DOI: 10.1021/acs.est.3c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The potential ecological risks caused by entering radioactive wastewater containing tritium and carbon-14 into the sea require careful evaluation. This study simulated seawater's tritium and carbon-14 pollution and analyzed the effects on the seawater and sediment microenvironments. Tritium and carbon-14 pollution primarily altered nitrogen and phosphorus metabolism in the seawater environment. Analysis by 16S rRNA sequencing showed changes in the relative abundance of microorganisms involved in carbon, nitrogen, and phosphorus metabolism and organic matter degradation in response to tritium and carbon-14 exposure. Metabonomics and metagenomic analysis showed that tritium and carbon-14 exposure interfered with gene expression involving nucleotide and amino acid metabolites, in agreement with the results seen for microbial community structure. Tritium and carbon-14 exposure also modulated the abundance of functional genes involved in carbohydrate, phosphorus, sulfur, and nitrogen metabolic pathways in sediments. Tritium and carbon-14 pollution in seawater adversely affected microbial diversity, metabolic processes, and the abundance of nutrient-cycling genes. These results provide valuable information for further evaluating the risks of tritium and carbon-14 in marine environments.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
9
|
Qu Y, Zhao L, Jin Z, Yang H, Tu C, Che F, Russel M, Song X, Huang W. Study on the management efficiency of lanthanum/iron co-modified attapulgite on sediment phosphorus load. CHEMOSPHERE 2023; 313:137315. [PMID: 36410519 DOI: 10.1016/j.chemosphere.2022.137315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Attapulgite co-modified by lanthanum-iron (MT-LHMT) was used to study its effectiveness and mechanism in controlling phosphorus release from sediments. MT-LHMT has high adsorption capacity for phosphate and the maximum adsorption capacity of MT-LHMT to phosphate can reach 75.79 mg/g. The mechanism mainly involved electrostatic action, surface precipitation and ligand exchange between MT-LHMT bonded hydroxyl and phosphate to form La-O-P and Fe-O-P inner-sphere complexes. MT-LHMT has excellent adsorption performance in the pH range of 3-8. In addition to HCO3-, CO32- and HA- had a negative effect on the phosphorus removal of MT-LHMT, while NO3-, Cl-, SO42-, K+, Ca2+ and Mg2+ had a positive or no effect on phosphorus removal. MT-LHMT significantly reduced the risk of phosphorus release from overlying water in different dose effects and covering methods, as well as the unstable inactivation of flowing phosphorus, sediment dissolved reactive phosphorus (DRP) and available phosphorus with medium diffusion gradient in thin film in the sediment-water interface (Labile-PDGT). The MT-LHMT capping wrapped with fabric can reduce the risk of nitrogen release from sediment to overlying water more than only MT-LHMT capping. The results of this study showed that the MT-LHMT capping wrapped with fabric has high potential and can be used as an active capping material to manage the nitrogen and phosphorus load in surface water.
Collapse
Affiliation(s)
- Yihe Qu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; School of Ocean Science and Technology, Dalian University of Technology, Liaoning Province, Panjin, 124221, PR China
| | - Li Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China
| | - Zhenghai Jin
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Haoran Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chengqi Tu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning Province, Panjin, 124221, PR China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China.
| |
Collapse
|
10
|
Liu Z, Bai G, Liu Y, Zou Y, Ding Z, Wang R, Chen D, Kong L, Wang C, Liu L, Liu B, Zhou Q, He F, Wu Z, Zhang Y. Long-term study of ecological restoration in a typical shallow urban lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157505. [PMID: 35870592 DOI: 10.1016/j.scitotenv.2022.157505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Disong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chuan Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
11
|
Han Y, Jeppesen E, Lürling M, Zhang Y, Ma T, Li W, Chen K, Li K. Combining lanthanum-modified bentonite (LMB) and submerged macrophytes alleviates water quality deterioration in the presence of omni-benthivorous fish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115036. [PMID: 35421721 DOI: 10.1016/j.jenvman.2022.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Bioturbation by omni-benthivorous fish often causes sediment resuspension and internal nutrient loading, which boosts phytoplankton growth and may lead to a shift of clear water lakes to a turbid state. Removal of large-sized omni-benthivorous individuals is a lake restoration measure that may revert lakes from a turbid to a clear water state, yet the rapid reproduction of small omni-benthivorous fish in tropical and subtropical shallow lakes may impede such lake recovery. In lake restoration, also a combination of lanthanum-modified bentonite (LMB) and planting submerged macrophytes has been used that may synergistically improve lake water quality. How the combined effect works in the presence of small omni-benthivorous fish has not been studied, which is needed given the high abundances of small omni-benthivorous fish in (sub)tropical lakes. We conducted a two-by-two factorial mesocosm experiment with and without the submerged macrophytes Vallisneria natans and with and without LMB, all in the presence of small crucian carp. At the end of the experiment, turbidity in the V. natans, LMB and combined LMB + V. natans treatments had decreased by 0.8%, 30.3% and 30.9%, respectively, compared with the controls. In addition, the nitrogen (N) and phosphorus (P) release from the sediment in the combined LMB + V. natans treatments had decreased substantially, by 97.4% and 94.3%, respectively, compared with the control. These N and P fluxes were also significantly lower in the combined LMB + V. natans treatments than in the sole LMB treatment (88.1% and 82.3%) or the V. natans treatment (93.2% and 90.3%). Cyanobacteria in the overlying water in the combined LMB + V. natans treatments significantly decreased by 84.1%, 63.5% and 37.0%, respectively, compared with the control and the sole LMB and V. natans treatments. Our results show that LMB and submerged macrophytes complement each other in effectively improving the water quality, even in the presence of small omni-benthivorous fish.
Collapse
Affiliation(s)
- Yanqing Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, Beijing, 100049, China; Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin, 33731, Turkey
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, 6700, AA, Netherlands
| | - You Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Tingting Ma
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wei Li
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 40410, China
| | - Kunquan Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, Beijing, 100049, China
| |
Collapse
|
12
|
Liu Y, Bai G, Zou Y, Ding Z, Tang Y, Wang R, Liu Z, Zhou Q, Wu Z, Zhang Y. Combined remediation mechanism of bentonite and submerged plants on lake sediments by DGT technique. CHEMOSPHERE 2022; 298:134236. [PMID: 35288180 DOI: 10.1016/j.chemosphere.2022.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Responses of Different Submerged Macrophytes to the Application of Lanthanum-Modified Bentonite (LMB): A Mesocosm Study. WATER 2022. [DOI: 10.3390/w14111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lanthanum-modified bentonite (LMB) has remarkable efficacy on eutrophication control, but the reduced bioavailable phosphorus and formed anaerobic horizon from LMB may be harmful to submerged macrophytes. We conducted this study to explore the influence of LMB on Hydrilla verticillata and Vallisneria natans in mixed-species plantings. The concentrations of TP, TDP, SRP, and TDN in the LMB treatments were lower than the Control, but the Chl a concentration in the HLMB treatment (850 g m−2) was higher than the Control by 63%. There were no differences of V. natans growth among the treatments. For H. verticillata, its biomass, RGR, height, branch number, root number, and length in the LLMB treatment (425 g m−2) were lower than the Control by 48%, 22%, 13%, 34%, 33%, and 8%, respectively. In addition, the biomass of H. verticillata was 62%, the RGR was 32%, the height was 19%, the branch number was 52%, the root length was 40%, and the root number was 54% lower in the HLMB treatment than those in the Control. In summary, LMB had negative effects on submerged macrophytes with underdeveloped roots. Submerged macrophytes with more developed roots are preferred when using combined biological–chemical methods for water restoration.
Collapse
|
14
|
Zhou F, Wang X, Wang G, Zuo Y. A Rapid Method for Detecting Microplastics Based on Fluorescence Lifetime Imaging Technology (FLIM). TOXICS 2022; 10:toxics10030118. [PMID: 35324743 PMCID: PMC8951726 DOI: 10.3390/toxics10030118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
With the increasing use and release of plastic products, microplastics have rapidly accumulated in ecological environments. When microplastics enter the food chain, they cause serious harm to organisms and humans. Microplastics pollution has become a growing concern worldwide; however, there is still no standardized method for rapidly and accurately detecting microplastics. In this work, we used fluorescence lifetime imaging technology to detect four kinds of Nile red-stained and unstained microplastics, and the unique phasor fingerprints of different microplastics were obtained by phasor analysis. Tracing the corresponding pixels of the “fingerprint” in the fluorescence lifetime image allowed for the quick and intuitive identification of different microplastics and their location distributions in a mixed sample. In our work, compared with staining the four microplastics with a fluorescent dye, using the phasor “fingerprint library” formed by the autofluorescence lifetimes of the microplastics was more easily distinguished than microplastics in the mixed samples. The feasibility of this method was further tested by adding three single substances—SiO2, chitin and decabromodiphenyl ethane (DBDPE), and surface sediments to simulate interferent in the environment, and the results providing potential applications for the identification and analysis of microplastics in complex environments.
Collapse
|
15
|
Liu Y, Han F, Bai G, Kong L, Liu Z, Wang C, Liu B, He F, Wu Z, Zhang Y. The promotion effects of silicate mineral maifanite on the growth of submerged macrophytes Hydrilla verticillata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115380. [PMID: 32892006 DOI: 10.1016/j.envpol.2020.115380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The effects of maifanite on the physiological and phytochemical process of submerged macrophytes Hydrilla verticillate (H.verticillata) were investigated for the first time in the study. The growth index: plant biomass, root length, plant height and leaf spacing, and physiological and phytochemical indexes: chlorophyll, soluble protein, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) content and vitality of the roots of H.verticillata were tested. The results found that maifanite can significantly promote the growth of H.verticillata. The modified maifanite were more conducive to plant growth compared with the raw maifanite, and the MM1 group had the best growth promoting effect. The physiological and phytochemical indexes showed that maifanite can delay the aging process of H.verticillata (P < 0.05). The possible reasons for promoting H.verticillata growth were that maifanite can provide excellent propagation conditions for plant rhizosphere microorganisms, contains abundant major and microelements, and improve the sediment microenvironment. This study may provide a technique for the further application of maifanite in the field of ecological restoration.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou, 310007, PR China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|